#include "storm/modelchecker/exploration/SparseExplorationModelChecker.h" #include "storm/modelchecker/exploration/ExplorationInformation.h" #include "storm/modelchecker/exploration/StateGeneration.h" #include "storm/modelchecker/exploration/Bounds.h" #include "storm/modelchecker/exploration/Statistics.h" #include "storm/generator/CompressedState.h" #include "storm/storage/SparseMatrix.h" #include "storm/storage/MaximalEndComponentDecomposition.h" #include "storm/storage/prism/Program.h" #include "storm/logic/FragmentSpecification.h" #include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/models/sparse/Dtmc.h" #include "storm/models/sparse/Mdp.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/CoreSettings.h" #include "storm/settings/modules/ExplorationSettings.h" #include "storm/utility/macros.h" #include "storm/utility/constants.h" #include "storm/utility/graph.h" #include "storm/utility/prism.h" #include "storm/exceptions/InvalidOperationException.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/exceptions/NotSupportedException.h" namespace storm { namespace modelchecker { template SparseExplorationModelChecker::SparseExplorationModelChecker(storm::prism::Program const& program) : program(program.substituteConstants()), randomGenerator(std::chrono::system_clock::now().time_since_epoch().count()), comparator(storm::settings::getModule().getPrecision()) { // Intentionally left empty. } template bool SparseExplorationModelChecker::canHandle(CheckTask const& checkTask) const { storm::logic::Formula const& formula = checkTask.getFormula(); storm::logic::FragmentSpecification fragment = storm::logic::reachability(); return formula.isInFragment(fragment) && checkTask.isOnlyInitialStatesRelevantSet(); } template std::unique_ptr SparseExplorationModelChecker::computeUntilProbabilities(CheckTask const& checkTask) { storm::logic::UntilFormula const& untilFormula = checkTask.getFormula(); storm::logic::Formula const& conditionFormula = untilFormula.getLeftSubformula(); storm::logic::Formula const& targetFormula = untilFormula.getRightSubformula(); STORM_LOG_THROW(program.isDeterministicModel() || checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "For nondeterministic systems, an optimization direction (min/max) must be given in the property."); ExplorationInformation explorationInformation(checkTask.isOptimizationDirectionSet() ? checkTask.getOptimizationDirection() : storm::OptimizationDirection::Maximize); // The first row group starts at action 0. explorationInformation.newRowGroup(0); std::map labelToExpressionMapping = program.getLabelToExpressionMapping(); StateGeneration stateGeneration(program, explorationInformation, conditionFormula.toExpression(program.getManager(), labelToExpressionMapping), targetFormula.toExpression(program.getManager(), labelToExpressionMapping)); // Compute and return result. std::tuple boundsForInitialState = performExploration(stateGeneration, explorationInformation); return std::make_unique>(std::get<0>(boundsForInitialState), std::get<1>(boundsForInitialState)); } template std::tuple SparseExplorationModelChecker::performExploration(StateGeneration& stateGeneration, ExplorationInformation& explorationInformation) const { // Generate the initial state so we know where to start the simulation. stateGeneration.computeInitialStates(); STORM_LOG_THROW(stateGeneration.getNumberOfInitialStates() == 1, storm::exceptions::NotSupportedException, "Currently only models with one initial state are supported by the exploration engine."); StateType initialStateIndex = stateGeneration.getFirstInitialState(); // Create a structure that holds the bounds for the states and actions. Bounds bounds; // Create a stack that is used to track the path we sampled. StateActionStack stack; // Now perform the actual sampling. Statistics stats; bool convergenceCriterionMet = false; while (!convergenceCriterionMet) { bool result = samplePathFromInitialState(stateGeneration, explorationInformation, stack, bounds, stats); stats.sampledPath(); stats.updateMaxPathLength(stack.size()); // If a terminal state was found, we update the probabilities along the path contained in the stack. if (result) { // Update the bounds along the path to the terminal state. STORM_LOG_TRACE("Found terminal state, updating probabilities along path."); updateProbabilityBoundsAlongSampledPath(stack, explorationInformation, bounds); } else { // If not terminal state was found, the search aborted, possibly because of an EC-detection. In this // case, we cannot update the probabilities. STORM_LOG_TRACE("Did not find terminal state."); } STORM_LOG_DEBUG("Discovered states: " << explorationInformation.getNumberOfDiscoveredStates() << " (" << stats.numberOfExploredStates << " explored, " << explorationInformation.getNumberOfUnexploredStates() << " unexplored)."); STORM_LOG_DEBUG("Value of initial state is in [" << bounds.getLowerBoundForState(initialStateIndex, explorationInformation) << ", " << bounds.getUpperBoundForState(initialStateIndex, explorationInformation) << "]."); ValueType difference = bounds.getDifferenceOfStateBounds(initialStateIndex, explorationInformation); STORM_LOG_DEBUG("Difference after iteration " << stats.pathsSampled << " is " << difference << "."); convergenceCriterionMet = comparator.isZero(difference); // If the number of sampled paths exceeds a certain threshold, do a precomputation. if (!convergenceCriterionMet && explorationInformation.performPrecomputationExcessiveSampledPaths(stats.pathsSampledSinceLastPrecomputation)) { performPrecomputation(stack, explorationInformation, bounds, stats); } } // Show statistics if required. if (storm::settings::getModule().isShowStatisticsSet()) { stats.printToStream(std::cout, explorationInformation); } return std::make_tuple(initialStateIndex, bounds.getLowerBoundForState(initialStateIndex, explorationInformation), bounds.getUpperBoundForState(initialStateIndex, explorationInformation)); } template bool SparseExplorationModelChecker::samplePathFromInitialState(StateGeneration& stateGeneration, ExplorationInformation& explorationInformation, StateActionStack& stack, Bounds& bounds, Statistics& stats) const { // Start the search from the initial state. stack.push_back(std::make_pair(stateGeneration.getFirstInitialState(), 0)); // As long as we didn't find a terminal (accepting or rejecting) state in the search, sample a new successor. bool foundTerminalState = false; while (!foundTerminalState) { StateType const& currentStateId = stack.back().first; STORM_LOG_TRACE("State on top of stack is: " << currentStateId << "."); // If the state is not yet explored, we need to retrieve its behaviors. auto unexploredIt = explorationInformation.findUnexploredState(currentStateId); if (unexploredIt != explorationInformation.unexploredStatesEnd()) { STORM_LOG_TRACE("State was not yet explored."); // Explore the previously unexplored state. storm::generator::CompressedState const& compressedState = unexploredIt->second; foundTerminalState = exploreState(stateGeneration, currentStateId, compressedState, explorationInformation, bounds, stats); if (foundTerminalState) { STORM_LOG_TRACE("Aborting sampling of path, because a terminal state was reached."); } explorationInformation.removeUnexploredState(unexploredIt); } else { // If the state was already explored, we check whether it is a terminal state or not. if (explorationInformation.isTerminal(currentStateId)) { STORM_LOG_TRACE("Found already explored terminal state: " << currentStateId << "."); foundTerminalState = true; } } // Notify the stats about the performed exploration step. stats.explorationStep(); // If the state was not a terminal state, we continue the path search and sample the next state. if (!foundTerminalState) { // At this point, we can be sure that the state was expanded and that we can sample according to the // probabilities in the matrix. uint32_t chosenAction = sampleActionOfState(currentStateId, explorationInformation, bounds); stack.back().second = chosenAction; STORM_LOG_TRACE("Sampled action " << chosenAction << " in state " << currentStateId << "."); StateType successor = sampleSuccessorFromAction(chosenAction, explorationInformation, bounds); STORM_LOG_TRACE("Sampled successor " << successor << " according to action " << chosenAction << " of state " << currentStateId << "."); // Put the successor state and a dummy action on top of the stack. stack.emplace_back(successor, 0); // If the number of exploration steps exceeds a certain threshold, do a precomputation. if (explorationInformation.performPrecomputationExcessiveExplorationSteps(stats.explorationStepsSinceLastPrecomputation)) { performPrecomputation(stack, explorationInformation, bounds, stats); STORM_LOG_TRACE("Aborting the search after precomputation."); stack.clear(); break; } } } return foundTerminalState; } template bool SparseExplorationModelChecker::exploreState(StateGeneration& stateGeneration, StateType const& currentStateId, storm::generator::CompressedState const& currentState, ExplorationInformation& explorationInformation, Bounds& bounds, Statistics& stats) const { bool isTerminalState = false; bool isTargetState = false; ++stats.numberOfExploredStates; // Finally, map the unexplored state to the row group. explorationInformation.assignStateToNextRowGroup(currentStateId); STORM_LOG_TRACE("Assigning row group " << explorationInformation.getRowGroup(currentStateId) << " to state " << currentStateId << "."); // Initialize the bounds, because some of the following computations depend on the values to be available for // all states that have been assigned to a row-group. bounds.initializeBoundsForNextState(); // Before generating the behavior of the state, we need to determine whether it's a target state that // does not need to be expanded. stateGeneration.load(currentState); if (stateGeneration.isTargetState()) { ++stats.numberOfTargetStates; isTargetState = true; isTerminalState = true; } else if (stateGeneration.isConditionState()) { STORM_LOG_TRACE("Exploring state."); // If it needs to be expanded, we use the generator to retrieve the behavior of the new state. storm::generator::StateBehavior behavior = stateGeneration.expand(); STORM_LOG_TRACE("State has " << behavior.getNumberOfChoices() << " choices."); // Clumsily check whether we have found a state that forms a trivial BMEC. bool otherSuccessor = false; for (auto const& choice : behavior) { for (auto const& entry : choice) { if (entry.first != currentStateId) { otherSuccessor = true; break; } } } isTerminalState = !otherSuccessor; // If the state was neither a trivial (non-accepting) terminal state nor a target state, we // need to store its behavior. if (!isTerminalState) { // Next, we insert the behavior into our matrix structure. StateType startAction = explorationInformation.getActionCount(); explorationInformation.addActionsToMatrix(behavior.getNumberOfChoices()); ActionType localAction = 0; // Retrieve the lowest state bounds (wrt. to the current optimization direction). std::pair stateBounds = getLowestBounds(explorationInformation.getOptimizationDirection()); for (auto const& choice : behavior) { for (auto const& entry : choice) { explorationInformation.getRowOfMatrix(startAction + localAction).emplace_back(entry.first, entry.second); STORM_LOG_TRACE("Found transition " << currentStateId << "-[" << (startAction + localAction) << ", " << entry.second << "]-> " << entry.first << "."); } std::pair actionBounds = computeBoundsOfAction(startAction + localAction, explorationInformation, bounds); bounds.initializeBoundsForNextAction(actionBounds); stateBounds = combineBounds(explorationInformation.getOptimizationDirection(), stateBounds, actionBounds); STORM_LOG_TRACE("Initializing bounds of action " << (startAction + localAction) << " to " << bounds.getLowerBoundForAction(startAction + localAction) << " and " << bounds.getUpperBoundForAction(startAction + localAction) << "."); ++localAction; } // Terminate the row group. explorationInformation.terminateCurrentRowGroup(); bounds.setBoundsForState(currentStateId, explorationInformation, stateBounds); STORM_LOG_TRACE("Initializing bounds of state " << currentStateId << " to " << bounds.getLowerBoundForState(currentStateId, explorationInformation) << " and " << bounds.getUpperBoundForState(currentStateId, explorationInformation) << "."); } } else { // In this case, the state is neither a target state nor a condition state and therefore a rejecting // terminal state. isTerminalState = true; } if (isTerminalState) { STORM_LOG_TRACE("State does not need to be explored, because it is " << (isTargetState ? "a target state" : "a rejecting terminal state") << "."); explorationInformation.addTerminalState(currentStateId); if (isTargetState) { bounds.setBoundsForState(currentStateId, explorationInformation, std::make_pair(storm::utility::one(), storm::utility::one())); bounds.initializeBoundsForNextAction(std::make_pair(storm::utility::one(), storm::utility::one())); } else { bounds.setBoundsForState(currentStateId, explorationInformation, std::make_pair(storm::utility::zero(), storm::utility::zero())); bounds.initializeBoundsForNextAction(std::make_pair(storm::utility::zero(), storm::utility::zero())); } // Increase the size of the matrix, but leave the row empty. explorationInformation.addActionsToMatrix(1); // Terminate the row group. explorationInformation.newRowGroup(); } return isTerminalState; } template typename SparseExplorationModelChecker::ActionType SparseExplorationModelChecker::sampleActionOfState(StateType const& currentStateId, ExplorationInformation const& explorationInformation, Bounds& bounds) const { // Determine the values of all available actions. std::vector> actionValues; StateType rowGroup = explorationInformation.getRowGroup(currentStateId); // Check for cases in which we do not need to perform more work. if (explorationInformation.onlyOneActionAvailable(rowGroup)) { return explorationInformation.getStartRowOfGroup(rowGroup); } // If there are more choices to consider, start by gathering the values of relevant actions. STORM_LOG_TRACE("Sampling from actions leaving the state."); for (uint32_t row = explorationInformation.getStartRowOfGroup(rowGroup); row < explorationInformation.getStartRowOfGroup(rowGroup + 1); ++row) { actionValues.push_back(std::make_pair(row, bounds.getBoundForAction(explorationInformation.getOptimizationDirection(), row))); } STORM_LOG_ASSERT(!actionValues.empty(), "Values for actions must not be empty."); // Sort the actions wrt. to the optimization direction. if (explorationInformation.maximize()) { std::sort(actionValues.begin(), actionValues.end(), [] (std::pair const& a, std::pair const& b) { return a.second > b.second; } ); } else { std::sort(actionValues.begin(), actionValues.end(), [] (std::pair const& a, std::pair const& b) { return a.second < b.second; } ); } // Determine the first elements of the sorted range that agree on their value. auto end = ++actionValues.begin(); while (end != actionValues.end() && comparator.isEqual(actionValues.begin()->second, end->second)) { ++end; } // Now sample from all maximizing actions. std::uniform_int_distribution distribution(0, std::distance(actionValues.begin(), end) - 1); return actionValues[distribution(randomGenerator)].first; } template StateType SparseExplorationModelChecker::sampleSuccessorFromAction(ActionType const& chosenAction, ExplorationInformation const& explorationInformation, Bounds const& bounds) const { std::vector> const& row = explorationInformation.getRowOfMatrix(chosenAction); if (row.size() == 1) { return row.front().getColumn(); } // Depending on the selected next-state heuristic, we give the states other likelihoods of getting chosen. if (explorationInformation.useDifferenceProbabilitySumHeuristic() || explorationInformation.useProbabilityHeuristic()) { std::vector probabilities(row.size()); if (explorationInformation.useDifferenceProbabilitySumHeuristic()) { std::transform(row.begin(), row.end(), probabilities.begin(), [&bounds, &explorationInformation] (storm::storage::MatrixEntry const& entry) { return entry.getValue() + bounds.getDifferenceOfStateBounds(entry.getColumn(), explorationInformation); }); } else if (explorationInformation.useProbabilityHeuristic()) { std::transform(row.begin(), row.end(), probabilities.begin(), [&bounds, &explorationInformation] (storm::storage::MatrixEntry const& entry) { return entry.getValue(); }); } // Now sample according to the probabilities. std::discrete_distribution distribution(probabilities.begin(), probabilities.end()); return row[distribution(randomGenerator)].getColumn(); } else { STORM_LOG_ASSERT(explorationInformation.useUniformHeuristic(), "Illegal next-state heuristic."); std::uniform_int_distribution distribution(0, row.size() - 1); return row[distribution(randomGenerator)].getColumn(); } } template bool SparseExplorationModelChecker::performPrecomputation(StateActionStack const& stack, ExplorationInformation& explorationInformation, Bounds& bounds, Statistics& stats) const { ++stats.numberOfPrecomputations; // Outline: // 1. construct a sparse transition matrix of the relevant part of the state space. // 2. use this matrix to compute states with probability 0/1 and an MEC decomposition (in the max case). // 3. use MEC decomposition to collapse MECs. STORM_LOG_TRACE("Starting " << (explorationInformation.useLocalPrecomputation() ? "local" : "global") << " precomputation."); // Construct the matrix that represents the fragment of the system contained in the currently sampled path. storm::storage::SparseMatrixBuilder builder(0, 0, 0, false, true, 0); // Determine the set of states that was expanded. std::vector relevantStates; if (explorationInformation.useLocalPrecomputation()) { for (auto const& stateActionPair : stack) { if (explorationInformation.maximize() || !storm::utility::isOne(bounds.getLowerBoundForState(stateActionPair.first, explorationInformation))) { relevantStates.push_back(stateActionPair.first); } } std::sort(relevantStates.begin(), relevantStates.end()); auto newEnd = std::unique(relevantStates.begin(), relevantStates.end()); relevantStates.resize(std::distance(relevantStates.begin(), newEnd)); } else { for (StateType state = 0; state < explorationInformation.getNumberOfDiscoveredStates(); ++state) { // Add the state to the relevant states if they are not unexplored. if (!explorationInformation.isUnexplored(state)) { relevantStates.push_back(state); } } } StateType sink = relevantStates.size(); // Create a mapping for faster look-up during the translation of flexible matrix to the real sparse matrix. // While doing so, record all target states. std::unordered_map relevantStateToNewRowGroupMapping; storm::storage::BitVector targetStates(sink + 1); for (StateType index = 0; index < relevantStates.size(); ++index) { relevantStateToNewRowGroupMapping.emplace(relevantStates[index], index); if (storm::utility::isOne(bounds.getLowerBoundForState(relevantStates[index], explorationInformation))) { targetStates.set(index); } } // Do the actual translation. StateType currentRow = 0; for (auto const& state : relevantStates) { builder.newRowGroup(currentRow); StateType rowGroup = explorationInformation.getRowGroup(state); for (auto row = explorationInformation.getStartRowOfGroup(rowGroup); row < explorationInformation.getStartRowOfGroup(rowGroup + 1); ++row) { ValueType unexpandedProbability = storm::utility::zero(); for (auto const& entry : explorationInformation.getRowOfMatrix(row)) { auto it = relevantStateToNewRowGroupMapping.find(entry.getColumn()); if (it != relevantStateToNewRowGroupMapping.end()) { // If the entry is a relevant state, we copy it over (and compensate for the offset change). builder.addNextValue(currentRow, it->second, entry.getValue()); } else { // If the entry is an unexpanded state, we gather the probability to later redirect it to an unexpanded sink. unexpandedProbability += entry.getValue(); } } if (unexpandedProbability != storm::utility::zero()) { builder.addNextValue(currentRow, sink, unexpandedProbability); } ++currentRow; } } // Then, make the unexpanded state absorbing. builder.newRowGroup(currentRow); builder.addNextValue(currentRow, sink, storm::utility::one()); storm::storage::SparseMatrix relevantStatesMatrix = builder.build(); storm::storage::SparseMatrix transposedMatrix = relevantStatesMatrix.transpose(true); STORM_LOG_TRACE("Successfully built matrix for precomputation."); storm::storage::BitVector allStates(sink + 1, true); storm::storage::BitVector statesWithProbability0; storm::storage::BitVector statesWithProbability1; if (explorationInformation.maximize()) { // If we are computing maximal probabilities, we first perform a detection of states that have // probability 01 and then additionally perform an MEC decomposition. The reason for this somewhat // duplicate work is the following. Optimally, we would only do the MEC decomposition, because we need // it anyway. However, when only detecting (accepting) MECs, we do not infer which of the other states // (not contained in MECs) also have probability 0/1. statesWithProbability0 = storm::utility::graph::performProb0A(transposedMatrix, allStates, targetStates); targetStates.set(sink, true); statesWithProbability1 = storm::utility::graph::performProb1E(relevantStatesMatrix, relevantStatesMatrix.getRowGroupIndices(), transposedMatrix, allStates, targetStates); storm::storage::MaximalEndComponentDecomposition mecDecomposition(relevantStatesMatrix, relevantStatesMatrix.transpose(true)); ++stats.ecDetections; STORM_LOG_TRACE("Successfully computed MEC decomposition. Found " << (mecDecomposition.size() > 1 ? (mecDecomposition.size() - 1) : 0) << " MEC(s)."); // If the decomposition contains only the MEC consisting of the sink state, we count it as 'failed'. if (mecDecomposition.size() > 1) { ++stats.failedEcDetections; } else { stats.totalNumberOfEcDetected += mecDecomposition.size() - 1; // 3. Analyze the MEC decomposition. for (auto const& mec : mecDecomposition) { // Ignore the (expected) MEC of the sink state. if (mec.containsState(sink)) { continue; } collapseMec(mec, relevantStates, relevantStatesMatrix, explorationInformation, bounds); } } } else { // If we are computing minimal probabilities, we do not need to perform an EC-detection. We rather // compute all states (of the considered fragment) that have probability 0/1. For states with // probability 0, we have to mark the sink as being a target. For states with probability 1, however, // we must treat the sink as being rejecting. targetStates.set(sink, true); statesWithProbability0 = storm::utility::graph::performProb0E(relevantStatesMatrix, relevantStatesMatrix.getRowGroupIndices(), transposedMatrix, allStates, targetStates); targetStates.set(sink, false); statesWithProbability1 = storm::utility::graph::performProb1A(relevantStatesMatrix, relevantStatesMatrix.getRowGroupIndices(), transposedMatrix, allStates, targetStates); } // Set the bounds of the identified states. for (auto state : statesWithProbability0) { StateType originalState = relevantStates[state]; bounds.setUpperBoundForState(originalState, explorationInformation, storm::utility::zero()); explorationInformation.addTerminalState(originalState); } for (auto state : statesWithProbability1) { StateType originalState = relevantStates[state]; bounds.setLowerBoundForState(originalState, explorationInformation, storm::utility::one()); explorationInformation.addTerminalState(originalState); } return true; } template void SparseExplorationModelChecker::collapseMec(storm::storage::MaximalEndComponent const& mec, std::vector const& relevantStates, storm::storage::SparseMatrix const& relevantStatesMatrix, ExplorationInformation& explorationInformation, Bounds& bounds) const { bool containsTargetState = false; // Now we record all actions leaving the EC. std::vector leavingActions; for (auto const& stateAndChoices : mec) { // Compute the state of the original model that corresponds to the current state. StateType originalState = relevantStates[stateAndChoices.first]; StateType originalRowGroup = explorationInformation.getRowGroup(originalState); // Check whether a target state is contained in the MEC. if (!containsTargetState && storm::utility::isOne(bounds.getLowerBoundForRowGroup(originalRowGroup))) { containsTargetState = true; } // For each state, compute the actions that leave the MEC. auto includedChoicesIt = stateAndChoices.second.begin(); auto includedChoicesIte = stateAndChoices.second.end(); for (auto action = explorationInformation.getStartRowOfGroup(originalRowGroup); action < explorationInformation.getStartRowOfGroup(originalRowGroup + 1); ++action) { if (includedChoicesIt != includedChoicesIte) { STORM_LOG_TRACE("Next (local) choice contained in MEC is " << (*includedChoicesIt - relevantStatesMatrix.getRowGroupIndices()[stateAndChoices.first])); STORM_LOG_TRACE("Current (local) choice iterated is " << (action - explorationInformation.getStartRowOfGroup(originalRowGroup))); if (action - explorationInformation.getStartRowOfGroup(originalRowGroup) != *includedChoicesIt - relevantStatesMatrix.getRowGroupIndices()[stateAndChoices.first]) { STORM_LOG_TRACE("Choice leaves the EC."); leavingActions.push_back(action); } else { STORM_LOG_TRACE("Choice stays in the EC."); ++includedChoicesIt; } } else { STORM_LOG_TRACE("Choice leaves the EC, because there is no more choice staying in the EC."); leavingActions.push_back(action); } } } // Now, we need to collapse the EC only if it does not contain a target state and the leaving actions are // non-empty, because only then have the states a (potentially) non-zero, non-one probability. if (!containsTargetState && !leavingActions.empty()) { // In this case, no target state is contained in the MEC, but there are actions leaving the MEC. To // prevent the simulation getting stuck in this MEC again, we replace all states in the MEC by a new // state whose outgoing actions are the ones leaving the MEC. We do this, by assigning all states in the // MEC to a new row group, which will then hold all the outgoing choices. // Remap all contained states to the new row group. StateType nextRowGroup = explorationInformation.getNextRowGroup(); for (auto const& stateAndChoices : mec) { explorationInformation.assignStateToRowGroup(stateAndChoices.first, nextRowGroup); } bounds.initializeBoundsForNextState(); // Add to the new row group all leaving actions of contained states and set the appropriate bounds for // the actions and the new state. std::pair stateBounds = getLowestBounds(explorationInformation.getOptimizationDirection()); for (auto const& action : leavingActions) { explorationInformation.moveActionToBackOfMatrix(action); std::pair const& actionBounds = bounds.getBoundsForAction(action); bounds.initializeBoundsForNextAction(actionBounds); stateBounds = combineBounds(explorationInformation.getOptimizationDirection(), stateBounds, actionBounds); } bounds.setBoundsForRowGroup(nextRowGroup, stateBounds); // Terminate the row group of the newly introduced state. explorationInformation.terminateCurrentRowGroup(); } } template typename ModelType::ValueType SparseExplorationModelChecker::computeLowerBoundOfAction(ActionType const& action, ExplorationInformation const& explorationInformation, Bounds const& bounds) const { ValueType result = storm::utility::zero(); for (auto const& element : explorationInformation.getRowOfMatrix(action)) { result += element.getValue() * bounds.getLowerBoundForState(element.getColumn(), explorationInformation); } return result; } template typename ModelType::ValueType SparseExplorationModelChecker::computeUpperBoundOfAction(ActionType const& action, ExplorationInformation const& explorationInformation, Bounds const& bounds) const { ValueType result = storm::utility::zero(); for (auto const& element : explorationInformation.getRowOfMatrix(action)) { result += element.getValue() * bounds.getUpperBoundForState(element.getColumn(), explorationInformation); } return result; } template std::pair SparseExplorationModelChecker::computeBoundsOfAction(ActionType const& action, ExplorationInformation const& explorationInformation, Bounds const& bounds) const { // TODO: take into account self-loops? std::pair result = std::make_pair(storm::utility::zero(), storm::utility::zero()); for (auto const& element : explorationInformation.getRowOfMatrix(action)) { result.first += element.getValue() * bounds.getLowerBoundForState(element.getColumn(), explorationInformation); result.second += element.getValue() * bounds.getUpperBoundForState(element.getColumn(), explorationInformation); } return result; } template std::pair SparseExplorationModelChecker::computeBoundsOfState(StateType const& currentStateId, ExplorationInformation const& explorationInformation, Bounds const& bounds) const { StateType group = explorationInformation.getRowGroup(currentStateId); std::pair result = getLowestBounds(explorationInformation.getOptimizationDirection()); for (ActionType action = explorationInformation.getStartRowOfGroup(group); action < explorationInformation.getStartRowOfGroup(group + 1); ++action) { std::pair actionValues = computeBoundsOfAction(action, explorationInformation, bounds); result = combineBounds(explorationInformation.getOptimizationDirection(), result, actionValues); } return result; } template void SparseExplorationModelChecker::updateProbabilityBoundsAlongSampledPath(StateActionStack& stack, ExplorationInformation const& explorationInformation, Bounds& bounds) const { stack.pop_back(); while (!stack.empty()) { updateProbabilityOfAction(stack.back().first, stack.back().second, explorationInformation, bounds); stack.pop_back(); } } template void SparseExplorationModelChecker::updateProbabilityOfAction(StateType const& state, ActionType const& action, ExplorationInformation const& explorationInformation, Bounds& bounds) const { // Compute the new lower/upper values of the action. std::pair newBoundsForAction = computeBoundsOfAction(action, explorationInformation, bounds); // And set them as the current value. bounds.setBoundsForAction(action, newBoundsForAction); // Check if we need to update the values for the states. if (explorationInformation.maximize()) { bounds.setLowerBoundOfStateIfGreaterThanOld(state, explorationInformation, newBoundsForAction.first); StateType rowGroup = explorationInformation.getRowGroup(state); if (newBoundsForAction.second < bounds.getUpperBoundForRowGroup(rowGroup)) { if (explorationInformation.getRowGroupSize(rowGroup) > 1) { newBoundsForAction.second = std::max(newBoundsForAction.second, computeBoundOverAllOtherActions(storm::OptimizationDirection::Maximize, state, action, explorationInformation, bounds)); } bounds.setUpperBoundForRowGroup(rowGroup, newBoundsForAction.second); } } else { bounds.setUpperBoundOfStateIfLessThanOld(state, explorationInformation, newBoundsForAction.second); StateType rowGroup = explorationInformation.getRowGroup(state); if (bounds.getLowerBoundForRowGroup(rowGroup) < newBoundsForAction.first) { if (explorationInformation.getRowGroupSize(rowGroup) > 1) { ValueType min = computeBoundOverAllOtherActions(storm::OptimizationDirection::Minimize, state, action, explorationInformation, bounds); newBoundsForAction.first = std::min(newBoundsForAction.first, min); } bounds.setLowerBoundForRowGroup(rowGroup, newBoundsForAction.first); } } } template typename ModelType::ValueType SparseExplorationModelChecker::computeBoundOverAllOtherActions(storm::OptimizationDirection const& direction, StateType const& state, ActionType const& action, ExplorationInformation const& explorationInformation, Bounds const& bounds) const { ValueType bound = getLowestBound(explorationInformation.getOptimizationDirection()); ActionType group = explorationInformation.getRowGroup(state); for (auto currentAction = explorationInformation.getStartRowOfGroup(group); currentAction < explorationInformation.getStartRowOfGroup(group + 1); ++currentAction) { if (currentAction == action) { continue; } if (direction == storm::OptimizationDirection::Maximize) { bound = std::max(bound, computeUpperBoundOfAction(currentAction, explorationInformation, bounds)); } else { bound = std::min(bound, computeLowerBoundOfAction(currentAction, explorationInformation, bounds)); } } return bound; } template std::pair SparseExplorationModelChecker::getLowestBounds(storm::OptimizationDirection const& direction) const { ValueType val = getLowestBound(direction); return std::make_pair(val, val); } template typename ModelType::ValueType SparseExplorationModelChecker::getLowestBound(storm::OptimizationDirection const& direction) const { if (direction == storm::OptimizationDirection::Maximize) { return storm::utility::zero(); } else { return storm::utility::one(); } } template std::pair SparseExplorationModelChecker::combineBounds(storm::OptimizationDirection const& direction, std::pair const& bounds1, std::pair const& bounds2) const { if (direction == storm::OptimizationDirection::Maximize) { return std::make_pair(std::max(bounds1.first, bounds2.first), std::max(bounds1.second, bounds2.second)); } else { return std::make_pair(std::min(bounds1.first, bounds2.first), std::min(bounds1.second, bounds2.second)); } } template class SparseExplorationModelChecker, uint32_t>; template class SparseExplorationModelChecker, uint32_t>; } }