// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010-2011 Hauke Heibel // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include namespace StormEigen { // lets do some explicit instantiations and thus // force the compilation of all spline functions... template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; template class Spline; } Spline closed_spline2d() { RowVectorXd knots(12); knots << 0, 0, 0, 0, 0.867193179093898, 1.660330955342408, 2.605084834823134, 3.484154586374428, 4.252699478956276, 4.252699478956276, 4.252699478956276, 4.252699478956276; MatrixXd ctrls(8,2); ctrls << -0.370967741935484, 0.236842105263158, -0.231401860693277, 0.442245185027632, 0.344361228532831, 0.773369994120753, 0.828990216203802, 0.106550882647595, 0.407270163678382, -1.043452922172848, -0.488467813584053, -0.390098582530090, -0.494657189446427, 0.054804824897884, -0.370967741935484, 0.236842105263158; ctrls.transposeInPlace(); return Spline(knots, ctrls); } /* create a reference spline */ Spline spline3d() { RowVectorXd knots(11); knots << 0, 0, 0, 0.118997681558377, 0.162611735194631, 0.498364051982143, 0.655098003973841, 0.679702676853675, 1.000000000000000, 1.000000000000000, 1.000000000000000; MatrixXd ctrls(8,3); ctrls << 0.959743958516081, 0.340385726666133, 0.585267750979777, 0.223811939491137, 0.751267059305653, 0.255095115459269, 0.505957051665142, 0.699076722656686, 0.890903252535799, 0.959291425205444, 0.547215529963803, 0.138624442828679, 0.149294005559057, 0.257508254123736, 0.840717255983663, 0.254282178971531, 0.814284826068816, 0.243524968724989, 0.929263623187228, 0.349983765984809, 0.196595250431208, 0.251083857976031, 0.616044676146639, 0.473288848902729; ctrls.transposeInPlace(); return Spline(knots, ctrls); } /* compares evaluations against known results */ void eval_spline3d() { Spline3d spline = spline3d(); RowVectorXd u(10); u << 0.351659507062997, 0.830828627896291, 0.585264091152724, 0.549723608291140, 0.917193663829810, 0.285839018820374, 0.757200229110721, 0.753729094278495, 0.380445846975357, 0.567821640725221; MatrixXd pts(10,3); pts << 0.707620811535916, 0.510258911240815, 0.417485437023409, 0.603422256426978, 0.529498282727551, 0.270351549348981, 0.228364197569334, 0.423745615677815, 0.637687289287490, 0.275556796335168, 0.350856706427970, 0.684295784598905, 0.514519311047655, 0.525077224890754, 0.351628308305896, 0.724152914315666, 0.574461155457304, 0.469860285484058, 0.529365063753288, 0.613328702656816, 0.237837040141739, 0.522469395136878, 0.619099658652895, 0.237139665242069, 0.677357023849552, 0.480655768435853, 0.422227610314397, 0.247046593173758, 0.380604672404750, 0.670065791405019; pts.transposeInPlace(); for (int i=0; i::Interpolate(points,3); for (StormEigen::DenseIndex i=0; i::Interpolate(points,3,chord_lengths); for (StormEigen::DenseIndex i=0; i(i); const Spline2d spline = SplineFitting::InterpolateWithDerivatives( points, derivatives, derivativeIndices, degree); for (StormEigen::DenseIndex i = 0; i < points.cols(); ++i) { PointType point = spline(knots(i)); PointType referencePoint = points.col(i); VERIFY_IS_APPROX(point, referencePoint); PointType derivative = spline.derivatives(knots(i), 1).col(1); PointType referenceDerivative = derivatives.col(i); VERIFY_IS_APPROX(derivative, referenceDerivative); } } void test_splines() { for (int i = 0; i < g_repeat; ++i) { CALL_SUBTEST( eval_spline3d() ); CALL_SUBTEST( eval_spline3d_onbrks() ); CALL_SUBTEST( eval_closed_spline2d() ); CALL_SUBTEST( check_global_interpolation2d() ); CALL_SUBTEST( check_global_interpolation_with_derivatives2d() ); } }