// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Mark Borgerding mark a borgerding net // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include template std::complex RandomCpx() { return std::complex( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); } using namespace std; using namespace StormEigen; template < typename T> complex promote(complex x) { return complex(x.real(),x.imag()); } complex promote(float x) { return complex( x); } complex promote(double x) { return complex( x); } complex promote(long double x) { return complex( x); } template long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf) { long double totalpower=0; long double difpower=0; long double pi = acos((long double)-1 ); for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) { complex acc = 0; long double phinc = -2.*k0* pi / timebuf.size(); for (size_t k1=0;k1<(size_t)timebuf.size();++k1) { acc += promote( timebuf[k1] ) * exp( complex(0,k1*phinc) ); } totalpower += numext::abs2(acc); complex x = promote(fftbuf[k0]); complex dif = acc - x; difpower += numext::abs2(dif); //cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl; } cerr << "rmse:" << sqrt(difpower/totalpower) << endl; return sqrt(difpower/totalpower); } template long double dif_rmse( const VT1 buf1,const VT2 buf2) { long double totalpower=0; long double difpower=0; size_t n = (min)( buf1.size(),buf2.size() ); for (size_t k=0;k struct VectorType; template struct VectorType { typedef vector type; }; template struct VectorType { typedef Matrix type; }; template void test_scalar_generic(int nfft) { typedef typename FFT::Complex Complex; typedef typename FFT::Scalar Scalar; typedef typename VectorType::type ScalarVector; typedef typename VectorType::type ComplexVector; FFT fft; ScalarVector tbuf(nfft); ComplexVector freqBuf; for (int k=0;k>1)+1) ); VERIFY( fft_rmse(freqBuf,tbuf) < test_precision() );// gross check fft.ClearFlag(fft.HalfSpectrum ); fft.fwd( freqBuf,tbuf); VERIFY( (size_t)freqBuf.size() == (size_t)nfft); VERIFY( fft_rmse(freqBuf,tbuf) < test_precision() );// gross check if (nfft&1) return; // odd FFTs get the wrong size inverse FFT ScalarVector tbuf2; fft.inv( tbuf2 , freqBuf); VERIFY( dif_rmse(tbuf,tbuf2) < test_precision() );// gross check // verify that the Unscaled flag takes effect ScalarVector tbuf3; fft.SetFlag(fft.Unscaled); fft.inv( tbuf3 , freqBuf); for (int k=0;k " << (tbuf3[i] - tbuf[i] ) << endl; VERIFY( dif_rmse(tbuf,tbuf3) < test_precision() );// gross check // verify that ClearFlag works fft.ClearFlag(fft.Unscaled); fft.inv( tbuf2 , freqBuf); VERIFY( dif_rmse(tbuf,tbuf2) < test_precision() );// gross check } template void test_scalar(int nfft) { test_scalar_generic(nfft); //test_scalar_generic(nfft); } template void test_complex_generic(int nfft) { typedef typename FFT::Complex Complex; typedef typename VectorType::type ComplexVector; FFT fft; ComplexVector inbuf(nfft); ComplexVector outbuf; ComplexVector buf3; for (int k=0;k() );// gross check fft.inv( buf3 , outbuf); VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check // verify that the Unscaled flag takes effect ComplexVector buf4; fft.SetFlag(fft.Unscaled); fft.inv( buf4 , outbuf); for (int k=0;k() );// gross check // verify that ClearFlag works fft.ClearFlag(fft.Unscaled); fft.inv( buf3 , outbuf); VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check } template void test_complex(int nfft) { test_complex_generic(nfft); test_complex_generic(nfft); } /* template void test_complex2d() { typedef typename StormEigen::FFT::Complex Complex; FFT fft; StormEigen::Matrix src,src2,dst,dst2; src = StormEigen::Matrix::Random(); //src = StormEigen::Matrix::Identity(); for (int k=0;k tmpOut; fft.fwd( tmpOut,src.col(k) ); dst2.col(k) = tmpOut; } for (int k=0;k tmpOut; fft.fwd( tmpOut, dst2.row(k) ); dst2.row(k) = tmpOut; } fft.fwd2(dst.data(),src.data(),ncols,nrows); fft.inv2(src2.data(),dst.data(),ncols,nrows); VERIFY( (src-src2).norm() < test_precision() ); VERIFY( (dst-dst2).norm() < test_precision() ); } */ void test_return_by_value(int len) { VectorXf in; VectorXf in1; in.setRandom( len ); VectorXcf out1,out2; FFT fft; fft.SetFlag(fft.HalfSpectrum ); fft.fwd(out1,in); out2 = fft.fwd(in); VERIFY( (out1-out2).norm() < test_precision() ); in1 = fft.inv(out1); VERIFY( (in1-in).norm() < test_precision() ); } void test_FFTW() { CALL_SUBTEST( test_return_by_value(32) ); //CALL_SUBTEST( ( test_complex2d () ) ); CALL_SUBTEST( ( test_complex2d () ) ); //CALL_SUBTEST( ( test_complex2d () ) ); CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4*5) ); CALL_SUBTEST( test_complex(2*3*4*5) ); CALL_SUBTEST( test_complex(2*3*4*5*7) ); CALL_SUBTEST( test_complex(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(50) ); CALL_SUBTEST( test_scalar(50) ); CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); #ifdef EIGEN_HAS_FFTWL CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4*5) ); CALL_SUBTEST( test_complex(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(50) ); CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); #endif }