// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" // y = alpha*A*x + beta*y int STORMEIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar); static functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; func[UP] = (internal::selfadjoint_matrix_vector_product::run); func[LO] = (internal::selfadjoint_matrix_vector_product::run); init = true; } Scalar* a = reinterpret_cast(pa); Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // check arguments int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*lda=2 || func[code]==0) return 0; func[code](*n, a, *lda, actual_x, actual_y, alpha); if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); return 1; } // C := alpha*x*x' + C int STORMEIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc) { // typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar); // static functype func[2]; // static bool init = false; // if(!init) // { // for(int k=0; k<2; ++k) // func[k] = 0; // // func[UP] = (internal::selfadjoint_product::run); // func[LO] = (internal::selfadjoint_product::run); // init = true; // } typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); static functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; func[UP] = (selfadjoint_rank1_update::run); func[LO] = (selfadjoint_rank1_update::run); init = true; } Scalar* x = reinterpret_cast(px); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*ldc=2 || func[code]==0) return 0; func[code](*n, c, *ldc, x_cpy, x_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; return 1; } // C := alpha*x*y' + alpha*y*x' + C int STORMEIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc) { // typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); // static functype func[2]; // // static bool init = false; // if(!init) // { // for(int k=0; k<2; ++k) // func[k] = 0; // // func[UP] = (internal::selfadjoint_product::run); // func[LO] = (internal::selfadjoint_product::run); // // init = true; // } typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); static functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; func[UP] = (internal::rank2_update_selector::run); func[LO] = (internal::rank2_update_selector::run); init = true; } Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar* c = reinterpret_cast(pc); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*ldc=2 || func[code]==0) return 0; func[code](*n, c, *ldc, x_cpy, y_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; // int code = UPLO(*uplo); // if(code>=2 || func[code]==0) // return 0; // func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); return 1; } /** DSBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric band matrix, with k super-diagonals. */ // int STORMEIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** DSPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix, supplied in packed form. * */ // int STORMEIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** DSPR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix, supplied in packed form. */ int STORMEIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *pap) { typedef void (*functype)(int, Scalar*, const Scalar*, Scalar); static functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; func[UP] = (internal::selfadjoint_packed_rank1_update::run); func[LO] = (internal::selfadjoint_packed_rank1_update::run); init = true; } Scalar* x = reinterpret_cast(px); Scalar* ap = reinterpret_cast(pap); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; if(info) return xerbla_(SCALAR_SUFFIX_UP"SPR ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x, *n, *incx); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, ap, x_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; return 1; } /** DSPR2 performs the symmetric rank 2 operation * * A := alpha*x*y' + alpha*y*x' + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n symmetric matrix, supplied in packed form. */ int STORMEIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) { typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); static functype func[2]; static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0; func[UP] = (internal::packed_rank2_update_selector::run); func[LO] = (internal::packed_rank2_update_selector::run); init = true; } Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar* ap = reinterpret_cast(pap); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"SPR2 ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x, *n, *incx); Scalar* y_cpy = get_compact_vector(y, *n, *incy); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0; func[code](*n, ap, x_cpy, y_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; } /** DGER performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int STORMEIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar* a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; return 1; }