// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n RealScalar STORMEIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx) { // std::cerr << "_asum " << *n << " " << *incx << "\n"; Scalar* x = reinterpret_cast(px); if(*n<=0) return 0; if(*incx==1) return make_vector(x,*n).cwiseAbs().sum(); else return make_vector(x,*n,std::abs(*incx)).cwiseAbs().sum(); } // computes a vector-vector dot product. Scalar STORMEIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { // std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); if(*incx==1 && *incy==1) return (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum(); else if(*incx>0 && *incy>0) return (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum(); else if(*incx<0 && *incy>0) return (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum(); else if(*incx>0 && *incy<0) return (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); else if(*incx<0 && *incy<0) return (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); else return 0; } // computes the Euclidean norm of a vector. // FIXME Scalar STORMEIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx) { // std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast(px); if(*incx==1) return make_vector(x,*n).stableNorm(); else return make_vector(x,*n,std::abs(*incx)).stableNorm(); } int STORMEIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { // std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; if(*n<=0) return 0; Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); Scalar c = *reinterpret_cast(pc); Scalar s = *reinterpret_cast(ps); StridedVectorType vx(make_vector(x,*n,std::abs(*incx))); StridedVectorType vy(make_vector(y,*n,std::abs(*incy))); Reverse rvx(vx); Reverse rvy(vy); if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation(c,s)); else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation(c,s)); else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation(c,s)); return 0; } /* // performs rotation of points in the modified plane. int STORMEIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); // TODO return 0; } // computes the modified parameters for a Givens rotation. int STORMEIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param) { // TODO return 0; } */