#include "storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h" #include "storm/modelchecker/csl/helper/SparseCtmcCslHelper.h" #include "storm/utility/macros.h" #include "storm/utility/vector.h" #include "storm/utility/graph.h" #include "storm/storage/StronglyConnectedComponentDecomposition.h" #include "storm/storage/DynamicPriorityQueue.h" #include "storm/storage/ConsecutiveUint64DynamicPriorityQueue.h" #include "storm/solver/LinearEquationSolver.h" #include "storm/solver/Multiplier.h" #include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h" #include "storm/modelchecker/hints/ExplicitModelCheckerHint.h" #include "storm/modelchecker/prctl/helper/DsMpiUpperRewardBoundsComputer.h" #include "storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h" #include "storm/environment/solver/SolverEnvironment.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/GeneralSettings.h" #include "storm/settings/modules/CoreSettings.h" #include "storm/settings/modules/IOSettings.h" #include "storm/settings/modules/ModelCheckerSettings.h" #include "storm/utility/Stopwatch.h" #include "storm/utility/ProgressMeasurement.h" #include "storm/utility/SignalHandler.h" #include "storm/utility/export.h" #include "storm/utility/macros.h" #include "storm/utility/ConstantsComparator.h" #include "storm/exceptions/InvalidStateException.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/exceptions/IllegalArgumentException.h" #include "storm/exceptions/UncheckedRequirementException.h" #include "storm/exceptions/NotSupportedException.h" namespace storm { namespace modelchecker { namespace helper { template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeStepBoundedUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, ModelCheckerHint const& hint) { std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>()); // If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis. storm::storage::BitVector maybeStates; if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) { maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates(); } else { maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates, true, stepBound); maybeStates &= ~psiStates; } STORM_LOG_INFO("Preprocessing: " << maybeStates.getNumberOfSetBits() << " non-target states with probability greater 0."); storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>()); if (!maybeStates.empty()) { // We can eliminate the rows and columns from the original transition probability matrix that have probability 0. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true); // Create the vector of one-step probabilities to go to target states. std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, psiStates); // Create the vector with which to multiply. std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits()); // Perform the matrix vector multiplication auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, submatrix); multiplier->repeatedMultiply(env, subresult, &b, stepBound); // Set the values of the resulting vector accordingly. storm::utility::vector::setVectorValues(result, maybeStates, subresult); } return result; } template<> std::map<storm::storage::sparse::state_type, storm::RationalFunction> SparseDtmcPrctlHelper<storm::RationalFunction>::computeRewardBoundedValues(Environment const& env, storm::models::sparse::Dtmc<storm::RationalFunction> const& model, std::shared_ptr<storm::logic::OperatorFormula const> rewardBoundedFormula) { STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "The specified property is not supported by this value type."); return std::map<storm::storage::sparse::state_type, storm::RationalFunction>(); } template<typename ValueType, typename RewardModelType> std::map<storm::storage::sparse::state_type, ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeRewardBoundedValues(Environment const& env, storm::models::sparse::Dtmc<ValueType> const& model, std::shared_ptr<storm::logic::OperatorFormula const> rewardBoundedFormula) { storm::utility::Stopwatch swAll(true), swBuild, swCheck; storm::modelchecker::helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(model, rewardBoundedFormula); // Get lower and upper bounds for the solution. auto lowerBound = rewardUnfolding.getLowerObjectiveBound(); auto upperBound = rewardUnfolding.getUpperObjectiveBound(); // Initialize epoch models auto initEpoch = rewardUnfolding.getStartEpoch(); auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch); // initialize data that will be needed for each epoch std::vector<ValueType> x, b; std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> linEqSolver; Environment preciseEnv = env; ValueType precision = rewardUnfolding.getRequiredEpochModelPrecision(initEpoch, storm::utility::convertNumber<ValueType>(storm::settings::getModule<storm::settings::modules::GeneralSettings>().getPrecision())); preciseEnv.solver().setLinearEquationSolverPrecision(storm::utility::convertNumber<storm::RationalNumber>(precision)); // In case of cdf export we store the necessary data. std::vector<std::vector<ValueType>> cdfData; // Set the correct equation problem format. storm::solver::GeneralLinearEquationSolverFactory<ValueType> linearEquationSolverFactory; rewardUnfolding.setEquationSystemFormatForEpochModel(linearEquationSolverFactory.getEquationProblemFormat(preciseEnv)); storm::utility::ProgressMeasurement progress("epochs"); progress.setMaxCount(epochOrder.size()); progress.startNewMeasurement(0); uint64_t numCheckedEpochs = 0; for (auto const& epoch : epochOrder) { swBuild.start(); auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch); swBuild.stop(); swCheck.start(); rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(preciseEnv, x, b, linEqSolver, lowerBound, upperBound)); swCheck.stop(); if (storm::settings::getModule<storm::settings::modules::IOSettings>().isExportCdfSet() && !rewardUnfolding.getEpochManager().hasBottomDimension(epoch)) { std::vector<ValueType> cdfEntry; for (uint64_t i = 0; i < rewardUnfolding.getEpochManager().getDimensionCount(); ++i) { uint64_t offset = rewardUnfolding.getDimension(i).boundType == helper::rewardbounded::DimensionBoundType::LowerBound ? 1 : 0; cdfEntry.push_back(storm::utility::convertNumber<ValueType>(rewardUnfolding.getEpochManager().getDimensionOfEpoch(epoch, i) + offset) * rewardUnfolding.getDimension(i).scalingFactor); } cdfEntry.push_back(rewardUnfolding.getInitialStateResult(epoch)); cdfData.push_back(std::move(cdfEntry)); } ++numCheckedEpochs; progress.updateProgress(numCheckedEpochs); if (storm::utility::resources::isTerminate()) { break; } } std::map<storm::storage::sparse::state_type, ValueType> result; for (auto const& initState : model.getInitialStates()) { result[initState] = rewardUnfolding.getInitialStateResult(initEpoch, initState); } swAll.stop(); if (storm::settings::getModule<storm::settings::modules::IOSettings>().isExportCdfSet()) { std::vector<std::string> headers; for (uint64_t i = 0; i < rewardUnfolding.getEpochManager().getDimensionCount(); ++i) { headers.push_back(rewardUnfolding.getDimension(i).formula->toString()); } headers.push_back("Result"); storm::utility::exportDataToCSVFile<ValueType, std::string, std::string>(storm::settings::getModule<storm::settings::modules::IOSettings>().getExportCdfDirectory() + "cdf.csv", cdfData, headers); } if (storm::settings::getModule<storm::settings::modules::CoreSettings>().isShowStatisticsSet()) { STORM_PRINT_AND_LOG("---------------------------------" << std::endl); STORM_PRINT_AND_LOG("Statistics:" << std::endl); STORM_PRINT_AND_LOG("---------------------------------" << std::endl); STORM_PRINT_AND_LOG(" #checked epochs: " << epochOrder.size() << "." << std::endl); STORM_PRINT_AND_LOG(" overall Time: " << swAll << "." << std::endl); STORM_PRINT_AND_LOG("Epoch Model building Time: " << swBuild << "." << std::endl); STORM_PRINT_AND_LOG("Epoch Model checking Time: " << swCheck << "." << std::endl); STORM_PRINT_AND_LOG("---------------------------------" << std::endl); } return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, ModelCheckerHint const& hint) { std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>()); // We need to identify the maybe states (states which have a probability for satisfying the until formula // that is strictly between 0 and 1) and the states that satisfy the formula with probability 1. storm::storage::BitVector maybeStates, statesWithProbability1; if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) { maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates(); // Treat the states with probability one std::vector<ValueType> const& resultsForNonMaybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getResultHint(); statesWithProbability1 = storm::storage::BitVector(maybeStates.size(), false); storm::storage::BitVector nonMaybeStates = ~maybeStates; for (auto const& state : nonMaybeStates) { if (storm::utility::isOne(resultsForNonMaybeStates[state])) { statesWithProbability1.set(state, true); result[state] = storm::utility::one<ValueType>(); } else { STORM_LOG_THROW(storm::utility::isZero(resultsForNonMaybeStates[state]), storm::exceptions::IllegalArgumentException, "Expected that the result hint specifies probabilities in {0,1} for non-maybe states"); } } STORM_LOG_INFO("Preprocessing: " << statesWithProbability1.getNumberOfSetBits() << " states with probability 1 (" << maybeStates.getNumberOfSetBits() << " states remaining)."); } else { // Get all states that have probability 0 and 1 of satisfying the until-formula. std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates); storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first); statesWithProbability1 = std::move(statesWithProbability01.second); maybeStates = ~(statesWithProbability0 | statesWithProbability1); STORM_LOG_INFO("Preprocessing: " << statesWithProbability1.getNumberOfSetBits() << " states with probability 1, " << statesWithProbability0.getNumberOfSetBits() << " with probability 0 (" << maybeStates.getNumberOfSetBits() << " states remaining)."); // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>()); } // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::convertNumber<ValueType>(0.5)); } else { if (!maybeStates.empty()) { // In this case we have to compute the probabilities. // Check whether we need to convert the input to equation system format. storm::solver::GeneralLinearEquationSolverFactory<ValueType> linearEquationSolverFactory; bool convertToEquationSystem = linearEquationSolverFactory.getEquationProblemFormat(env) == storm::solver::LinearEquationSolverProblemFormat::EquationSystem; // We can eliminate the rows and columns from the original transition probability matrix. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, convertToEquationSystem); if (convertToEquationSystem) { // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); } // Initialize the x vector with the hint (if available) or with 0.5 for each element. // This is the initial guess for the iterative solvers. It should be safe as for all // 'maybe' states we know that the probability is strictly larger than 0. std::vector<ValueType> x; if(hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().hasResultHint()) { x = storm::utility::vector::filterVector(hint.template asExplicitModelCheckerHint<ValueType>().getResultHint(), maybeStates); } else { x = std::vector<ValueType>(maybeStates.getNumberOfSetBits(), storm::utility::convertNumber<ValueType>(0.5)); } // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1); // Now solve the created system of linear equations. goal.restrictRelevantValues(maybeStates); std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = storm::solver::configureLinearEquationSolver(env, std::move(goal), linearEquationSolverFactory, std::move(submatrix)); solver->setBounds(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()); solver->solveEquations(env, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } } return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeAllUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) { uint_fast64_t numberOfStates = transitionMatrix.getRowCount(); std::vector<ValueType> result(numberOfStates, storm::utility::zero<ValueType>()); // All states are relevant storm::storage::BitVector relevantStates(numberOfStates, true); // Compute exact probabilities for some states. if (!relevantStates.empty()) { // Check whether we need to convert the input to equation system format. storm::solver::GeneralLinearEquationSolverFactory<ValueType> linearEquationSolverFactory; bool convertToEquationSystem = linearEquationSolverFactory.getEquationProblemFormat(env) == storm::solver::LinearEquationSolverProblemFormat::EquationSystem; storm::storage::SparseMatrix<ValueType> submatrix(transitionMatrix); submatrix.makeRowsAbsorbing(phiStates); submatrix.makeRowsAbsorbing(psiStates); //submatrix.deleteDiagonalEntries(psiStates); //storm::storage::BitVector failState(numberOfStates, false); //failState.set(0, true); submatrix.deleteDiagonalEntries(); submatrix = submatrix.transpose(); submatrix = submatrix.getSubmatrix(true, relevantStates, relevantStates, convertToEquationSystem); if (convertToEquationSystem) { // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); } // Initialize the x vector with 0.5 for each element. // This is the initial guess for the iterative solvers. It should be safe as for all // 'maybe' states we know that the probability is strictly larger than 0. std::vector<ValueType> x = std::vector<ValueType>(relevantStates.getNumberOfSetBits(), storm::utility::convertNumber<ValueType>(0.5)); // Prepare the right-hand side of the equation system. std::vector<ValueType> b(relevantStates.getNumberOfSetBits(), storm::utility::zero<ValueType>()); // Set initial states size_t i = 0; ValueType initDist = storm::utility::one<ValueType>() / storm::utility::convertNumber<ValueType>(initialStates.getNumberOfSetBits()); for (auto const& state : relevantStates) { if (initialStates.get(state)) { b[i] = initDist; } ++i; } // Now solve the created system of linear equations. goal.restrictRelevantValues(relevantStates); std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = storm::solver::configureLinearEquationSolver(env, std::move(goal), linearEquationSolverFactory, std::move(submatrix)); solver->setBounds(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()); solver->solveEquations(env, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, relevantStates, x); } return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeGloballyProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative) { goal.oneMinus(); std::vector<ValueType> result = computeUntilProbabilities(env, std::move(goal), transitionMatrix, backwardTransitions, storm::storage::BitVector(transitionMatrix.getRowCount(), true), ~psiStates, qualitative); for (auto& entry : result) { entry = storm::utility::one<ValueType>() - entry; } return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(Environment const& env, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates) { // Create the vector with which to multiply and initialize it correctly. std::vector<ValueType> result(transitionMatrix.getRowCount()); storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>()); // Perform one single matrix-vector multiplication. auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, transitionMatrix); multiplier->multiply(env, result, nullptr, result); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound) { // Initialize result to the null vector. std::vector<ValueType> result(transitionMatrix.getRowCount()); // Compute the reward vector to add in each step based on the available reward models. std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix); // Perform the matrix vector multiplication as often as required by the formula bound. auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, transitionMatrix); multiplier->repeatedMultiply(env, result, &totalRewardVector, stepBound); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount) { // Only compute the result if the model has a state-based reward this->getModel(). STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Initialize result to state rewards of the model. std::vector<ValueType> result = rewardModel.getStateRewardVector(); // Perform the matrix vector multiplication as often as required by the formula bound. auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, transitionMatrix); multiplier->repeatedMultiply(env, result, nullptr, stepCount); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeTotalRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, bool qualitative, ModelCheckerHint const& hint) { // Identify the states from which only states with zero reward are reachable. // We can then compute reachability rewards assuming these states as target set. storm::storage::BitVector statesWithoutReward = rewardModel.getStatesWithZeroReward(transitionMatrix); storm::storage::BitVector rew0States = storm::utility::graph::performProbGreater0(backwardTransitions, statesWithoutReward, ~statesWithoutReward); rew0States.complement(); return computeReachabilityRewards(env, std::move(goal), transitionMatrix, backwardTransitions, rewardModel, rew0States, qualitative, hint); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, ModelCheckerHint const& hint) { return computeReachabilityRewards(env, std::move(goal), transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) { return rewardModel.getTotalRewardVector(numberOfRows, transitionMatrix, maybeStates); }, targetStates, qualitative, [&] () { return rewardModel.getStatesWithZeroReward(transitionMatrix); }, hint); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& totalStateRewardVector, storm::storage::BitVector const& targetStates, bool qualitative, ModelCheckerHint const& hint) { return computeReachabilityRewards(env, std::move(goal), transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const& maybeStates) { std::vector<ValueType> result(numberOfRows); storm::utility::vector::selectVectorValues(result, maybeStates, totalStateRewardVector); return result; }, targetStates, qualitative, [&] () { return storm::utility::vector::filterZero(totalStateRewardVector); }, hint); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityTimes(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, bool qualitative, ModelCheckerHint const& hint) { return computeReachabilityRewards(env, std::move(goal), transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&) { return std::vector<ValueType>(numberOfRows, storm::utility::one<ValueType>()); }, targetStates, qualitative, [&] () { return storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false); }, hint); } // This function computes an upper bound on the reachability rewards (see Baier et al, CAV'17). template<typename ValueType> std::vector<ValueType> computeUpperRewardBounds(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& rewards, std::vector<ValueType> const& oneStepTargetProbabilities) { DsMpiDtmcUpperRewardBoundsComputer<ValueType> dsmpi(transitionMatrix, rewards, oneStepTargetProbabilities); std::vector<ValueType> bounds = dsmpi.computeUpperBounds(); return bounds; } template<> std::vector<storm::RationalFunction> computeUpperRewardBounds(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<storm::RationalFunction> const& rewards, std::vector<storm::RationalFunction> const& oneStepTargetProbabilities) { STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Computing upper reward bounds is not supported for rational functions."); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, std::function<storm::storage::BitVector()> const& zeroRewardStatesGetter, ModelCheckerHint const& hint) { std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>()); // Determine which states have reward zero storm::storage::BitVector rew0States; if (storm::settings::getModule<storm::settings::modules::ModelCheckerSettings>().isFilterRewZeroSet()) { rew0States = storm::utility::graph::performProb1(backwardTransitions, zeroRewardStatesGetter(), targetStates); } else { rew0States = targetStates; } // Determine which states have a reward that is less than infinity. storm::storage::BitVector maybeStates; if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) { maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates(); storm::utility::vector::setVectorValues(result, ~(maybeStates | rew0States), storm::utility::infinity<ValueType>()); STORM_LOG_INFO("Preprocessing: " << rew0States.getNumberOfSetBits() << " States with reward zero (" << maybeStates.getNumberOfSetBits() << " states remaining)."); } else { storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true); storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, rew0States); infinityStates.complement(); maybeStates = ~(rew0States | infinityStates); STORM_LOG_INFO("Preprocessing: " << infinityStates.getNumberOfSetBits() << " states with reward infinity, " << rew0States.getNumberOfSetBits() << " states with reward zero (" << maybeStates.getNumberOfSetBits() << " states remaining)."); storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>()); } // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>()); } else { if (!maybeStates.empty()) { // Check whether we need to convert the input to equation system format. storm::solver::GeneralLinearEquationSolverFactory<ValueType> linearEquationSolverFactory; bool convertToEquationSystem = linearEquationSolverFactory.getEquationProblemFormat(env) == storm::solver::LinearEquationSolverProblemFormat::EquationSystem; // In this case we have to compute the reward values for the remaining states. // We can eliminate the rows and columns from the original transition probability matrix. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, convertToEquationSystem); // Initialize the x vector with the hint (if available) or with 1 for each element. // This is the initial guess for the iterative solvers. std::vector<ValueType> x; if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().hasResultHint()) { x = storm::utility::vector::filterVector(hint.template asExplicitModelCheckerHint<ValueType>().getResultHint(), maybeStates); } else { x = std::vector<ValueType>(submatrix.getColumnCount(), storm::utility::one<ValueType>()); } // Prepare the right-hand side of the equation system. std::vector<ValueType> b = totalStateRewardVectorGetter(submatrix.getRowCount(), transitionMatrix, maybeStates); storm::solver::LinearEquationSolverRequirements requirements = linearEquationSolverFactory.getRequirements(env); boost::optional<std::vector<ValueType>> upperRewardBounds; requirements.clearLowerBounds(); if (requirements.upperBounds()) { upperRewardBounds = computeUpperRewardBounds(submatrix, b, transitionMatrix.getConstrainedRowSumVector(maybeStates, rew0States)); requirements.clearUpperBounds(); } STORM_LOG_THROW(!requirements.hasEnabledCriticalRequirement(), storm::exceptions::UncheckedRequirementException, "Solver requirements " + requirements.getEnabledRequirementsAsString() + " not checked."); // If necessary, convert the matrix from the fixpoint notation to the form needed for the equation system. if (convertToEquationSystem) { // go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); } // Create the solver. goal.restrictRelevantValues(maybeStates); std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = storm::solver::configureLinearEquationSolver(env, std::move(goal), linearEquationSolverFactory, std::move(submatrix)); solver->setLowerBound(storm::utility::zero<ValueType>()); if (upperRewardBounds) { solver->setUpperBounds(std::move(upperRewardBounds.get())); } // Now solve the resulting equation system. solver->solveEquations(env, x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } } return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverageProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates) { return SparseCtmcCslHelper::computeLongRunAverageProbabilities<ValueType>(env, std::move(goal), transitionMatrix, psiStates, nullptr); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverageRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel) { return SparseCtmcCslHelper::computeLongRunAverageRewards<ValueType, RewardModelType>(env, std::move(goal), transitionMatrix, rewardModel, nullptr); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverageRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& stateRewards) { return SparseCtmcCslHelper::computeLongRunAverageRewards<ValueType>(env, std::move(goal), transitionMatrix, stateRewards, nullptr); } template<typename ValueType, typename RewardModelType> typename SparseDtmcPrctlHelper<ValueType, RewardModelType>::BaierTransformedModel SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeBaierTransformation(Environment const& env, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::storage::BitVector const& conditionStates, boost::optional<std::vector<ValueType>> const& stateRewards) { BaierTransformedModel result; // Start by computing all 'before' states, i.e. the states for which the conditional probability is defined. std::vector<ValueType> probabilitiesToReachConditionStates = computeUntilProbabilities(env, storm::solver::SolveGoal<ValueType>(), transitionMatrix, backwardTransitions, storm::storage::BitVector(transitionMatrix.getRowCount(), true), conditionStates, false); result.beforeStates = storm::storage::BitVector(targetStates.size(), true); uint_fast64_t state = 0; uint_fast64_t beforeStateIndex = 0; for (auto const& value : probabilitiesToReachConditionStates) { if (value == storm::utility::zero<ValueType>()) { result.beforeStates.set(state, false); } else { probabilitiesToReachConditionStates[beforeStateIndex] = value; ++beforeStateIndex; } ++state; } probabilitiesToReachConditionStates.resize(beforeStateIndex); if (targetStates.empty()) { result.noTargetStates = true; return result; } else if (!result.beforeStates.empty()) { // If there are some states for which the conditional probability is defined and there are some // states that can reach the target states without visiting condition states first, we need to // do more work. // First, compute the relevant states and some offsets. storm::storage::BitVector allStates(targetStates.size(), true); std::vector<uint_fast64_t> numberOfBeforeStatesUpToState = result.beforeStates.getNumberOfSetBitsBeforeIndices(); storm::storage::BitVector statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(backwardTransitions, allStates, targetStates); statesWithProbabilityGreater0 &= storm::utility::graph::getReachableStates(transitionMatrix, conditionStates, allStates, targetStates); uint_fast64_t normalStatesOffset = result.beforeStates.getNumberOfSetBits(); std::vector<uint_fast64_t> numberOfNormalStatesUpToState = statesWithProbabilityGreater0.getNumberOfSetBitsBeforeIndices(); // All transitions going to states with probability zero, need to be redirected to a deadlock state. bool addDeadlockState = false; uint_fast64_t deadlockState = normalStatesOffset + statesWithProbabilityGreater0.getNumberOfSetBits(); // Now, we create the matrix of 'before' and 'normal' states. storm::storage::SparseMatrixBuilder<ValueType> builder; // Start by creating the transitions of the 'before' states. uint_fast64_t currentRow = 0; for (auto beforeState : result.beforeStates) { if (conditionStates.get(beforeState)) { // For condition states, we move to the 'normal' states. ValueType zeroProbability = storm::utility::zero<ValueType>(); for (auto const& successorEntry : transitionMatrix.getRow(beforeState)) { if (statesWithProbabilityGreater0.get(successorEntry.getColumn())) { builder.addNextValue(currentRow, normalStatesOffset + numberOfNormalStatesUpToState[successorEntry.getColumn()], successorEntry.getValue()); } else { zeroProbability += successorEntry.getValue(); } } if (!storm::utility::isZero(zeroProbability)) { builder.addNextValue(currentRow, deadlockState, zeroProbability); } } else { // For non-condition states, we scale the probabilities going to other before states. for (auto const& successorEntry : transitionMatrix.getRow(beforeState)) { if (result.beforeStates.get(successorEntry.getColumn())) { builder.addNextValue(currentRow, numberOfBeforeStatesUpToState[successorEntry.getColumn()], successorEntry.getValue() * probabilitiesToReachConditionStates[numberOfBeforeStatesUpToState[successorEntry.getColumn()]] / probabilitiesToReachConditionStates[currentRow]); } } } ++currentRow; } // Then, create the transitions of the 'normal' states. for (auto state : statesWithProbabilityGreater0) { ValueType zeroProbability = storm::utility::zero<ValueType>(); for (auto const& successorEntry : transitionMatrix.getRow(state)) { if (statesWithProbabilityGreater0.get(successorEntry.getColumn())) { builder.addNextValue(currentRow, normalStatesOffset + numberOfNormalStatesUpToState[successorEntry.getColumn()], successorEntry.getValue()); } else { zeroProbability += successorEntry.getValue(); } } if (!storm::utility::isZero(zeroProbability)) { addDeadlockState = true; builder.addNextValue(currentRow, deadlockState, zeroProbability); } ++currentRow; } if (addDeadlockState) { builder.addNextValue(deadlockState, deadlockState, storm::utility::one<ValueType>()); } // Build the new transition matrix and the new targets. result.transitionMatrix = builder.build(addDeadlockState ? (deadlockState + 1) : deadlockState); storm::storage::BitVector newTargetStates = targetStates % result.beforeStates; newTargetStates.resize(result.transitionMatrix.get().getRowCount()); for (auto state : targetStates % statesWithProbabilityGreater0) { newTargetStates.set(normalStatesOffset + state, true); } result.targetStates = std::move(newTargetStates); // If a reward model was given, we need to compute the rewards for the transformed model. if (stateRewards) { std::vector<ValueType> newStateRewards(result.beforeStates.getNumberOfSetBits()); storm::utility::vector::selectVectorValues(newStateRewards, result.beforeStates, stateRewards.get()); newStateRewards.reserve(result.transitionMatrix.get().getRowCount()); for (auto state : statesWithProbabilityGreater0) { newStateRewards.push_back(stateRewards.get()[state]); } // Add a zero reward to the deadlock state. if (addDeadlockState) { newStateRewards.push_back(storm::utility::zero<ValueType>()); } result.stateRewards = std::move(newStateRewards); } } return result; } template<typename ValueType, typename RewardModelType> storm::storage::BitVector SparseDtmcPrctlHelper<ValueType, RewardModelType>::BaierTransformedModel::getNewRelevantStates() const { storm::storage::BitVector newRelevantStates(transitionMatrix.get().getRowCount()); for (uint64_t i = 0; i < this->beforeStates.getNumberOfSetBits(); ++i) { newRelevantStates.set(i); } return newRelevantStates; } template<typename ValueType, typename RewardModelType> storm::storage::BitVector SparseDtmcPrctlHelper<ValueType, RewardModelType>::BaierTransformedModel::getNewRelevantStates(storm::storage::BitVector const& oldRelevantStates) const { storm::storage::BitVector result = oldRelevantStates % this->beforeStates; result.resize(transitionMatrix.get().getRowCount()); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeConditionalProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::storage::BitVector const& conditionStates, bool qualitative) { // Prepare result vector. std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::infinity<ValueType>()); if (!conditionStates.empty()) { BaierTransformedModel transformedModel = computeBaierTransformation(env, transitionMatrix, backwardTransitions, targetStates, conditionStates, boost::none); if (transformedModel.noTargetStates) { storm::utility::vector::setVectorValues(result, transformedModel.beforeStates, storm::utility::zero<ValueType>()); } else { // At this point, we do not need to check whether there are 'before' states, since the condition // states were non-empty so there is at least one state with a positive probability of satisfying // the condition. // Now compute reachability probabilities in the transformed model. storm::storage::SparseMatrix<ValueType> const& newTransitionMatrix = transformedModel.transitionMatrix.get(); storm::storage::BitVector newRelevantValues; if (goal.hasRelevantValues()) { newRelevantValues = transformedModel.getNewRelevantStates(goal.relevantValues()); } else { newRelevantValues = transformedModel.getNewRelevantStates(); } goal.setRelevantValues(std::move(newRelevantValues)); std::vector<ValueType> conditionalProbabilities = computeUntilProbabilities(env, std::move(goal), newTransitionMatrix, newTransitionMatrix.transpose(), storm::storage::BitVector(newTransitionMatrix.getRowCount(), true), transformedModel.targetStates.get(), qualitative); storm::utility::vector::setVectorValues(result, transformedModel.beforeStates, conditionalProbabilities); } } return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeConditionalRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, storm::storage::BitVector const& conditionStates, bool qualitative) { // Prepare result vector. std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::infinity<ValueType>()); if (!conditionStates.empty()) { BaierTransformedModel transformedModel = computeBaierTransformation(env, transitionMatrix, backwardTransitions, targetStates, conditionStates, rewardModel.getTotalRewardVector(transitionMatrix)); if (transformedModel.noTargetStates) { storm::utility::vector::setVectorValues(result, transformedModel.beforeStates, storm::utility::zero<ValueType>()); } else { // At this point, we do not need to check whether there are 'before' states, since the condition // states were non-empty so there is at least one state with a positive probability of satisfying // the condition. // Now compute reachability probabilities in the transformed model. storm::storage::SparseMatrix<ValueType> const& newTransitionMatrix = transformedModel.transitionMatrix.get(); storm::storage::BitVector newRelevantValues; if (goal.hasRelevantValues()) { newRelevantValues = transformedModel.getNewRelevantStates(goal.relevantValues()); } else { newRelevantValues = transformedModel.getNewRelevantStates(); } goal.setRelevantValues(std::move(newRelevantValues)); std::vector<ValueType> conditionalRewards = computeReachabilityRewards(env, std::move(goal), newTransitionMatrix, newTransitionMatrix.transpose(), transformedModel.stateRewards.get(), transformedModel.targetStates.get(), qualitative); storm::utility::vector::setVectorValues(result, transformedModel.beforeStates, conditionalRewards); } } return result; } template class SparseDtmcPrctlHelper<double>; #ifdef STORM_HAVE_CARL template class SparseDtmcPrctlHelper<storm::RationalNumber>; template class SparseDtmcPrctlHelper<storm::RationalFunction>; #endif } } }