#include #include #include #include #include #include #include #ifdef HAVE_PROFILER #include #endif #include #include #include /* Configuration */ static int report_levels = 0; // report states at start of every level static int report_table = 0; // report table size at end of every level static int strategy = 1; // set to 1 = use PAR strategy; set to 0 = use BFS strategy static int check_deadlocks = 0; // set to 1 to check for deadlocks static int print_transition_matrix = 1; // print transition relation matrix static int workers = 0; // autodetect static char* model_filename = NULL; // filename of model #ifdef HAVE_PROFILER static char* profile_filename = NULL; // filename for profiling #endif /* argp configuration */ static struct argp_option options[] = { {"workers", 'w', "", 0, "Number of workers (default=0: autodetect)", 0}, {"strategy", 's', "", 0, "Strategy for reachability (default=par)", 0}, #ifdef HAVE_PROFILER {"profiler", 'p', "", 0, "Filename for profiling", 0}, #endif {"deadlocks", 3, 0, 0, "Check for deadlocks", 1}, {"count-states", 1, 0, 0, "Report #states at each level", 1}, {"count-table", 2, 0, 0, "Report table usage at each level", 1}, {0, 0, 0, 0, 0, 0} }; static error_t parse_opt(int key, char *arg, struct argp_state *state) { switch (key) { case 'w': workers = atoi(arg); break; case 's': if (strcmp(arg, "bfs")==0) strategy = 0; else if (strcmp(arg, "par")==0) strategy = 1; else if (strcmp(arg, "sat")==0) strategy = 2; else argp_usage(state); break; case 3: check_deadlocks = 1; break; case 1: report_levels = 1; break; case 2: report_table = 1; break; #ifdef HAVE_PROFILER case 'p': profile_filename = arg; break; #endif case ARGP_KEY_ARG: if (state->arg_num >= 1) argp_usage(state); model_filename = arg; break; case ARGP_KEY_END: if (state->arg_num < 1) argp_usage(state); break; default: return ARGP_ERR_UNKNOWN; } return 0; } static struct argp argp = { options, parse_opt, "", 0, 0, 0, 0 }; /* Globals */ typedef struct set { MDD mdd; MDD proj; int size; } *set_t; typedef struct relation { MDD mdd; MDD meta; int size; } *rel_t; static size_t vector_size; // size of vector static int next_count; // number of partitions of the transition relation static rel_t *next; // each partition of the transition relation #define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); } /* Load a set from file */ static set_t set_load(FILE* f) { lddmc_serialize_fromfile(f); size_t mdd; size_t proj; int size; if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); if (fread(&proj, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); if (fread(&size, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); LACE_ME; set_t set = (set_t)malloc(sizeof(struct set)); set->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd)); set->proj = lddmc_ref(lddmc_serialize_get_reversed(proj)); set->size = size; return set; } static int calculate_size(MDD meta) { int result = 0; uint32_t val = lddmc_getvalue(meta); while (val != (uint32_t)-1) { if (val != 0) result += 1; meta = lddmc_follow(meta, val); assert(meta != lddmc_true && meta != lddmc_false); val = lddmc_getvalue(meta); } return result; } /* Load a relation from file */ static rel_t rel_load(FILE* f) { lddmc_serialize_fromfile(f); size_t mdd; size_t meta; if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); if (fread(&meta, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); LACE_ME; rel_t rel = (rel_t)malloc(sizeof(struct relation)); rel->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd)); rel->meta = lddmc_ref(lddmc_serialize_get_reversed(meta)); rel->size = calculate_size(rel->meta); return rel; } static void print_example(MDD example) { if (example != lddmc_false) { LACE_ME; uint32_t vec[vector_size]; lddmc_sat_one(example, vec, vector_size); size_t i; printf("["); for (i=0; i0) printf(","); printf("%" PRIu32, vec[i]); } printf("]"); } } static void print_matrix(size_t size, MDD meta) { if (size == 0) return; uint32_t val = lddmc_getvalue(meta); if (val == 1) { printf("+"); print_matrix(size-1, lddmc_follow(lddmc_follow(meta, 1), 2)); } else { if (val == (uint32_t)-1) printf("-"); else if (val == 0) printf("-"); else if (val == 3) printf("r"); else if (val == 4) printf("w"); print_matrix(size-1, lddmc_follow(meta, val)); } } static char* to_h(double size, char *buf) { const char* units[] = {"B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"}; int i = 0; for (;size>1024;size/=1024) i++; sprintf(buf, "%.*f %s", i, size, units[i]); return buf; } static int get_first(MDD meta) { uint32_t val = lddmc_getvalue(meta); if (val != 0) return 0; return 1+get_first(lddmc_follow(meta, val)); } /* Straight-forward implementation of parallel reduction */ TASK_5(MDD, go_par, MDD, cur, MDD, visited, size_t, from, size_t, len, MDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited) MDD succ = lddmc_ref(lddmc_relprod(cur, next[from]->mdd, next[from]->meta)); if (deadlocks) { // check which MDDs in deadlocks do not have a successor in this relation MDD anc = lddmc_ref(lddmc_relprev(succ, next[from]->mdd, next[from]->meta, cur)); *deadlocks = lddmc_ref(lddmc_minus(*deadlocks, anc)); lddmc_deref(anc); } MDD result = lddmc_ref(lddmc_minus(succ, visited)); lddmc_deref(succ); return result; } else { MDD deadlocks_left; MDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; } // Recursively calculate left+right SPAWN(go_par, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left: NULL); MDD right = CALL(go_par, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL); MDD left = SYNC(go_par); // Merge results of left+right MDD result = lddmc_ref(lddmc_union(left, right)); lddmc_deref(left); lddmc_deref(right); if (deadlocks) { *deadlocks = lddmc_ref(lddmc_intersect(deadlocks_left, deadlocks_right)); lddmc_deref(deadlocks_left); lddmc_deref(deadlocks_right); } return result; } } /* PAR strategy, parallel strategy (operations called in parallel *and* parallelized by Sylvan) */ VOID_TASK_1(par, set_t, set) { MDD visited = set->mdd; MDD new = lddmc_ref(visited); size_t counter = 1; do { char buf[32]; to_h(getCurrentRSS(), buf); printf("Memory usage: %s\n", buf); printf("Level %zu... ", counter++); if (report_levels) { printf("%zu states... ", (size_t)lddmc_satcount_cached(visited)); } fflush(stdout); // calculate successors in parallel MDD cur = new; MDD deadlocks = cur; new = CALL(go_par, cur, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL); lddmc_deref(cur); if (check_deadlocks) { printf("found %zu deadlock states... ", (size_t)lddmc_satcount_cached(deadlocks)); if (deadlocks != lddmc_false) { printf("example: "); print_example(deadlocks); printf("... "); check_deadlocks = 0; } } // visited = visited + new MDD old_visited = visited; visited = lddmc_ref(lddmc_union(visited, new)); lddmc_deref(old_visited); if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled); } else { printf("done.\n"); } } while (new != lddmc_false); lddmc_deref(new); set->mdd = visited; } /* Sequential version of merge-reduction */ TASK_5(MDD, go_bfs, MDD, cur, MDD, visited, size_t, from, size_t, len, MDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited) MDD succ = lddmc_ref(lddmc_relprod(cur, next[from]->mdd, next[from]->meta)); if (deadlocks) { // check which MDDs in deadlocks do not have a successor in this relation MDD anc = lddmc_ref(lddmc_relprev(succ, next[from]->mdd, next[from]->meta, cur)); *deadlocks = lddmc_ref(lddmc_minus(*deadlocks, anc)); lddmc_deref(anc); } MDD result = lddmc_ref(lddmc_minus(succ, visited)); lddmc_deref(succ); return result; } else { MDD deadlocks_left; MDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; } // Recursively calculate left+right MDD left = CALL(go_bfs, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left : NULL); MDD right = CALL(go_bfs, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL); // Merge results of left+right MDD result = lddmc_ref(lddmc_union(left, right)); lddmc_deref(left); lddmc_deref(right); if (deadlocks) { *deadlocks = lddmc_ref(lddmc_intersect(deadlocks_left, deadlocks_right)); lddmc_deref(deadlocks_left); lddmc_deref(deadlocks_right); } return result; } } /* BFS strategy, sequential strategy (but operations are parallelized by Sylvan) */ VOID_TASK_1(bfs, set_t, set) { MDD visited = set->mdd; MDD new = lddmc_ref(visited); size_t counter = 1; do { char buf[32]; to_h(getCurrentRSS(), buf); printf("Memory usage: %s\n", buf); printf("Level %zu... ", counter++); if (report_levels) { printf("%zu states... ", (size_t)lddmc_satcount_cached(visited)); } fflush(stdout); MDD cur = new; MDD deadlocks = cur; new = CALL(go_bfs, cur, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL); lddmc_deref(cur); if (check_deadlocks) { printf("found %zu deadlock states... ", (size_t)lddmc_satcount_cached(deadlocks)); if (deadlocks != lddmc_false) { printf("example: "); print_example(deadlocks); printf("... "); check_deadlocks = 0; } } // visited = visited + new MDD old_visited = visited; visited = lddmc_ref(lddmc_union(visited, new)); lddmc_deref(old_visited); if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled); } else { printf("done.\n"); } } while (new != lddmc_false); lddmc_deref(new); set->mdd = visited; } /* Obtain current wallclock time */ static double wctime() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec + 1E-6 * tv.tv_usec); } int main(int argc, char **argv) { argp_parse(&argp, argc, argv, 0, 0, 0); FILE *f = fopen(model_filename, "r"); if (f == NULL) { fprintf(stderr, "Cannot open file '%s'!\n", model_filename); return -1; } // Init Lace lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup // Init Sylvan LDDmc // Nodes table size: 24 bytes * 2**N_nodes // Cache table size: 36 bytes * 2**N_cache // With: N_nodes=25, N_cache=24: 1.3 GB memory sylvan_init_package(1LL<<21, 1LL<<27, 1LL<<20, 1LL<<26); sylvan_init_ldd(); // Read and report domain info (integers per vector and bits per integer) if (fread(&vector_size, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); printf("Vector size: %zu\n", vector_size); // Read initial state printf("Loading initial state... "); fflush(stdout); set_t states = set_load(f); printf("done.\n"); // Read transitions if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); next = (rel_t*)malloc(sizeof(rel_t) * next_count); printf("Loading transition relations... "); fflush(stdout); int i; for (i=0; imdd)); for (i=0; imdd)); } if (print_transition_matrix) { for (i=0; imeta); printf(" (%d)\n", get_first(next[i]->meta)); } } LACE_ME; #ifdef HAVE_PROFILER if (profile_filename != NULL) ProfilerStart(profile_filename); #endif if (strategy == 1) { double t1 = wctime(); CALL(par, states); double t2 = wctime(); printf("PAR Time: %f\n", t2-t1); } else { double t1 = wctime(); CALL(bfs, states); double t2 = wctime(); printf("BFS Time: %f\n", t2-t1); } #ifdef HAVE_PROFILER if (profile_filename != NULL) ProfilerStop(); #endif // Now we just have states printf("Final states: %zu states\n", (size_t)lddmc_satcount_cached(states->mdd)); printf("Final states: %zu MDD nodes\n", lddmc_nodecount(states->mdd)); sylvan_stats_report(stdout, 1); return 0; }