/* glpgmp.h (bignum arithmetic) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, * 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied * Informatics, Moscow Aviation Institute, Moscow, Russia. All rights * reserved. E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #ifndef GLPGMP_H #define GLPGMP_H #ifdef HAVE_CONFIG_H #include #endif #ifdef HAVE_GMP /* use GNU MP bignum library */ #include #define gmp_pool_count _glp_gmp_pool_count #define gmp_free_mem _glp_gmp_free_mem int gmp_pool_count(void); void gmp_free_mem(void); #else /* use GLPK bignum module */ /*---------------------------------------------------------------------- // INTEGER NUMBERS // // Depending on its magnitude an integer number of arbitrary precision // is represented either in short format or in long format. // // Short format corresponds to the int type and allows representing // integer numbers in the range [-(2^31-1), +(2^31-1)]. Note that for // the most negative number of int type the short format is not used. // // In long format integer numbers are represented using the positional // system with the base (radix) 2^16 = 65536: // // x = (-1)^s sum{j in 0..n-1} d[j] * 65536^j, // // where x is the integer to be represented, s is its sign (+1 or -1), // d[j] are its digits (0 <= d[j] <= 65535). // // RATIONAL NUMBERS // // A rational number is represented as an irreducible fraction: // // p / q, // // where p (numerator) and q (denominator) are integer numbers (q > 0) // having no common divisors. */ struct mpz { /* integer number */ int val; /* if ptr is a null pointer, the number is in short format, and val is its value; otherwise, the number is in long format, and val is its sign (+1 or -1) */ struct mpz_seg *ptr; /* pointer to the linked list of the number segments ordered in ascending of powers of the base */ }; struct mpz_seg { /* integer number segment */ unsigned short d[6]; /* six digits of the number ordered in ascending of powers of the base */ struct mpz_seg *next; /* pointer to the next number segment */ }; struct mpq { /* rational number (p / q) */ struct mpz p; /* numerator */ struct mpz q; /* denominator */ }; typedef struct mpz *mpz_t; typedef struct mpq *mpq_t; #define gmp_get_atom _glp_gmp_get_atom #define gmp_free_atom _glp_gmp_free_atom #define gmp_pool_count _glp_gmp_pool_count #define gmp_get_work _glp_gmp_get_work #define gmp_free_mem _glp_gmp_free_mem #define _mpz_init _glp_mpz_init #define mpz_clear _glp_mpz_clear #define mpz_set _glp_mpz_set #define mpz_set_si _glp_mpz_set_si #define mpz_get_d _glp_mpz_get_d #define mpz_get_d_2exp _glp_mpz_get_d_2exp #define mpz_swap _glp_mpz_swap #define mpz_add _glp_mpz_add #define mpz_sub _glp_mpz_sub #define mpz_mul _glp_mpz_mul #define mpz_neg _glp_mpz_neg #define mpz_abs _glp_mpz_abs #define mpz_div _glp_mpz_div #define mpz_gcd _glp_mpz_gcd #define mpz_cmp _glp_mpz_cmp #define mpz_sgn _glp_mpz_sgn #define mpz_out_str _glp_mpz_out_str #define _mpq_init _glp_mpq_init #define mpq_clear _glp_mpq_clear #define mpq_canonicalize _glp_mpq_canonicalize #define mpq_set _glp_mpq_set #define mpq_set_si _glp_mpq_set_si #define mpq_get_d _glp_mpq_get_d #define mpq_set_d _glp_mpq_set_d #define mpq_add _glp_mpq_add #define mpq_sub _glp_mpq_sub #define mpq_mul _glp_mpq_mul #define mpq_div _glp_mpq_div #define mpq_neg _glp_mpq_neg #define mpq_abs _glp_mpq_abs #define mpq_cmp _glp_mpq_cmp #define mpq_sgn _glp_mpq_sgn #define mpq_out_str _glp_mpq_out_str void *gmp_get_atom(int size); void gmp_free_atom(void *ptr, int size); int gmp_pool_count(void); unsigned short *gmp_get_work(int size); void gmp_free_mem(void); mpz_t _mpz_init(void); #define mpz_init(x) (void)((x) = _mpz_init()) void mpz_clear(mpz_t x); void mpz_set(mpz_t z, mpz_t x); void mpz_set_si(mpz_t x, int val); double mpz_get_d(mpz_t x); double mpz_get_d_2exp(int *exp, mpz_t x); void mpz_swap(mpz_t x, mpz_t y); void mpz_add(mpz_t, mpz_t, mpz_t); void mpz_sub(mpz_t, mpz_t, mpz_t); void mpz_mul(mpz_t, mpz_t, mpz_t); void mpz_neg(mpz_t z, mpz_t x); void mpz_abs(mpz_t z, mpz_t x); void mpz_div(mpz_t q, mpz_t r, mpz_t x, mpz_t y); void mpz_gcd(mpz_t z, mpz_t x, mpz_t y); int mpz_cmp(mpz_t x, mpz_t y); int mpz_sgn(mpz_t x); int mpz_out_str(void *fp, int base, mpz_t x); mpq_t _mpq_init(void); #define mpq_init(x) (void)((x) = _mpq_init()) void mpq_clear(mpq_t x); void mpq_canonicalize(mpq_t x); void mpq_set(mpq_t z, mpq_t x); void mpq_set_si(mpq_t x, int p, unsigned int q); double mpq_get_d(mpq_t x); void mpq_set_d(mpq_t x, double val); void mpq_add(mpq_t z, mpq_t x, mpq_t y); void mpq_sub(mpq_t z, mpq_t x, mpq_t y); void mpq_mul(mpq_t z, mpq_t x, mpq_t y); void mpq_div(mpq_t z, mpq_t x, mpq_t y); void mpq_neg(mpq_t z, mpq_t x); void mpq_abs(mpq_t z, mpq_t x); int mpq_cmp(mpq_t x, mpq_t y); int mpq_sgn(mpq_t x); int mpq_out_str(void *fp, int base, mpq_t x); #endif #endif /* eof */