/* -*- c++ -*- (enables emacs c++ mode) */ /*=========================================================================== Copyright (C) 2002-2017 Yves Renard This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. As a special exception, you may use this file as it is a part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU Lesser General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU Lesser General Public License. ===========================================================================*/ /**@file gmm_blas.h @author Yves Renard @date October 13, 2002. @brief Basic linear algebra functions. */ #ifndef GMM_BLAS_H__ #define GMM_BLAS_H__ // This Version of gmm++ was modified for Storm. // To detect whether the usage of TBB is possible, this include is neccessary. #include "storm-config.h" #ifdef STORM_HAVE_INTELTBB #include // This fixes a potential dependency ordering problem between GMM and TBB #include "storm/adapters/IntelTbbAdapter.h" #include #endif #include "gmm_scaled.h" #include "gmm_transposed.h" #include "gmm_conjugated.h" namespace gmm { /* ******************************************************************** */ /* */ /* Generic algorithms */ /* */ /* ******************************************************************** */ /* ******************************************************************** */ /* Miscellaneous */ /* ******************************************************************** */ /** clear (fill with zeros) a vector or matrix. */ template inline void clear(L &l) { linalg_traits::do_clear(l); } /** @cond DOXY_SHOW_ALL_FUNCTIONS skip all these redundant definitions in doxygen documentation.. */ template inline void clear(const L &l) { linalg_traits::do_clear(linalg_const_cast(l)); } ///@endcond /** count the number of non-zero entries of a vector or matrix. */ template inline size_type nnz(const L& l) { return nnz(l, typename linalg_traits::linalg_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline size_type nnz(const L& l, abstract_vector) { auto it = vect_const_begin(l), ite = vect_const_end(l); size_type res(0); for (; it != ite; ++it) ++res; return res; } template inline size_type nnz(const L& l, abstract_matrix) { return nnz(l, typename principal_orientation_type::sub_orientation>::potype()); } template inline size_type nnz(const L& l, row_major) { size_type res(0); for (size_type i = 0; i < mat_nrows(l); ++i) res += nnz(mat_const_row(l, i)); return res; } template inline size_type nnz(const L& l, col_major) { size_type res(0); for (size_type i = 0; i < mat_ncols(l); ++i) res += nnz(mat_const_col(l, i)); return res; } ///@endcond /** fill a vector or matrix with x. */ template inline void fill(L& l, typename gmm::linalg_traits::value_type x) { typedef typename gmm::linalg_traits::value_type T; if (x == T(0)) gmm::clear(l); fill(l, x, typename linalg_traits::linalg_type()); } template inline void fill(const L& l, typename gmm::linalg_traits::value_type x) { fill(linalg_const_cast(l), x); } template inline // to be optimized for dense vectors ... void fill(L& l, typename gmm::linalg_traits::value_type x, abstract_vector) { for (size_type i = 0; i < vect_size(l); ++i) l[i] = x; } template inline // to be optimized for dense matrices ... void fill(L& l, typename gmm::linalg_traits::value_type x, abstract_matrix) { for (size_type i = 0; i < mat_nrows(l); ++i) for (size_type j = 0; j < mat_ncols(l); ++j) l(i,j) = x; } /** fill a vector or matrix with random value (uniform [-1,1]). */ template inline void fill_random(L& l) { fill_random(l, typename linalg_traits::linalg_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline void fill_random(const L& l) { fill_random(linalg_const_cast(l), typename linalg_traits::linalg_type()); } template inline void fill_random(L& l, abstract_vector) { for (size_type i = 0; i < vect_size(l); ++i) l[i] = gmm::random(typename linalg_traits::value_type()); } template inline void fill_random(L& l, abstract_matrix) { for (size_type i = 0; i < mat_nrows(l); ++i) for (size_type j = 0; j < mat_ncols(l); ++j) l(i,j) = gmm::random(typename linalg_traits::value_type()); } ///@endcond /** fill a vector or matrix with random value. @param l a vector or matrix. @param cfill probability of a non-zero value. */ template inline void fill_random(L& l, double cfill) { fill_random(l, cfill, typename linalg_traits::linalg_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline void fill_random(const L& l, double cfill) { fill_random(linalg_const_cast(l), cfill, typename linalg_traits::linalg_type()); } template inline void fill_random(L& l, double cfill, abstract_vector) { typedef typename linalg_traits::value_type T; size_type ntot = std::min(vect_size(l), size_type(double(vect_size(l))*cfill) + 1); for (size_type nb = 0; nb < ntot;) { size_type i = gmm::irandom(vect_size(l)); if (l[i] == T(0)) { l[i] = gmm::random(typename linalg_traits::value_type()); ++nb; } } } template inline void fill_random(L& l, double cfill, abstract_matrix) { fill_random(l, cfill, typename principal_orientation_type::sub_orientation>::potype()); } template inline void fill_random(L& l, double cfill, row_major) { for (size_type i=0; i < mat_nrows(l); ++i) fill_random(mat_row(l,i),cfill); } template inline void fill_random(L& l, double cfill, col_major) { for (size_type j=0; j < mat_ncols(l); ++j) fill_random(mat_col(l,j),cfill); } /* resize a vector */ template inline void resize(V &v, size_type n, linalg_false) { linalg_traits::resize(v, n); } template inline void resize(V &, size_type , linalg_modifiable) { GMM_ASSERT1(false, "You cannot resize a reference"); } template inline void resize(V &, size_type , linalg_const) { GMM_ASSERT1(false, "You cannot resize a reference"); } ///@endcond /** resize a vector. */ template inline void resize(V &v, size_type n) { resize(v, n, typename linalg_traits::is_reference()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS /** resize a matrix **/ template inline void resize(M &v, size_type m, size_type n, linalg_false) { linalg_traits::resize(v, m, n); } template inline void resize(M &, size_type, size_type, linalg_modifiable) { GMM_ASSERT1(false, "You cannot resize a reference"); } template inline void resize(M &, size_type, size_type, linalg_const) { GMM_ASSERT1(false, "You cannot resize a reference"); } ///@endcond /** resize a matrix */ template inline void resize(M &v, size_type m, size_type n) { resize(v, m, n, typename linalg_traits::is_reference()); } ///@cond template inline void reshape(M &v, size_type m, size_type n, linalg_false) { linalg_traits::reshape(v, m, n); } template inline void reshape(M &, size_type, size_type, linalg_modifiable) { GMM_ASSERT1(false, "You cannot reshape a reference"); } template inline void reshape(M &, size_type, size_type, linalg_const) { GMM_ASSERT1(false, "You cannot reshape a reference"); } ///@endcond /** reshape a matrix */ template inline void reshape(M &v, size_type m, size_type n) { reshape(v, m, n, typename linalg_traits::is_reference()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS /* ******************************************************************** */ /* Scalar product */ /* ******************************************************************** */ ///@endcond /** scalar product between two vectors */ template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2) { GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch, " << vect_size(v1) << " !=" << vect_size(v2)); return vect_sp(v1, v2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } /** scalar product between two vectors, using a matrix. @param ps the matrix of the scalar product. @param v1 the first vector @param v2 the second vector */ template inline typename strongest_value_type3::value_type vect_sp(const MATSP &ps, const V1 &v1, const V2 &v2) { return vect_sp_with_mat(ps, v1, v2, typename linalg_traits::sub_orientation()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline typename strongest_value_type3::value_type vect_sp_with_mat(const MATSP &ps, const V1 &v1, const V2 &v2, row_major) { return vect_sp_with_matr(ps, v1, v2, typename linalg_traits::storage_type()); } template inline typename strongest_value_type3::value_type vect_sp_with_matr(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_sparse) { GMM_ASSERT2(vect_size(v1) == mat_ncols(ps) && vect_size(v2) == mat_nrows(ps), "dimensions mismatch"); size_type nr = mat_nrows(ps); typename linalg_traits::const_iterator it = vect_const_begin(v2), ite = vect_const_end(v2); typename strongest_value_type3::value_type res(0); for (; it != ite; ++it) res += vect_sp(mat_const_row(ps, it.index()), v1)* (*it); return res; } template inline typename strongest_value_type3::value_type vect_sp_with_matr(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_skyline) { return vect_sp_with_matr(ps, v1, v2, abstract_sparse()); } template inline typename strongest_value_type3::value_type vect_sp_with_matr(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_dense) { GMM_ASSERT2(vect_size(v1) == mat_ncols(ps) && vect_size(v2) == mat_nrows(ps), "dimensions mismatch"); typename linalg_traits::const_iterator it = vect_const_begin(v2), ite = vect_const_end(v2); typename strongest_value_type3::value_type res(0); for (size_type i = 0; it != ite; ++i, ++it) res += vect_sp(mat_const_row(ps, i), v1) * (*it); return res; } template inline typename strongest_value_type3::value_type vect_sp_with_mat(const MATSP &ps, const V1 &v1,const V2 &v2,row_and_col) { return vect_sp_with_mat(ps, v1, v2, row_major()); } template inline typename strongest_value_type3::value_type vect_sp_with_mat(const MATSP &ps, const V1 &v1, const V2 &v2,col_major){ return vect_sp_with_matc(ps, v1, v2, typename linalg_traits::storage_type()); } template inline typename strongest_value_type3::value_type vect_sp_with_matc(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_sparse) { GMM_ASSERT2(vect_size(v1) == mat_ncols(ps) && vect_size(v2) == mat_nrows(ps), "dimensions mismatch"); typename linalg_traits::const_iterator it = vect_const_begin(v1), ite = vect_const_end(v1); typename strongest_value_type3::value_type res(0); for (; it != ite; ++it) res += vect_sp(mat_const_col(ps, it.index()), v2) * (*it); return res; } template inline typename strongest_value_type3::value_type vect_sp_with_matc(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_skyline) { return vect_sp_with_matc(ps, v1, v2, abstract_sparse()); } template inline typename strongest_value_type3::value_type vect_sp_with_matc(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_dense) { GMM_ASSERT2(vect_size(v1) == mat_ncols(ps) && vect_size(v2) == mat_nrows(ps), "dimensions mismatch"); typename linalg_traits::const_iterator it = vect_const_begin(v1), ite = vect_const_end(v1); typename strongest_value_type3::value_type res(0); for (size_type i = 0; it != ite; ++i, ++it) res += vect_sp(mat_const_col(ps, i), v2) * (*it); return res; } template inline typename strongest_value_type3::value_type vect_sp_with_mat(const MATSP &ps, const V1 &v1,const V2 &v2,col_and_row) { return vect_sp_with_mat(ps, v1, v2, col_major()); } template inline typename strongest_value_type3::value_type vect_sp_with_mat(const MATSP &ps, const V1 &v1, const V2 &v2, abstract_null_type) { typename temporary_vector::vector_type w(mat_nrows(ps)); GMM_WARNING2("Warning, a temporary is used in scalar product\n"); mult(ps, v1, w); return vect_sp(w, v2); } template inline typename strongest_numeric_type::value_type, typename std::iterator_traits::value_type>::T vect_sp_dense_(IT1 it, IT1 ite, IT2 it2) { typename strongest_numeric_type::value_type, typename std::iterator_traits::value_type>::T res(0); for (; it != ite; ++it, ++it2) res += (*it) * (*it2); return res; } template inline typename strongest_numeric_type::value_type, typename linalg_traits::value_type>::T vect_sp_sparse_(IT1 it, IT1 ite, const V &v) { typename strongest_numeric_type::value_type, typename linalg_traits::value_type>::T res(0); for (; it != ite; ++it) res += (*it) * v[it.index()]; return res; } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_dense, abstract_dense) { return vect_sp_dense_(vect_const_begin(v1), vect_const_end(v1), vect_const_begin(v2)); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_skyline, abstract_dense) { typename linalg_traits::const_iterator it1 = vect_const_begin(v1), ite = vect_const_end(v1); typename linalg_traits::const_iterator it2 = vect_const_begin(v2); return vect_sp_dense_(it1, ite, it2 + it1.index()); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_dense, abstract_skyline) { typename linalg_traits::const_iterator it1 = vect_const_begin(v2), ite = vect_const_end(v2); typename linalg_traits::const_iterator it2 = vect_const_begin(v1); return vect_sp_dense_(it1, ite, it2 + it1.index()); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_skyline, abstract_skyline) { typedef typename strongest_value_type::value_type T; auto it1 = vect_const_begin(v1), ite1 = vect_const_end(v1); auto it2 = vect_const_begin(v2), ite2 = vect_const_end(v2); size_type n = std::min(ite1.index(), ite2.index()); size_type l = std::max(it1.index(), it2.index()); if (l < n) { size_type m = l - it1.index(), p = l - it2.index(), q = m + n - l; return vect_sp_dense_(it1+m, it1+q, it2 + p); } return T(0); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2,abstract_sparse,abstract_dense) { return vect_sp_sparse_(vect_const_begin(v1), vect_const_end(v1), v2); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_sparse, abstract_skyline) { return vect_sp_sparse_(vect_const_begin(v1), vect_const_end(v1), v2); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_skyline, abstract_sparse) { return vect_sp_sparse_(vect_const_begin(v2), vect_const_end(v2), v1); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2, abstract_dense,abstract_sparse) { return vect_sp_sparse_(vect_const_begin(v2), vect_const_end(v2), v1); } template inline typename strongest_value_type::value_type vect_sp_sparse_sparse(const V1 &v1, const V2 &v2, linalg_true) { typename linalg_traits::const_iterator it1 = vect_const_begin(v1), ite1 = vect_const_end(v1); typename linalg_traits::const_iterator it2 = vect_const_begin(v2), ite2 = vect_const_end(v2); typename strongest_value_type::value_type res(0); while (it1 != ite1 && it2 != ite2) { if (it1.index() == it2.index()) { res += (*it1) * *it2; ++it1; ++it2; } else if (it1.index() < it2.index()) ++it1; else ++it2; } return res; } template inline typename strongest_value_type::value_type vect_sp_sparse_sparse(const V1 &v1, const V2 &v2, linalg_false) { return vect_sp_sparse_(vect_const_begin(v1), vect_const_end(v1), v2); } template inline typename strongest_value_type::value_type vect_sp(const V1 &v1, const V2 &v2,abstract_sparse,abstract_sparse) { return vect_sp_sparse_sparse(v1, v2, typename linalg_and::index_sorted, typename linalg_traits::index_sorted>::bool_type()); } /* ******************************************************************** */ /* Hermitian product */ /* ******************************************************************** */ ///@endcond /** Hermitian product. */ template inline typename strongest_value_type::value_type vect_hp(const V1 &v1, const V2 &v2) { return vect_sp(v1, conjugated(v2)); } /** Hermitian product with a matrix. */ template inline typename strongest_value_type3::value_type vect_hp(const MATSP &ps, const V1 &v1, const V2 &v2) { return vect_sp(ps, v1, gmm::conjugated(v2)); } /* ******************************************************************** */ /* Trace of a matrix */ /* ******************************************************************** */ /** Trace of a matrix */ template typename linalg_traits::value_type mat_trace(const M &m) { typedef typename linalg_traits::value_type T; T res(0); for (size_type i = 0; i < std::min(mat_nrows(m), mat_ncols(m)); ++i) res += m(i,i); return res; } /* ******************************************************************** */ /* Euclidean norm */ /* ******************************************************************** */ /** squared Euclidean norm of a vector. */ template typename number_traits::value_type> ::magnitude_type vect_norm2_sqr(const V &v) { typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; auto it = vect_const_begin(v), ite = vect_const_end(v); R res(0); for (; it != ite; ++it) res += gmm::abs_sqr(*it); return res; } /** Euclidean norm of a vector. */ template inline typename number_traits::value_type> ::magnitude_type vect_norm2(const V &v) { return sqrt(vect_norm2_sqr(v)); } /** squared Euclidean distance between two vectors */ template inline typename number_traits::value_type> ::magnitude_type vect_dist2_sqr(const V1 &v1, const V2 &v2) { // not fully optimized typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; auto it1 = vect_const_begin(v1), ite1 = vect_const_end(v1); auto it2 = vect_const_begin(v2), ite2 = vect_const_end(v2); size_type k1(0), k2(0); R res(0); while (it1 != ite1 && it2 != ite2) { size_type i1 = index_of_it(it1, k1, typename linalg_traits::storage_type()); size_type i2 = index_of_it(it2, k2, typename linalg_traits::storage_type()); if (i1 == i2) { res += gmm::abs_sqr(*it2 - *it1); ++it1; ++k1; ++it2; ++k2; } else if (i1 < i2) { res += gmm::abs_sqr(*it1); ++it1; ++k1; } else { res += gmm::abs_sqr(*it2); ++it2; ++k2; } } while (it1 != ite1) { res += gmm::abs_sqr(*it1); ++it1; } while (it2 != ite2) { res += gmm::abs_sqr(*it2); ++it2; } return res; } /** Euclidean distance between two vectors */ template inline typename number_traits::value_type> ::magnitude_type vect_dist2(const V1 &v1, const V2 &v2) { return sqrt(vect_dist2_sqr(v1, v2)); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template typename number_traits::value_type> ::magnitude_type mat_euclidean_norm_sqr(const M &m, row_major) { typename number_traits::value_type> ::magnitude_type res(0); for (size_type i = 0; i < mat_nrows(m); ++i) res += vect_norm2_sqr(mat_const_row(m, i)); return res; } template typename number_traits::value_type> ::magnitude_type mat_euclidean_norm_sqr(const M &m, col_major) { typename number_traits::value_type> ::magnitude_type res(0); for (size_type i = 0; i < mat_ncols(m); ++i) res += vect_norm2_sqr(mat_const_col(m, i)); return res; } ///@endcond /** squared Euclidean norm of a matrix. */ template inline typename number_traits::value_type> ::magnitude_type mat_euclidean_norm_sqr(const M &m) { return mat_euclidean_norm_sqr(m, typename principal_orientation_type::sub_orientation>::potype()); } /** Euclidean norm of a matrix. */ template inline typename number_traits::value_type> ::magnitude_type mat_euclidean_norm(const M &m) { return gmm::sqrt(mat_euclidean_norm_sqr(m)); } /* ******************************************************************** */ /* vector norm1 */ /* ******************************************************************** */ /** 1-norm of a vector */ template typename number_traits::value_type> ::magnitude_type vect_norm1(const V &v) { auto it = vect_const_begin(v), ite = vect_const_end(v); typename number_traits::value_type> ::magnitude_type res(0); for (; it != ite; ++it) res += gmm::abs(*it); return res; } /* ******************************************************************** */ /* vector Infinity norm */ /* ******************************************************************** */ /** Infinity norm of a vector. */ template typename number_traits::value_type> ::magnitude_type vect_norminf(const V &v) { auto it = vect_const_begin(v), ite = vect_const_end(v); typename number_traits::value_type> ::magnitude_type res(0); for (; it != ite; ++it) res = std::max(res, gmm::abs(*it)); return res; } /* ******************************************************************** */ /* matrix norm1 */ /* ******************************************************************** */ ///@cond DOXY_SHOW_ALL_FUNCTIONS template typename number_traits::value_type> ::magnitude_type mat_norm1(const M &m, col_major) { typename number_traits::value_type> ::magnitude_type res(0); for (size_type i = 0; i < mat_ncols(m); ++i) res = std::max(res, vect_norm1(mat_const_col(m,i))); return res; } template typename number_traits::value_type> ::magnitude_type mat_norm1(const M &m, row_major) { typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; typedef typename linalg_traits::storage_type store_type; std::vector aux(mat_ncols(m)); for (size_type i = 0; i < mat_nrows(m); ++i) { typename linalg_traits::const_sub_row_type row = mat_const_row(m, i); auto it = vect_const_begin(row), ite = vect_const_end(row); for (size_type k = 0; it != ite; ++it, ++k) aux[index_of_it(it, k, store_type())] += gmm::abs(*it); } return vect_norminf(aux); } template typename number_traits::value_type> ::magnitude_type mat_norm1(const M &m, col_and_row) { return mat_norm1(m, col_major()); } template typename number_traits::value_type> ::magnitude_type mat_norm1(const M &m, row_and_col) { return mat_norm1(m, col_major()); } ///@endcond /** 1-norm of a matrix */ template typename number_traits::value_type> ::magnitude_type mat_norm1(const M &m) { return mat_norm1(m, typename linalg_traits::sub_orientation()); } /* ******************************************************************** */ /* matrix Infinity norm */ /* ******************************************************************** */ ///@cond DOXY_SHOW_ALL_FUNCTIONS template typename number_traits::value_type> ::magnitude_type mat_norminf(const M &m, row_major) { typename number_traits::value_type> ::magnitude_type res(0); for (size_type i = 0; i < mat_nrows(m); ++i) res = std::max(res, vect_norm1(mat_const_row(m,i))); return res; } template typename number_traits::value_type> ::magnitude_type mat_norminf(const M &m, col_major) { typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; typedef typename linalg_traits::storage_type store_type; std::vector aux(mat_nrows(m)); for (size_type i = 0; i < mat_ncols(m); ++i) { typename linalg_traits::const_sub_col_type col = mat_const_col(m, i); auto it = vect_const_begin(col), ite = vect_const_end(col); for (size_type k = 0; it != ite; ++it, ++k) aux[index_of_it(it, k, store_type())] += gmm::abs(*it); } return vect_norminf(aux); } template typename number_traits::value_type> ::magnitude_type mat_norminf(const M &m, col_and_row) { return mat_norminf(m, row_major()); } template typename number_traits::value_type> ::magnitude_type mat_norminf(const M &m, row_and_col) { return mat_norminf(m, row_major()); } ///@endcond /** infinity-norm of a matrix.*/ template typename number_traits::value_type> ::magnitude_type mat_norminf(const M &m) { return mat_norminf(m, typename linalg_traits::sub_orientation()); } /* ******************************************************************** */ /* Max norm for matrices */ /* ******************************************************************** */ ///@cond DOXY_SHOW_ALL_FUNCTIONS template typename number_traits::value_type> ::magnitude_type mat_maxnorm(const M &m, row_major) { typename number_traits::value_type> ::magnitude_type res(0); for (size_type i = 0; i < mat_nrows(m); ++i) res = std::max(res, vect_norminf(mat_const_row(m,i))); return res; } template typename number_traits::value_type> ::magnitude_type mat_maxnorm(const M &m, col_major) { typename number_traits::value_type> ::magnitude_type res(0); for (size_type i = 0; i < mat_ncols(m); ++i) res = std::max(res, vect_norminf(mat_const_col(m,i))); return res; } ///@endcond /** max-norm of a matrix. */ template typename number_traits::value_type> ::magnitude_type mat_maxnorm(const M &m) { return mat_maxnorm(m, typename principal_orientation_type::sub_orientation>::potype()); } /* ******************************************************************** */ /* Clean */ /* ******************************************************************** */ /** Clean a vector or matrix (replace near-zero entries with zeroes). */ template inline void clean(L &l, double threshold); ///@cond DOXY_SHOW_ALL_FUNCTIONS template void clean(L &l, double threshold, abstract_dense, T) { typedef typename number_traits::magnitude_type R; auto it = vect_begin(l), ite = vect_end(l); for (; it != ite; ++it) if (gmm::abs(*it) < R(threshold)) *it = T(0); } template void clean(L &l, double threshold, abstract_skyline, T) { gmm::clean(l, threshold, abstract_dense(), T()); } template void clean(L &l, double threshold, abstract_sparse, T) { typedef typename number_traits::magnitude_type R; auto it = vect_begin(l), ite = vect_end(l); std::vector ind; for (; it != ite; ++it) if (gmm::abs(*it) < R(threshold)) ind.push_back(it.index()); for (size_type i = 0; i < ind.size(); ++i) l[ind[i]] = T(0); } template void clean(L &l, double threshold, abstract_dense, std::complex) { auto it = vect_begin(l), ite = vect_end(l); for (; it != ite; ++it){ if (gmm::abs((*it).real()) < T(threshold)) *it = std::complex(T(0), (*it).imag()); if (gmm::abs((*it).imag()) < T(threshold)) *it = std::complex((*it).real(), T(0)); } } template void clean(L &l, double threshold, abstract_skyline, std::complex) { gmm::clean(l, threshold, abstract_dense(), std::complex()); } template void clean(L &l, double threshold, abstract_sparse, std::complex) { auto it = vect_begin(l), ite = vect_end(l); std::vector ind; for (; it != ite; ++it) { bool r = (gmm::abs((*it).real()) < T(threshold)); bool i = (gmm::abs((*it).imag()) < T(threshold)); if (r && i) ind.push_back(it.index()); else if (r) *it = std::complex(T(0), (*it).imag()); else if (i) *it = std::complex((*it).real(), T(0)); } for (size_type i = 0; i < ind.size(); ++i) l[ind[i]] = std::complex(T(0),T(0)); } template inline void clean(L &l, double threshold, abstract_vector) { gmm::clean(l, threshold, typename linalg_traits::storage_type(), typename linalg_traits::value_type()); } template inline void clean(const L &l, double threshold); template void clean(L &l, double threshold, row_major) { for (size_type i = 0; i < mat_nrows(l); ++i) gmm::clean(mat_row(l, i), threshold); } template void clean(L &l, double threshold, col_major) { for (size_type i = 0; i < mat_ncols(l); ++i) gmm::clean(mat_col(l, i), threshold); } template inline void clean(L &l, double threshold, abstract_matrix) { gmm::clean(l, threshold, typename principal_orientation_type::sub_orientation>::potype()); } template inline void clean(L &l, double threshold) { clean(l, threshold, typename linalg_traits::linalg_type()); } template inline void clean(const L &l, double threshold) { gmm::clean(linalg_const_cast(l), threshold); } /* ******************************************************************** */ /* Copy */ /* ******************************************************************** */ ///@endcond /** Copy vectors or matrices. @param l1 source vector or matrix. @param l2 destination. */ template inline void copy(const L1& l1, L2& l2) { if ((const void *)(&l1) != (const void *)(&l2)) { if (same_origin(l1,l2)) GMM_WARNING2("Warning : a conflict is possible in copy\n"); copy(l1, l2, typename linalg_traits::linalg_type(), typename linalg_traits::linalg_type()); } } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline void copy(const L1& l1, const L2& l2) { copy(l1, linalg_const_cast(l2)); } template inline void copy(const L1& l1, L2& l2, abstract_vector, abstract_vector) { GMM_ASSERT2(vect_size(l1) == vect_size(l2), "dimensions mismatch, " << vect_size(l1) << " !=" << vect_size(l2)); copy_vect(l1, l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } template inline void copy(const L1& l1, L2& l2, abstract_matrix, abstract_matrix) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) return; GMM_ASSERT2(n==mat_ncols(l2) && m==mat_nrows(l2), "dimensions mismatch"); copy_mat(l1, l2, typename linalg_traits::sub_orientation(), typename linalg_traits::sub_orientation()); } template inline void copy_vect(const V1 &v1, const V2 &v2, C1, C2) { copy_vect(v1, const_cast(v2), C1(), C2()); } template void copy_mat_by_row(const L1& l1, L2& l2) { size_type nbr = mat_nrows(l1); for (size_type i = 0; i < nbr; ++i) copy(mat_const_row(l1, i), mat_row(l2, i)); } template void copy_mat_by_col(const L1 &l1, L2 &l2) { size_type nbc = mat_ncols(l1); for (size_type i = 0; i < nbc; ++i) { copy(mat_const_col(l1, i), mat_col(l2, i)); } } template inline void copy_mat(const L1& l1, L2& l2, row_major, row_major) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, row_major, row_and_col) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, row_and_col, row_and_col) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, row_and_col, row_major) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_and_row, row_major) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, row_major, col_and_row) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_and_row, row_and_col) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, row_and_col, col_and_row) { copy_mat_by_row(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_major, col_major) { copy_mat_by_col(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_major, col_and_row) { copy_mat_by_col(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_major, row_and_col) { copy_mat_by_col(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, row_and_col, col_major) { copy_mat_by_col(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_and_row, col_major) { copy_mat_by_col(l1, l2); } template inline void copy_mat(const L1& l1, L2& l2, col_and_row, col_and_row) { copy_mat_by_col(l1, l2); } template inline void copy_mat_mixed_rc(const L1& l1, L2& l2, size_type i) { copy_mat_mixed_rc(l1, l2, i, typename linalg_traits::storage_type()); } template void copy_mat_mixed_rc(const L1& l1, L2& l2, size_type i, abstract_sparse) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(i, it.index()) = *it; } template void copy_mat_mixed_rc(const L1& l1, L2& l2, size_type i, abstract_skyline) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(i, it.index()) = *it; } template void copy_mat_mixed_rc(const L1& l1, L2& l2, size_type i, abstract_dense) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (size_type j = 0; it != ite; ++it, ++j) l2(i, j) = *it; } template inline void copy_mat_mixed_cr(const L1& l1, L2& l2, size_type i) { copy_mat_mixed_cr(l1, l2, i, typename linalg_traits::storage_type()); } template void copy_mat_mixed_cr(const L1& l1, L2& l2, size_type i, abstract_sparse) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(it.index(), i) = *it; } template void copy_mat_mixed_cr(const L1& l1, L2& l2, size_type i, abstract_skyline) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(it.index(), i) = *it; } template void copy_mat_mixed_cr(const L1& l1, L2& l2, size_type i, abstract_dense) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (size_type j = 0; it != ite; ++it, ++j) l2(j, i) = *it; } template void copy_mat(const L1& l1, L2& l2, row_major, col_major) { clear(l2); size_type nbr = mat_nrows(l1); for (size_type i = 0; i < nbr; ++i) copy_mat_mixed_rc(mat_const_row(l1, i), l2, i); } template void copy_mat(const L1& l1, L2& l2, col_major, row_major) { clear(l2); size_type nbc = mat_ncols(l1); for (size_type i = 0; i < nbc; ++i) copy_mat_mixed_cr(mat_const_col(l1, i), l2, i); } template inline void copy_vect(const L1 &l1, L2 &l2, abstract_dense, abstract_dense) { std::copy(vect_const_begin(l1), vect_const_end(l1), vect_begin(l2)); } template inline // to be optimised ? void copy_vect(const L1 &l1, L2 &l2, abstract_skyline, abstract_skyline) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); while (it1 != ite1 && *it1 == typename linalg_traits::value_type(0)) ++it1; if (ite1 - it1 > 0) { clear(l2); auto it2 = vect_begin(l2), ite2 = vect_end(l2); while (*(ite1-1) == typename linalg_traits::value_type(0)) ite1--; if (it2 == ite2) { l2[it1.index()] = *it1; ++it1; l2[ite1.index()-1] = *(ite1-1); --ite1; if (it1 < ite1) { it2 = vect_begin(l2); ++it2; std::copy(it1, ite1, it2); } } else { ptrdiff_t m = it1.index() - it2.index(); if (m >= 0 && ite1.index() <= ite2.index()) std::copy(it1, ite1, it2 + m); else { if (m < 0) l2[it1.index()] = *it1; if (ite1.index() > ite2.index()) l2[ite1.index()-1] = *(ite1-1); it2 = vect_begin(l2); ite2 = vect_end(l2); m = it1.index() - it2.index(); std::copy(it1, ite1, it2 + m); } } } } template void copy_vect(const L1& l1, L2& l2, abstract_sparse, abstract_dense) { clear(l2); auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) { l2[it.index()] = *it; } } template void copy_vect(const L1& l1, L2& l2, abstract_sparse, abstract_skyline) { clear(l2); auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2[it.index()] = *it; } template void copy_vect(const L1& l1, L2& l2, abstract_skyline, abstract_dense) { typedef typename linalg_traits::value_type T; auto it = vect_const_begin(l1), ite = vect_const_end(l1); if (it == ite) gmm::clear(l2); else { auto it2 = vect_begin(l2), ite2 = vect_end(l2); size_type i = it.index(), j; for (j = 0; j < i; ++j, ++it2) *it2 = T(0); for (; it != ite; ++it, ++it2) *it2 = *it; for (; it2 != ite2; ++it2) *it2 = T(0); } } template void copy_vect(const L1& l1, L2& l2, abstract_sparse, abstract_sparse) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); clear(l2); // cout << "copy " << l1 << " of size " << vect_size(l1) << " nnz = " << nnz(l1) << endl; for (; it != ite; ++it) { // cout << "*it = " << *it << endl; // cout << "it.index() = " << it.index() << endl; if (*it != (typename linalg_traits::value_type)(0)) l2[it.index()] = *it; } } template void copy_vect(const L1& l1, L2& l2, abstract_dense, abstract_sparse) { clear(l2); auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (size_type i = 0; it != ite; ++it, ++i) if (*it != (typename linalg_traits::value_type)(0)) l2[i] = *it; } template // to be optimised ... void copy_vect(const L1& l1, L2& l2, abstract_dense, abstract_skyline) { clear(l2); auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (size_type i = 0; it != ite; ++it, ++i) if (*it != (typename linalg_traits::value_type)(0)) l2[i] = *it; } template void copy_vect(const L1& l1, L2& l2, abstract_skyline, abstract_sparse) { clear(l2); auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) if (*it != (typename linalg_traits::value_type)(0)) l2[it.index()] = *it; } /* ******************************************************************** */ /* Matrix and vector addition */ /* algorithms are built in order to avoid some conflicts with */ /* repeated arguments or with overlapping part of a same object. */ /* In the latter case, conflicts are still possible. */ /* ******************************************************************** */ ///@endcond /** Add two vectors or matrices @param l1 @param l2 contains on output, l2+l1. */ template inline void add(const L1& l1, L2& l2) { add_spec(l1, l2, typename linalg_traits::linalg_type()); } ///@cond template inline void add(const L1& l1, const L2& l2) { add(l1, linalg_const_cast(l2)); } template inline void add_spec(const L1& l1, L2& l2, abstract_vector) { GMM_ASSERT2(vect_size(l1) == vect_size(l2), "dimensions mismatch, " << vect_size(l1) << " !=" << vect_size(l2)); add(l1, l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } template inline void add_spec(const L1& l1, L2& l2, abstract_matrix) { GMM_ASSERT2(mat_nrows(l1)==mat_nrows(l2) && mat_ncols(l1)==mat_ncols(l2), "dimensions mismatch l1 is " << mat_nrows(l1) << "x" << mat_ncols(l1) << " and l2 is " << mat_nrows(l2) << "x" << mat_ncols(l2)); add(l1, l2, typename linalg_traits::sub_orientation(), typename linalg_traits::sub_orientation()); } template void add(const L1& l1, L2& l2, row_major, row_major) { auto it1 = mat_row_begin(l1), ite = mat_row_end(l1); auto it2 = mat_row_begin(l2); for ( ; it1 != ite; ++it1, ++it2) add(linalg_traits::row(it1), linalg_traits::row(it2)); } template void add(const L1& l1, L2& l2, col_major, col_major) { auto it1 = mat_col_const_begin(l1), ite = mat_col_const_end(l1); typename linalg_traits::col_iterator it2 = mat_col_begin(l2); for ( ; it1 != ite; ++it1, ++it2) add(linalg_traits::col(it1), linalg_traits::col(it2)); } template inline void add_mat_mixed_rc(const L1& l1, L2& l2, size_type i) { add_mat_mixed_rc(l1, l2, i, typename linalg_traits::storage_type()); } template void add_mat_mixed_rc(const L1& l1, L2& l2, size_type i, abstract_sparse) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(i, it.index()) += *it; } template void add_mat_mixed_rc(const L1& l1, L2& l2, size_type i, abstract_skyline) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(i, it.index()) += *it; } template void add_mat_mixed_rc(const L1& l1, L2& l2, size_type i, abstract_dense) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (size_type j = 0; it != ite; ++it, ++j) l2(i, j) += *it; } template inline void add_mat_mixed_cr(const L1& l1, L2& l2, size_type i) { add_mat_mixed_cr(l1, l2, i, typename linalg_traits::storage_type()); } template void add_mat_mixed_cr(const L1& l1, L2& l2, size_type i, abstract_sparse) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(it.index(), i) += *it; } template void add_mat_mixed_cr(const L1& l1, L2& l2, size_type i, abstract_skyline) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (; it != ite; ++it) l2(it.index(), i) += *it; } template void add_mat_mixed_cr(const L1& l1, L2& l2, size_type i, abstract_dense) { auto it = vect_const_begin(l1), ite = vect_const_end(l1); for (size_type j = 0; it != ite; ++it, ++j) l2(j, i) += *it; } template void add(const L1& l1, L2& l2, row_major, col_major) { size_type nbr = mat_nrows(l1); for (size_type i = 0; i < nbr; ++i) add_mat_mixed_rc(mat_const_row(l1, i), l2, i); } template void add(const L1& l1, L2& l2, col_major, row_major) { size_type nbc = mat_ncols(l1); for (size_type i = 0; i < nbc; ++i) add_mat_mixed_cr(mat_const_col(l1, i), l2, i); } template inline void add(const L1& l1, L2& l2, row_and_col, row_major) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, row_and_col, row_and_col) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, row_and_col, col_and_row) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, col_and_row, row_and_col) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, row_major, row_and_col) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, col_and_row, row_major) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, row_major, col_and_row) { add(l1, l2, row_major(), row_major()); } template inline void add(const L1& l1, L2& l2, row_and_col, col_major) { add(l1, l2, col_major(), col_major()); } template inline void add(const L1& l1, L2& l2, col_major, row_and_col) { add(l1, l2, col_major(), col_major()); } template inline void add(const L1& l1, L2& l2, col_and_row, col_major) { add(l1, l2, col_major(), col_major()); } template inline void add(const L1& l1, L2& l2, col_and_row, col_and_row) { add(l1, l2, col_major(), col_major()); } template inline void add(const L1& l1, L2& l2, col_major, col_and_row) { add(l1, l2, col_major(), col_major()); } ///@endcond /** Addition of two vectors/matrices @param l1 @param l2 @param l3 contains l1+l2 on output */ template inline void add(const L1& l1, const L2& l2, L3& l3) { add_spec(l1, l2, l3, typename linalg_traits::linalg_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline void add(const L1& l1, const L2& l2, const L3& l3) { add(l1, l2, linalg_const_cast(l3)); } template inline void add_spec(const L1& l1, const L2& l2, L3& l3, abstract_matrix) { copy(l2, l3); add(l1, l3); } template inline void add_spec(const L1& l1, const L2& l2, L3& l3, abstract_vector) { GMM_ASSERT2(vect_size(l1) == vect_size(l2) && vect_size(l1) == vect_size(l3), "dimensions mismatch"); if ((const void *)(&l1) == (const void *)(&l3)) add(l2, l3); else if ((const void *)(&l2) == (const void *)(&l3)) add(l1, l3); else add(l1, l2, l3, typename linalg_traits::storage_type(), typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } template void add_full_(IT1 it1, IT2 it2, IT3 it3, IT3 ite) { for (; it3 != ite; ++it3, ++it2, ++it1) *it3 = *it1 + *it2; } template void add_almost_full_(IT1 it1, IT1 ite1, IT2 it2, IT3 it3, IT3 ite3) { IT3 it = it3; for (; it != ite3; ++it, ++it2) *it = *it2; for (; it1 != ite1; ++it1) *(it3 + it1.index()) += *it1; } template void add_to_full_(IT1 it1, IT1 ite1, IT2 it2, IT2 ite2, IT3 it3, IT3 ite3) { typedef typename std::iterator_traits::value_type T; IT3 it = it3; for (; it != ite3; ++it) *it = T(0); for (; it1 != ite1; ++it1) *(it3 + it1.index()) = *it1; for (; it2 != ite2; ++it2) *(it3 + it2.index()) += *it2; } template inline void add(const L1& l1, const L2& l2, L3& l3, abstract_dense, abstract_dense, abstract_dense) { add_full_(vect_const_begin(l1), vect_const_begin(l2), vect_begin(l3), vect_end(l3)); } // generic function for add(v1, v2, v3). // Need to be specialized to optimize particular additions. template inline void add(const L1& l1, const L2& l2, L3& l3, ST1, ST2, ST3) { copy(l2, l3); add(l1, l3, ST1(), ST3()); } template inline void add(const L1& l1, const L2& l2, L3& l3, abstract_sparse, abstract_dense, abstract_dense) { add_almost_full_(vect_const_begin(l1), vect_const_end(l1), vect_const_begin(l2), vect_begin(l3), vect_end(l3)); } template inline void add(const L1& l1, const L2& l2, L3& l3, abstract_dense, abstract_sparse, abstract_dense) { add(l2, l1, l3, abstract_sparse(), abstract_dense(), abstract_dense()); } template inline void add(const L1& l1, const L2& l2, L3& l3, abstract_sparse, abstract_sparse, abstract_dense) { add_to_full_(vect_const_begin(l1), vect_const_end(l1), vect_const_begin(l2), vect_const_end(l2), vect_begin(l3), vect_end(l3)); } template void add_spspsp(const L1& l1, const L2& l2, L3& l3, linalg_true) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); auto it2 = vect_const_begin(l2), ite2 = vect_const_end(l2); clear(l3); while (it1 != ite1 && it2 != ite2) { ptrdiff_t d = it1.index() - it2.index(); if (d < 0) { l3[it1.index()] += *it1; ++it1; } else if (d > 0) { l3[it2.index()] += *it2; ++it2; } else { l3[it1.index()] = *it1 + *it2; ++it1; ++it2; } } for (; it1 != ite1; ++it1) l3[it1.index()] += *it1; for (; it2 != ite2; ++it2) l3[it2.index()] += *it2; } template void add_spspsp(const L1& l1, const L2& l2, L3& l3, linalg_false) { copy(l2, l3); add(l2, l3); } template void add(const L1& l1, const L2& l2, L3& l3, abstract_sparse, abstract_sparse, abstract_sparse) { add_spspsp(l1, l2, l3, typename linalg_and::index_sorted, typename linalg_traits::index_sorted>::bool_type()); } template void add(const L1& l1, L2& l2, abstract_dense, abstract_dense) { auto it1 = vect_const_begin(l1); auto it2 = vect_begin(l2), ite = vect_end(l2); for (; it2 != ite; ++it2, ++it1) *it2 += *it1; } template void add(const L1& l1, L2& l2, abstract_dense, abstract_skyline) { typedef typename linalg_traits::value_type T; auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); size_type i1 = 0, ie1 = vect_size(l1); while (it1 != ite1 && *it1 == T(0)) { ++it1; ++i1; } if (it1 != ite1) { auto it2 = vect_begin(l2), ite2 = vect_end(l2); while (ie1 && *(ite1-1) == T(0)) { ite1--; --ie1; } if (it2 == ite2 || i1 < it2.index()) { l2[i1] = *it1; ++i1; ++it1; if (it1 == ite1) return; it2 = vect_begin(l2); ite2 = vect_end(l2); } if (ie1 > ite2.index()) { --ite1; l2[ie1 - 1] = *ite1; it2 = vect_begin(l2); } it2 += i1 - it2.index(); for (; it1 != ite1; ++it1, ++it2) { *it2 += *it1; } } } template void add(const L1& l1, L2& l2, abstract_skyline, abstract_dense) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); if (it1 != ite1) { auto it2 = vect_begin(l2); it2 += it1.index(); for (; it1 != ite1; ++it2, ++it1) *it2 += *it1; } } template void add(const L1& l1, L2& l2, abstract_sparse, abstract_dense) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); for (; it1 != ite1; ++it1) l2[it1.index()] += *it1; } template void add(const L1& l1, L2& l2, abstract_sparse, abstract_sparse) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); for (; it1 != ite1; ++it1) l2[it1.index()] += *it1; } template void add(const L1& l1, L2& l2, abstract_sparse, abstract_skyline) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); for (; it1 != ite1; ++it1) l2[it1.index()] += *it1; } template void add(const L1& l1, L2& l2, abstract_skyline, abstract_sparse) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); for (; it1 != ite1; ++it1) if (*it1 != typename linalg_traits::value_type(0)) l2[it1.index()] += *it1; } template void add(const L1& l1, L2& l2, abstract_skyline, abstract_skyline) { typedef typename linalg_traits::value_type T1; typedef typename linalg_traits::value_type T2; auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); while (it1 != ite1 && *it1 == T1(0)) ++it1; if (ite1 != it1) { auto it2 = vect_begin(l2), ite2 = vect_end(l2); while (*(ite1-1) == T1(0)) ite1--; if (it2 == ite2 || it1.index() < it2.index()) { l2[it1.index()] = T2(0); it2 = vect_begin(l2); ite2 = vect_end(l2); } if (ite1.index() > ite2.index()) { l2[ite1.index() - 1] = T2(0); it2 = vect_begin(l2); } it2 += it1.index() - it2.index(); for (; it1 != ite1; ++it1, ++it2) *it2 += *it1; } } template void add(const L1& l1, L2& l2, abstract_dense, abstract_sparse) { auto it1 = vect_const_begin(l1), ite1 = vect_const_end(l1); for (size_type i = 0; it1 != ite1; ++it1, ++i) if (*it1 != typename linalg_traits::value_type(0)) l2[i] += *it1; } /* ******************************************************************** */ /* Matrix-vector mult */ /* ******************************************************************** */ ///@endcond /** matrix-vector or matrix-matrix product. @param l1 a matrix. @param l2 a vector or matrix. @param l3 the product l1*l2. */ template inline void mult(const L1& l1, const L2& l2, L3& l3) { mult_dispatch(l1, l2, l3, typename linalg_traits::linalg_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline void mult(const L1& l1, const L2& l2, const L3& l3) { mult(l1, l2, linalg_const_cast(l3)); } template inline void mult_dispatch(const L1& l1, const L2& l2, L3& l3, abstract_vector) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) { gmm::clear(l3); return; } GMM_ASSERT2(n==vect_size(l2) && m==vect_size(l3), "dimensions mismatch"); if (!same_origin(l2, l3)) mult_spec(l1, l2, l3, typename principal_orientation_type::sub_orientation>::potype()); else { GMM_WARNING2("Warning, A temporary is used for mult\n"); typename temporary_vector::vector_type temp(vect_size(l3)); mult_spec(l1, l2, temp, typename principal_orientation_type::sub_orientation>::potype()); copy(temp, l3); } } template void mult_by_row(const L1& l1, const L2& l2, L3& l3, abstract_sparse) { typedef typename linalg_traits::value_type T; clear(l3); size_type nr = mat_nrows(l1); for (size_type i = 0; i < nr; ++i) { T aux = vect_sp(mat_const_row(l1, i), l2); if (aux != T(0)) l3[i] = aux; } } template void mult_by_row(const L1& l1, const L2& l2, L3& l3, abstract_skyline) { typedef typename linalg_traits::value_type T; clear(l3); size_type nr = mat_nrows(l1); for (size_type i = 0; i < nr; ++i) { T aux = vect_sp(mat_const_row(l1, i), l2); if (aux != T(0)) l3[i] = aux; } } #ifdef STORM_HAVE_INTELTBB // Official Intel Hint on blocked_range vs. linear iterators: http://software.intel.com/en-us/forums/topic/289505 template class forward_range_mult { IT1 my_begin; IT1 my_end; IT2 my_begin_row; size_t my_size; public: IT1 begin() const {return my_begin;} IT2 begin_row() const {return my_begin_row;} IT1 end() const {return my_end;} bool empty() const {return my_begin==my_end;} bool is_divisible() const {return my_size>1;} forward_range_mult( IT1 first, IT1 last, IT2 row_first, size_t size ) : my_begin(first), my_end(last), my_begin_row(row_first), my_size(size) { assert( size==size_t(std::distance( first,last ))); } forward_range_mult( IT1 first, IT1 last, IT2 row_first) : my_begin(first), my_end(last), my_begin_row(row_first) { my_size = std::distance( first,last ); } forward_range_mult( forward_range_mult& r, tbb::split ) { size_t h = r.my_size/2; my_end = r.my_end; my_begin = r.my_begin; my_begin_row = r.my_begin_row; std::advance( my_begin, h ); // Might be scaling issue std::advance( my_begin_row, h ); my_size = r.my_size-h; r.my_end = my_begin; r.my_size = h; } }; template class tbbHelper_mult_by_row { L2 const* my_l2; // Typedefs for Iterator Types typedef typename linalg_traits::iterator frm_IT1; typedef typename linalg_traits::const_row_iterator frm_IT2; public: void operator()( const forward_range_mult& r ) const { L2 const& l2 = *my_l2; frm_IT1 it = r.begin(); frm_IT1 ite = r.end(); frm_IT2 itr = r.begin_row(); for (; it != ite; ++it, ++itr) { *it = vect_sp(linalg_traits::row(itr), l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } } tbbHelper_mult_by_row(L2 const* l2) : my_l2(l2) {} }; template class tbbHelper_mult_add_by_row { L2 const* my_l2; L3 const* my_l3; // Typedefs for Iterator Types typedef typename linalg_traits::iterator frm_IT1; typedef typename linalg_traits::const_row_iterator frm_IT2; typedef typename linalg_traits::const_iterator frm_IT3; public: void operator()( const forward_range_mult& r ) const { L2 const& l2 = *my_l2; frm_IT1 it = r.begin(); frm_IT1 ite = r.end(); frm_IT2 itr = r.begin_row(); frm_IT3 addIt = my_l3->begin(); for (; it != ite; ++it, ++itr, ++addIt) { *it = vect_sp(linalg_traits::row(itr), l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()) + *addIt; } } tbbHelper_mult_add_by_row(L2 const* l2, L2 const* l3) : my_l2(l2), my_l3(l3) { // Intentionally left empty. } }; template class TbbMultFunctor { public: TbbMultFunctor(L1 const& l1, L2 const& l2, L3& l3) : l1(l1), l2(l2), l3(l3) { // Intentionally left empty. } void operator()(tbb::blocked_range const& range) const { auto itr = mat_row_const_begin(l1) + range.begin(); auto l2it = l2.begin() + range.begin(); auto l3it = l3.begin() + range.begin(); auto l3ite = l3.begin() + range.end(); for (; l3it != l3ite; ++l3it, ++l2it, ++itr) { *l3it = vect_sp(linalg_traits::row(itr), l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } } private: L1 const& l1; L2 const& l2; L3& l3; }; template void mult_by_row_parallel(const L1& l1, const L2& l2, L3& l3, abstract_dense) { tbb::parallel_for(tbb::blocked_range(0, vect_size(l3), 10), TbbMultFunctor(l1, l2, l3)); } template class TbbMultAddFunctor { public: TbbMultAddFunctor(L1 const& l1, L2 const& l2, L3 const& l3, L4& l4) : l1(l1), l2(l2), l3(l3), l4(l4) { // Intentionally left empty. } void operator()(tbb::blocked_range const& range) const { auto itr = mat_row_const_begin(l1) + range.begin(); auto l2it = l2.begin() + range.begin(); auto l3it = l3.begin() + range.begin(); auto l4it = l4.begin() + range.begin(); auto l4ite = l4.begin() + range.end(); for (; l4it != l4ite; ++l4it, ++l3it, ++l2it, ++itr) { *l4it = vect_sp(linalg_traits::row(itr), l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()) + *l3it; } } private: L1 const& l1; L2 const& l2; L3 const& l3; L4& l4; }; template void mult_add_by_row_parallel(const L1& l1, const L2& l2, const L3& l3, L4& l4, abstract_dense) { tbb::parallel_for(tbb::blocked_range(0, vect_size(l4), 10), TbbMultAddFunctor(l1, l2, l3, l4)); } template void mult_add_by_row_parallel(const L1& l1, const L2& l2, L3& l3, abstract_dense) { tbb::parallel_for(tbb::blocked_range(0, vect_size(l3), 10), TbbMultAddFunctor(l1, l2, l3, l3)); } #endif template void mult_by_row(const L1& l1, const L2& l2, L3& l3, abstract_dense) { typename linalg_traits::iterator it=vect_begin(l3), ite=vect_end(l3); auto itr = mat_row_const_begin(l1); for (; it != ite; ++it, ++itr) *it = vect_sp(linalg_traits::row(itr), l2, typename linalg_traits::storage_type(), typename linalg_traits::storage_type()); } template void mult_by_row_bwd(const L1& l1, const L2& l2, L3& l3, abstract_dense) { typename linalg_traits::iterator target_it=vect_end(l3) - 1, target_ite=vect_begin(l3) - 1; typename linalg_traits::const_row_iterator itr = mat_row_const_end(l1) - 1; for (; target_it != target_ite; --target_it, --itr) *target_it = vect_sp(linalg_traits::row(itr), l2); } template void mult_by_col(const L1& l1, const L2& l2, L3& l3, abstract_dense) { clear(l3); size_type nc = mat_ncols(l1); for (size_type i = 0; i < nc; ++i) add(scaled(mat_const_col(l1, i), l2[i]), l3); } template void mult_by_col(const L1& l1, const L2& l2, L3& l3, abstract_sparse) { typedef typename linalg_traits::value_type T; clear(l3); auto it = vect_const_begin(l2), ite = vect_const_end(l2); for (; it != ite; ++it) if (*it != T(0)) add(scaled(mat_const_col(l1, it.index()), *it), l3); } template void mult_by_col(const L1& l1, const L2& l2, L3& l3, abstract_skyline) { typedef typename linalg_traits::value_type T; clear(l3); auto it = vect_const_begin(l2), ite = vect_const_end(l2); for (; it != ite; ++it) if (*it != T(0)) add(scaled(mat_const_col(l1, it.index()), *it), l3); } template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, row_major) { mult_by_row(l1, l2, l3, typename linalg_traits::storage_type()); } #ifdef STORM_HAVE_INTELTBB template inline void mult_parallel_spec(const L1& l1, const L2& l2, L3& l3, row_major) { mult_by_row_parallel(l1, l2, l3, typename linalg_traits::storage_type()); } #endif template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, col_major) { mult_by_col(l1, l2, l3, typename linalg_traits::storage_type()); } template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, abstract_null_type) { mult_ind(l1, l2, l3, typename linalg_traits::storage_type()); } template void mult_ind(const L1& l1, const L2& l2, L3& l3, abstract_indirect) { GMM_ASSERT1(false, "gmm::mult(m, ., .) undefined for this kind of matrix"); } template inline void mult(const L1& l1, const L2& l2, const L3& l3, L4& l4) { size_type m = mat_nrows(l1), n = mat_ncols(l1); copy(l3, l4); if (!m || !n) { gmm::copy(l3, l4); return; } GMM_ASSERT2(n==vect_size(l2) && m==vect_size(l4), "dimensions mismatch"); if (!same_origin(l2, l4)) { mult_add_spec(l1, l2, l4, typename principal_orientation_type::sub_orientation>::potype()); } else { GMM_WARNING2("Warning, A temporary is used for mult\n"); typename temporary_vector::vector_type temp(vect_size(l2)); copy(l2, temp); mult_add_spec(l1,temp, l4, typename principal_orientation_type::sub_orientation>::potype()); } } template inline void mult(const L1& l1, const L2& l2, const L3& l3, const L4& l4) { mult(l1, l2, l3, linalg_const_cast(l4)); } ///@endcond /** Multiply-accumulate. l3 += l1*l2; */ template inline void mult_add(const L1& l1, const L2& l2, L3& l3) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) return; GMM_ASSERT2(n==vect_size(l2) && m==vect_size(l3), "dimensions mismatch"); if (!same_origin(l2, l3)) { mult_add_spec(l1, l2, l3, typename principal_orientation_type::sub_orientation>::potype()); } else { GMM_WARNING2("Warning, A temporary is used for mult\n"); typename temporary_vector::vector_type temp(vect_size(l2)); copy(l2, temp); mult_add_spec(l1,temp, l3, typename principal_orientation_type::sub_orientation>::potype()); } } /** Multiply-accumulate. l4 = l1*l2 + l3; */ template inline void mult_add(const L1& l1, const L2& l2, const L3& l3, L4& l4) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) return; GMM_ASSERT2(n==vect_size(l2) && m==vect_size(l3) && vect_size(l3) == vect_size(l4), "dimensions mismatch"); if (!same_origin(l2, l4) && !same_origin(l3, l4) && !same_origin(l2, l3)) { mult_add_spec(l1, l2, l3, l4, typename principal_orientation_type::sub_orientation>::potype()); } else { GMM_WARNING2("Warning, Multiple temporaries are used for mult\n"); typename temporary_vector::vector_type l2tmp(vect_size(l2)); copy(l2, l2tmp); typename temporary_vector::vector_type l3tmp(vect_size(l3)); copy(l3, l3tmp); mult_add_spec(l1, l2tmp, l3tmp, l4, typename principal_orientation_type::sub_orientation>::potype()); } } #ifdef STORM_HAVE_INTELTBB /** Multiply. l3 = l1*l2; */ template inline void mult_parallel(const L1& l1, const L2& l2, L3& l3) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) return; GMM_ASSERT2(n==vect_size(l2), "dimensions mismatch"); if (!same_origin(l2, l3)) { mult_parallel_spec(l1, l2, l3, typename principal_orientation_type::sub_orientation>::potype()); } else { GMM_WARNING2("Warning, temporaries are used for mult\n"); typename temporary_vector::vector_type l2tmp(vect_size(l2)); copy(l2, l2tmp); mult_parallel_spec(l1, l2tmp, l3, typename principal_orientation_type::sub_orientation>::potype()); } } /** Multiply-accumulate. l3 += l1*l2; */ template inline void mult_add_parallel(const L1& l1, const L2& l2, L3& l3) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) return; GMM_ASSERT2(n==vect_size(l2) && m==vect_size(l3), "dimensions mismatch"); if (!same_origin(l2, l3)) { mult_add_parallel_spec(l1, l2, l3, typename principal_orientation_type::sub_orientation>::potype()); } else { GMM_WARNING2("Warning, A temporary is used for mult\n"); typename temporary_vector::vector_type temp(vect_size(l2)); copy(l2, temp); mult_add_parallel_spec(l1, temp, l3, typename principal_orientation_type::sub_orientation>::potype()); } } /** Multiply-accumulate. l4 = l1*l2 + l3; */ template inline void mult_add_parallel(const L1& l1, const L2& l2, const L3& l3, L4& l4) { size_type m = mat_nrows(l1), n = mat_ncols(l1); if (!m || !n) return; GMM_ASSERT2(n==vect_size(l2) && m==vect_size(l3) && vect_size(l3) == vect_size(l4), "dimensions mismatch"); if (!same_origin(l2, l4) && !same_origin(l3, l4) && !same_origin(l2, l3)) { mult_add_parallel_spec(l1, l2, l3, l4, typename principal_orientation_type::sub_orientation>::potype()); } else { GMM_WARNING2("Warning, Multiple temporaries are used for mult\n"); typename temporary_vector::vector_type l2tmp(vect_size(l2)); copy(l2, l2tmp); typename temporary_vector::vector_type l3tmp(vect_size(l3)); copy(l3, l3tmp); mult_add_parallel_spec(l1, l2tmp, l3tmp, l4, typename principal_orientation_type::sub_orientation>::potype()); } } #endif ///@cond DOXY_SHOW_ALL_FUNCTIONS template inline void mult_add(const L1& l1, const L2& l2, const L3& l3) { mult_add(l1, l2, linalg_const_cast(l3)); } template void mult_add_by_row(const L1& l1, const L2& l2, L3& l3, abstract_sparse) { typedef typename linalg_traits::value_type T; size_type nr = mat_nrows(l1); for (size_type i = 0; i < nr; ++i) { T aux = vect_sp(mat_const_row(l1, i), l2); if (aux != T(0)) l3[i] += aux; } } template void mult_add_by_row(const L1& l1, const L2& l2, L3& l3, abstract_skyline) { typedef typename linalg_traits::value_type T; size_type nr = mat_nrows(l1); for (size_type i = 0; i < nr; ++i) { T aux = vect_sp(mat_const_row(l1, i), l2); if (aux != T(0)) l3[i] += aux; } } template void mult_add_by_row(const L1& l1, const L2& l2, L3& l3, abstract_dense) { auto it=vect_begin(l3), ite=vect_end(l3); auto itr = mat_row_const_begin(l1); for (; it != ite; ++it, ++itr) *it += vect_sp(linalg_traits::row(itr), l2); } template void mult_add_by_row(const L1& l1, const L2& l2, const L3& l3, L4& l4, abstract_dense) { typename linalg_traits::const_iterator add_it=vect_begin(l3), add_ite=vect_end(l3); typename linalg_traits::iterator target_it=vect_begin(l4), target_ite=vect_end(l4); typename linalg_traits::const_row_iterator itr = mat_row_const_begin(l1); for (; add_it != add_ite; ++add_it, ++target_it, ++itr) *target_it = vect_sp(linalg_traits::row(itr), l2) + *add_it; } template void mult_add_by_row_bwd(const L1& l1, const L2& l2, const L3& l3, L4& l4, abstract_dense) { typename linalg_traits::const_iterator add_it=vect_end(l3) - 1, add_ite=vect_begin(l3) - 1; typename linalg_traits::iterator target_it=vect_end(l4) - 1, target_ite=vect_begin(l4) - 1; typename linalg_traits::const_row_iterator itr = mat_row_const_end(l1) - 1; for (; add_it != add_ite; --add_it, --target_it, --itr) *target_it = vect_sp(linalg_traits::row(itr), l2) + *add_it; } template void mult_add_by_col(const L1& l1, const L2& l2, L3& l3, abstract_dense) { size_type nc = mat_ncols(l1); for (size_type i = 0; i < nc; ++i) add(scaled(mat_const_col(l1, i), l2[i]), l3); } template void mult_add_by_col(const L1& l1, const L2& l2, L3& l3, abstract_sparse) { auto it = vect_const_begin(l2), ite = vect_const_end(l2); for (; it != ite; ++it) if (*it != typename linalg_traits::value_type(0)) add(scaled(mat_const_col(l1, it.index()), *it), l3); } template void mult_add_by_col(const L1& l1, const L2& l2, L3& l3, abstract_skyline) { auto it = vect_const_begin(l2), ite = vect_const_end(l2); for (; it != ite; ++it) if (*it != typename linalg_traits::value_type(0)) add(scaled(mat_const_col(l1, it.index()), *it), l3); } template inline void mult_add_spec(const L1& l1, const L2& l2, L3& l3, row_major) { mult_add_by_row(l1, l2, l3, typename linalg_traits::storage_type()); } template inline void mult_add_spec(const L1& l1, const L2& l2, const L3& l3, L4& l4, row_major) { mult_add_by_row(l1, l2, l3, l4, typename linalg_traits::storage_type()); } #ifdef STORM_HAVE_INTELTBB template inline void mult_add_parallel_spec(const L1& l1, const L2& l2, const L3& l3, L4& l4, row_major) { mult_add_by_row_parallel(l1, l2, l3, l4, typename linalg_traits::storage_type()); } template inline void mult_add_parallel_spec(const L1& l1, const L2& l2, L3& l3, row_major) { mult_add_by_row_parallel(l1, l2, l3, typename linalg_traits::storage_type()); } #endif template inline void mult_add_spec(const L1& l1, const L2& l2, L3& l3, col_major) { mult_add_by_col(l1, l2, l3, typename linalg_traits::storage_type()); } template inline void mult_add_spec(const L1& l1, const L2& l2, L3& l3, abstract_null_type) { mult_ind(l1, l2, l3, typename linalg_traits::storage_type()); } template void transposed_mult(const L1& l1, const L2& l2, const L3& l3) { mult(gmm::transposed(l1), l2, l3); } /* ******************************************************************** */ /* Matrix-matrix mult */ /* ******************************************************************** */ struct g_mult {}; // generic mult, less optimized struct c_mult {}; // col x col -> col mult struct r_mult {}; // row x row -> row mult struct rcmult {}; // row x col -> col mult struct crmult {}; // col x row -> row mult template struct mult_t; #define DEFMU__ template<> struct mult_t DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef g_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef crmult t; }; DEFMU__ { typedef g_mult t; }; DEFMU__ { typedef crmult t; }; DEFMU__ { typedef crmult t; }; DEFMU__ { typedef g_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef crmult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef crmult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef rcmult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef c_mult t; }; DEFMU__ { typedef r_mult t; }; DEFMU__ { typedef r_mult t; }; template void mult_dispatch(const L1& l1, const L2& l2, L3& l3, abstract_matrix) { typedef typename temporary_matrix::matrix_type temp_mat_type; size_type n = mat_ncols(l1); if (n == 0) { gmm::clear(l3); return; } GMM_ASSERT2(n == mat_nrows(l2) && mat_nrows(l1) == mat_nrows(l3) && mat_ncols(l2) == mat_ncols(l3), "dimensions mismatch"); if (same_origin(l2, l3) || same_origin(l1, l3)) { GMM_WARNING2("A temporary is used for mult"); temp_mat_type temp(mat_nrows(l3), mat_ncols(l3)); mult_spec(l1, l2, temp, typename mult_t< typename linalg_traits::sub_orientation, typename linalg_traits::sub_orientation, typename linalg_traits::sub_orientation>::t()); copy(temp, l3); } else mult_spec(l1, l2, l3, typename mult_t< typename linalg_traits::sub_orientation, typename linalg_traits::sub_orientation, typename linalg_traits::sub_orientation>::t()); } // Completely generic but inefficient template void mult_spec(const L1& l1, const L2& l2, L3& l3, g_mult) { typedef typename linalg_traits::value_type T; GMM_WARNING2("Inefficient generic matrix-matrix mult is used"); for (size_type i = 0; i < mat_nrows(l3) ; ++i) for (size_type j = 0; j < mat_ncols(l3) ; ++j) { T a(0); for (size_type k = 0; k < mat_nrows(l2) ; ++k) a += l1(i, k)*l2(k, j); l3(i, j) = a; } } // row x col matrix-matrix mult template void mult_row_col_with_temp(const L1& l1, const L2& l2, L3& l3, col_major) { typedef typename temporary_col_matrix::matrix_type temp_col_mat; temp_col_mat temp(mat_nrows(l1), mat_ncols(l1)); copy(l1, temp); mult(temp, l2, l3); } template void mult_row_col_with_temp(const L1& l1, const L2& l2, L3& l3, row_major) { typedef typename temporary_row_matrix::matrix_type temp_row_mat; temp_row_mat temp(mat_nrows(l2), mat_ncols(l2)); copy(l2, temp); mult(l1, temp, l3); } template void mult_spec(const L1& l1, const L2& l2, L3& l3, rcmult) { if (is_sparse(l1) && is_sparse(l2)) { GMM_WARNING3("Inefficient row matrix - col matrix mult for " "sparse matrices, using temporary"); mult_row_col_with_temp(l1, l2, l3, typename principal_orientation_type::sub_orientation>::potype()); } else { auto it2b = linalg_traits::col_begin(l2), it2 = it2b, ite = linalg_traits::col_end(l2); size_type i,j, k = mat_nrows(l1); for (i = 0; i < k; ++i) { typename linalg_traits::const_sub_row_type r1=mat_const_row(l1, i); for (it2 = it2b, j = 0; it2 != ite; ++it2, ++j) l3(i,j) = vect_sp(r1, linalg_traits::col(it2)); } } } // row - row matrix-matrix mult template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, r_mult) { mult_spec(l1, l2, l3,r_mult(),typename linalg_traits::storage_type()); } template void mult_spec(const L1& l1, const L2& l2, L3& l3, r_mult, abstract_dense) { // optimizable clear(l3); size_type nn = mat_nrows(l3), mm = mat_nrows(l2); for (size_type i = 0; i < nn; ++i) { for (size_type j = 0; j < mm; ++j) { add(scaled(mat_const_row(l2, j), l1(i, j)), mat_row(l3, i)); } } } template void mult_spec(const L1& l1, const L2& l2, L3& l3, r_mult, abstract_sparse) { // optimizable clear(l3); size_type nn = mat_nrows(l3); for (size_type i = 0; i < nn; ++i) { typename linalg_traits::const_sub_row_type rl1=mat_const_row(l1, i); auto it = vect_const_begin(rl1), ite = vect_const_end(rl1); for (; it != ite; ++it) add(scaled(mat_const_row(l2, it.index()), *it), mat_row(l3, i)); } } template void mult_spec(const L1& l1, const L2& l2, L3& l3, r_mult, abstract_skyline) { mult_spec(l1, l2, l3, r_mult(), abstract_sparse()); } // col - col matrix-matrix mult template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, c_mult) { mult_spec(l1, l2,l3,c_mult(),typename linalg_traits::storage_type(), typename linalg_traits::sub_orientation()); } template void mult_spec(const L1& l1, const L2& l2, L3& l3, c_mult, abstract_dense, ORIEN) { typedef typename linalg_traits::value_type T; size_type nn = mat_ncols(l3), mm = mat_ncols(l1); for (size_type i = 0; i < nn; ++i) { clear(mat_col(l3, i)); for (size_type j = 0; j < mm; ++j) { T b = l2(j, i); if (b != T(0)) add(scaled(mat_const_col(l1, j), b), mat_col(l3, i)); } } } template void mult_spec(const L1& l1, const L2& l2, L3& l3, c_mult, abstract_sparse, ORIEN) { // optimizable clear(l3); size_type nn = mat_ncols(l3); for (size_type i = 0; i < nn; ++i) { typename linalg_traits::const_sub_col_type rc2 = mat_const_col(l2, i); auto it = vect_const_begin(rc2), ite = vect_const_end(rc2); for (; it != ite; ++it) add(scaled(mat_const_col(l1, it.index()), *it), mat_col(l3, i)); } } template void mult_spec(const L1& l1, const L2& l2, L3& l3, c_mult, abstract_sparse, row_major) { typedef typename linalg_traits::value_type T; GMM_WARNING3("Inefficient matrix-matrix mult for sparse matrices"); clear(l3); size_type mm = mat_nrows(l2), nn = mat_ncols(l3); for (size_type i = 0; i < nn; ++i) for (size_type j = 0; j < mm; ++j) { T a = l2(i,j); if (a != T(0)) add(scaled(mat_const_col(l1, j), a), mat_col(l3, i)); } } template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, c_mult, abstract_skyline, ORIEN) { mult_spec(l1, l2, l3, c_mult(), abstract_sparse(), ORIEN()); } // col - row matrix-matrix mult template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, crmult) { mult_spec(l1,l2,l3,crmult(), typename linalg_traits::storage_type()); } template void mult_spec(const L1& l1, const L2& l2, L3& l3, crmult, abstract_dense) { // optimizable clear(l3); size_type nn = mat_ncols(l1), mm = mat_nrows(l1); for (size_type i = 0; i < nn; ++i) { for (size_type j = 0; j < mm; ++j) add(scaled(mat_const_row(l2, i), l1(j, i)), mat_row(l3, j)); } } template void mult_spec(const L1& l1, const L2& l2, L3& l3, crmult, abstract_sparse) { // optimizable clear(l3); size_type nn = mat_ncols(l1); for (size_type i = 0; i < nn; ++i) { typename linalg_traits::const_sub_col_type rc1 = mat_const_col(l1, i); auto it = vect_const_begin(rc1), ite = vect_const_end(rc1); for (; it != ite; ++it) add(scaled(mat_const_row(l2, i), *it), mat_row(l3, it.index())); } } template inline void mult_spec(const L1& l1, const L2& l2, L3& l3, crmult, abstract_skyline) { mult_spec(l1, l2, l3, crmult(), abstract_sparse()); } /* ******************************************************************** */ /* Symmetry test. */ /* ******************************************************************** */ ///@endcond /** test if A is symmetric. @param A a matrix. @param tol a threshold. */ template inline bool is_symmetric(const MAT &A, magnitude_of_linalg(MAT) tol = magnitude_of_linalg(MAT)(-1)) { typedef magnitude_of_linalg(MAT) R; if (tol < R(0)) tol = default_tol(R()) * mat_maxnorm(A); if (mat_nrows(A) != mat_ncols(A)) return false; return is_symmetric(A, tol, typename linalg_traits::storage_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template bool is_symmetric(const MAT &A, magnitude_of_linalg(MAT) tol, abstract_dense) { size_type m = mat_nrows(A); for (size_type i = 1; i < m; ++i) for (size_type j = 0; j < i; ++j) if (gmm::abs(A(i, j)-A(j, i)) > tol) return false; return true; } template bool is_symmetric(const MAT &A, magnitude_of_linalg(MAT) tol, abstract_sparse) { return is_symmetric(A, tol, typename principal_orientation_type::sub_orientation>::potype()); } template bool is_symmetric(const MAT &A, magnitude_of_linalg(MAT) tol, row_major) { for (size_type i = 0; i < mat_nrows(A); ++i) { typename linalg_traits::const_sub_row_type row = mat_const_row(A, i); auto it = vect_const_begin(row), ite = vect_const_end(row); for (; it != ite; ++it) if (gmm::abs(*it - A(it.index(), i)) > tol) return false; } return true; } template bool is_symmetric(const MAT &A, magnitude_of_linalg(MAT) tol, col_major) { for (size_type i = 0; i < mat_ncols(A); ++i) { typename linalg_traits::const_sub_col_type col = mat_const_col(A, i); auto it = vect_const_begin(col), ite = vect_const_end(col); for (; it != ite; ++it) if (gmm::abs(*it - A(i, it.index())) > tol) return false; } return true; } template bool is_symmetric(const MAT &A, magnitude_of_linalg(MAT) tol, abstract_skyline) { return is_symmetric(A, tol, abstract_sparse()); } ///@endcond /** test if A is Hermitian. @param A a matrix. @param tol a threshold. */ template inline bool is_hermitian(const MAT &A, magnitude_of_linalg(MAT) tol = magnitude_of_linalg(MAT)(-1)) { typedef magnitude_of_linalg(MAT) R; if (tol < R(0)) tol = default_tol(R()) * mat_maxnorm(A); if (mat_nrows(A) != mat_ncols(A)) return false; return is_hermitian(A, tol, typename linalg_traits::storage_type()); } ///@cond DOXY_SHOW_ALL_FUNCTIONS template bool is_hermitian(const MAT &A, magnitude_of_linalg(MAT) tol, abstract_dense) { size_type m = mat_nrows(A); for (size_type i = 1; i < m; ++i) for (size_type j = 0; j < i; ++j) if (gmm::abs(A(i, j)-gmm::conj(A(j, i))) > tol) return false; return true; } template bool is_hermitian(const MAT &A, magnitude_of_linalg(MAT) tol, abstract_sparse) { return is_hermitian(A, tol, typename principal_orientation_type::sub_orientation>::potype()); } template bool is_hermitian(const MAT &A, magnitude_of_linalg(MAT) tol, row_major) { for (size_type i = 0; i < mat_nrows(A); ++i) { typename linalg_traits::const_sub_row_type row = mat_const_row(A, i); auto it = vect_const_begin(row), ite = vect_const_end(row); for (; it != ite; ++it) if (gmm::abs(gmm::conj(*it) - A(it.index(), i)) > tol) return false; } return true; } template bool is_hermitian(const MAT &A, magnitude_of_linalg(MAT) tol, col_major) { for (size_type i = 0; i < mat_ncols(A); ++i) { typename linalg_traits::const_sub_col_type col = mat_const_col(A, i); auto it = vect_const_begin(col), ite = vect_const_end(col); for (; it != ite; ++it) if (gmm::abs(gmm::conj(*it) - A(i, it.index())) > tol) return false; } return true; } template bool is_hermitian(const MAT &A, magnitude_of_linalg(MAT) tol, abstract_skyline) { return is_hermitian(A, tol, abstract_sparse()); } ///@endcond } #endif // GMM_BLAS_H__