#include "storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h" #include <cmath> #include "storm/adapters/CarlAdapter.h" #include "storm/models/sparse/MarkovAutomaton.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/utility/macros.h" #include "storm/utility/vector.h" #include "storm/exceptions/InvalidOperationException.h" namespace storm { namespace modelchecker { namespace multiobjective { template <class SparseMaModelType> SparseMaPcaaWeightVectorChecker<SparseMaModelType>::SparseMaPcaaWeightVectorChecker(SparseMaModelType const& model, std::vector<PcaaObjective<ValueType>> const& objectives, storm::storage::BitVector const& actionsWithNegativeReward, storm::storage::BitVector const& ecActions, storm::storage::BitVector const& possiblyRecurrentStates) : SparsePcaaWeightVectorChecker<SparseMaModelType>(model, objectives, actionsWithNegativeReward, ecActions, possiblyRecurrentStates) { // Set the (discretized) state action rewards. this->discreteActionRewards.resize(objectives.size()); for(auto objIndex : this->objectivesWithNoUpperTimeBound) { typename SparseMaModelType::RewardModelType const& rewModel = this->model.getRewardModel(this->objectives[objIndex].rewardModelName); STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected."); this->discreteActionRewards[objIndex] = rewModel.hasStateActionRewards() ? rewModel.getStateActionRewardVector() : std::vector<ValueType>(this->model.getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>()); if(rewModel.hasStateRewards()) { // Note that state rewards are earned over time and thus play no role for probabilistic states for(auto markovianState : this->model.getMarkovianStates()) { this->discreteActionRewards[objIndex][this->model.getTransitionMatrix().getRowGroupIndices()[markovianState]] += rewModel.getStateReward(markovianState) / this->model.getExitRate(markovianState); } } } } template <class SparseMaModelType> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) { // Split the preprocessed model into transitions from/to probabilistic/Markovian states. SubModel MS = createSubModel(true, weightedRewardVector); SubModel PS = createSubModel(false, weightedRewardVector); // Apply digitization to Markovian transitions ValueType digitizationConstant = getDigitizationConstant(weightVector); digitize(MS, digitizationConstant); // Get for each occurring (digitized) timeBound the indices of the objectives with that bound. TimeBoundMap lowerTimeBounds; TimeBoundMap upperTimeBounds; digitizeTimeBounds(lowerTimeBounds, upperTimeBounds, digitizationConstant); // Initialize a minMaxSolver to compute an optimal scheduler (w.r.t. PS) for each epoch // No EC elimination is necessary as we assume non-zenoness std::unique_ptr<MinMaxSolverData> minMax = initMinMaxSolver(PS); // create a linear equation solver for the model induced by the optimal choice vector. // the solver will be updated whenever the optimal choice vector has changed. std::unique_ptr<LinEqSolverData> linEq = initLinEqSolver(PS); // Store the optimal choices of PS as computed by the minMax solver. std::vector<uint_fast64_t> optimalChoicesAtCurrentEpoch(PS.getNumberOfStates(), std::numeric_limits<uint_fast64_t>::max()); // Stores the objectives for which we need to compute values in the current time epoch. storm::storage::BitVector consideredObjectives = this->objectivesWithNoUpperTimeBound; auto lowerTimeBoundIt = lowerTimeBounds.begin(); auto upperTimeBoundIt = upperTimeBounds.begin(); uint_fast64_t currentEpoch = std::max(lowerTimeBounds.empty() ? 0 : lowerTimeBoundIt->first, upperTimeBounds.empty() ? 0 : upperTimeBoundIt->first); this->maxStepBound = std::max(this->maxStepBound, currentEpoch); while(true) { // Update the objectives that are considered at the current time epoch as well as the (weighted) reward vectors. updateDataToCurrentEpoch(MS, PS, *minMax, consideredObjectives, currentEpoch, weightVector, lowerTimeBoundIt, lowerTimeBounds, upperTimeBoundIt, upperTimeBounds); // Compute the values that can be obtained at probabilistic states in the current time epoch performPSStep(PS, MS, *minMax, *linEq, optimalChoicesAtCurrentEpoch, consideredObjectives, weightVector); // Compute values that can be obtained at Markovian states after letting one (digitized) time unit pass. // Only perform such a step if there is time left. if(currentEpoch>0) { performMSStep(MS, PS, consideredObjectives, weightVector); --currentEpoch; } else { break; } } // compose the results from MS and PS storm::utility::vector::setVectorValues(this->weightedResult, MS.states, MS.weightedSolutionVector); storm::utility::vector::setVectorValues(this->weightedResult, PS.states, PS.weightedSolutionVector); for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], MS.states, MS.objectiveSolutionVectors[objIndex]); storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], PS.states, PS.objectiveSolutionVectors[objIndex]); } } template <class SparseMaModelType> typename SparseMaPcaaWeightVectorChecker<SparseMaModelType>::SubModel SparseMaPcaaWeightVectorChecker<SparseMaModelType>::createSubModel(bool createMS, std::vector<ValueType> const& weightedRewardVector) const { SubModel result; storm::storage::BitVector probabilisticStates = ~this->model.getMarkovianStates(); result.states = createMS ? this->model.getMarkovianStates() : probabilisticStates; result.choices = this->model.getTransitionMatrix().getRowIndicesOfRowGroups(result.states); STORM_LOG_ASSERT(!createMS || result.states.getNumberOfSetBits() == result.choices.getNumberOfSetBits(), "row groups for Markovian states should consist of exactly one row"); //We need to add diagonal entries for selfloops on Markovian states. result.toMS = this->model.getTransitionMatrix().getSubmatrix(true, result.states, this->model.getMarkovianStates(), createMS); result.toPS = this->model.getTransitionMatrix().getSubmatrix(true, result.states, probabilisticStates, false); STORM_LOG_ASSERT(result.getNumberOfStates() == result.states.getNumberOfSetBits() && result.getNumberOfStates() == result.toMS.getRowGroupCount() && result.getNumberOfStates() == result.toPS.getRowGroupCount(), "Invalid state count for subsystem"); STORM_LOG_ASSERT(result.getNumberOfChoices() == result.choices.getNumberOfSetBits() && result.getNumberOfChoices() == result.toMS.getRowCount() && result.getNumberOfChoices() == result.toPS.getRowCount(), "Invalid state count for subsystem"); result.weightedRewardVector.resize(result.getNumberOfChoices()); storm::utility::vector::selectVectorValues(result.weightedRewardVector, result.choices, weightedRewardVector); result.objectiveRewardVectors.resize(this->objectives.size()); for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { std::vector<ValueType>& objVector = result.objectiveRewardVectors[objIndex]; objVector = std::vector<ValueType>(result.weightedRewardVector.size(), storm::utility::zero<ValueType>()); if(this->objectivesWithNoUpperTimeBound.get(objIndex)) { storm::utility::vector::selectVectorValues(objVector, result.choices, this->discreteActionRewards[objIndex]); } else { typename SparseMaModelType::RewardModelType const& rewModel = this->model.getRewardModel(this->objectives[objIndex].rewardModelName); STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected."); STORM_LOG_ASSERT(!rewModel.hasStateRewards(), "State rewards for bounded objectives for MAs are not expected (bounded rewards are not supported)."); if(rewModel.hasStateActionRewards()) { storm::utility::vector::selectVectorValues(objVector, result.choices, rewModel.getStateActionRewardVector()); } } } result.weightedSolutionVector.resize(result.getNumberOfStates()); storm::utility::vector::selectVectorValues(result.weightedSolutionVector, result.states, this->weightedResult); result.objectiveSolutionVectors.resize(this->objectives.size()); for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { result.objectiveSolutionVectors[objIndex].resize(result.weightedSolutionVector.size()); storm::utility::vector::selectVectorValues(result.objectiveSolutionVectors[objIndex], result.states, this->objectiveResults[objIndex]); } result.auxChoiceValues.resize(result.getNumberOfChoices()); return result; } template <class SparseMaModelType> template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type> VT SparseMaPcaaWeightVectorChecker<SparseMaModelType>::getDigitizationConstant(std::vector<ValueType> const& weightVector) const { STORM_LOG_DEBUG("Retrieving digitization constant"); // We need to find a delta such that for each objective it holds that lowerbound/delta , upperbound/delta are natural numbers and // sum_{obj_i} ( // If obj_i has a lower and an upper bound: // weightVector_i * (1 - e^(-maxRate lowerbound) * (1 + maxRate delta) ^ (lowerbound / delta) + 1-e^(-maxRate upperbound) * (1 + maxRate delta) ^ (upperbound / delta) + (1-e^(-maxRate delta))) // If there is only an upper bound: // weightVector_i * ( 1-e^(-maxRate upperbound) * (1 + maxRate delta) ^ (upperbound / delta)) // ) <= this->maximumLowerUpperDistance // Initialize some data for fast and easy access VT const maxRate = this->model.getMaximalExitRate(); std::vector<std::pair<VT, VT>> eToPowerOfMinusMaxRateTimesBound; VT smallestNonZeroBound = storm::utility::zero<VT>(); for(auto const& obj : this->objectives) { eToPowerOfMinusMaxRateTimesBound.emplace_back(); if(obj.lowerTimeBound){ STORM_LOG_ASSERT(!storm::utility::isZero(*obj.lowerTimeBound), "Got zero-valued lower bound."); // should have been handled in preprocessing STORM_LOG_ASSERT(!obj.upperTimeBound || *obj.lowerTimeBound < *obj.upperTimeBound, "Got point intervall or empty intervall on time bounded property which is not supported"); // should also have been handled in preprocessing eToPowerOfMinusMaxRateTimesBound.back().first = std::exp(-maxRate * (*obj.lowerTimeBound)); smallestNonZeroBound = storm::utility::isZero(smallestNonZeroBound) ? *obj.lowerTimeBound : std::min(smallestNonZeroBound, *obj.lowerTimeBound); } if(obj.upperTimeBound){ STORM_LOG_ASSERT(!storm::utility::isZero(*obj.upperTimeBound), "Got zero-valued upper bound."); // should have been handled in preprocessing eToPowerOfMinusMaxRateTimesBound.back().second = std::exp(-maxRate * (*obj.upperTimeBound)); smallestNonZeroBound = storm::utility::isZero(smallestNonZeroBound) ? *obj.upperTimeBound : std::min(smallestNonZeroBound, *obj.upperTimeBound); } } if(storm::utility::isZero(smallestNonZeroBound)) { // There are no time bounds. In this case, one is a valid digitization constant. return storm::utility::one<VT>(); } VT goalPrecisionTimesNorm = this->weightedPrecision * storm::utility::sqrt(storm::utility::vector::dotProduct(weightVector, weightVector)); // We brute-force a delta, since a direct computation is apparently not easy. // Also note that the number of times this loop runs is a lower bound for the number of minMaxSolver invocations. // Hence, this brute-force approach will most likely not be a bottleneck. uint_fast64_t smallestStepBound = 1; VT delta = smallestNonZeroBound / smallestStepBound; while(true) { bool deltaValid = true; for(auto const& obj : this->objectives) { if((obj.lowerTimeBound && *obj.lowerTimeBound/delta != std::floor(*obj.lowerTimeBound/delta)) || (obj.upperTimeBound && *obj.upperTimeBound/delta != std::floor(*obj.upperTimeBound/delta))) { deltaValid = false; break; } } if(deltaValid) { VT weightedPrecisionForCurrentDelta = storm::utility::zero<VT>(); for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { auto const& obj = this->objectives[objIndex]; VT precisionOfObj = storm::utility::zero<VT>(); if(obj.lowerTimeBound) { precisionOfObj += storm::utility::one<VT>() - (eToPowerOfMinusMaxRateTimesBound[objIndex].first * storm::utility::pow(storm::utility::one<VT>() + maxRate * delta, *obj.lowerTimeBound / delta) ) + storm::utility::one<VT>() - std::exp(-maxRate * delta); } if(obj.upperTimeBound) { precisionOfObj += storm::utility::one<VT>() - (eToPowerOfMinusMaxRateTimesBound[objIndex].second * storm::utility::pow(storm::utility::one<VT>() + maxRate * delta, *obj.upperTimeBound / delta) ); } weightedPrecisionForCurrentDelta += weightVector[objIndex] * precisionOfObj; } deltaValid &= weightedPrecisionForCurrentDelta <= goalPrecisionTimesNorm; } if(deltaValid) { break; } ++smallestStepBound; STORM_LOG_ASSERT(delta>smallestNonZeroBound / smallestStepBound, "Digitization constant is expected to become smaller in every iteration"); delta = smallestNonZeroBound / smallestStepBound; } STORM_LOG_DEBUG("Found digitization constant: " << delta << ". At least " << smallestStepBound << " digitization steps will be necessarry"); return delta; } template <class SparseMaModelType> template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type> VT SparseMaPcaaWeightVectorChecker<SparseMaModelType>::getDigitizationConstant(std::vector<ValueType> const& weightVector) const { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type."); } template <class SparseMaModelType> template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::digitize(SubModel& MS, VT const& digitizationConstant) const { std::vector<VT> rateVector(MS.getNumberOfChoices()); storm::utility::vector::selectVectorValues(rateVector, MS.states, this->model.getExitRates()); for(uint_fast64_t row = 0; row < rateVector.size(); ++row) { VT const eToMinusRateTimesDelta = std::exp(-rateVector[row] * digitizationConstant); for(auto& entry : MS.toMS.getRow(row)) { entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue()); if(entry.getColumn() == row) { entry.setValue(entry.getValue() + eToMinusRateTimesDelta); } } for(auto& entry : MS.toPS.getRow(row)) { entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue()); } MS.weightedRewardVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta; for(auto& objVector : MS.objectiveRewardVectors) { objVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta; } } } template <class SparseMaModelType> template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::digitize(SubModel& subModel, VT const& digitizationConstant) const { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type."); } template <class SparseMaModelType> template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) { VT const maxRate = this->model.getMaximalExitRate(); for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { auto const& obj = this->objectives[objIndex]; VT errorTowardsZero; VT errorAwayFromZero; if(obj.lowerTimeBound) { uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*obj.lowerTimeBound)/digitizationConstant); auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->objectives.size(), false))).first; timeBoundIt->second.set(objIndex); VT digitizationError = storm::utility::one<VT>(); digitizationError -= std::exp(-maxRate * (*obj.lowerTimeBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound); errorTowardsZero = -digitizationError; errorAwayFromZero = storm::utility::one<VT>() - std::exp(-maxRate * digitizationConstant);; } else { errorTowardsZero = storm::utility::zero<VT>(); errorAwayFromZero = storm::utility::zero<VT>(); } if(obj.upperTimeBound) { uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*obj.upperTimeBound)/digitizationConstant); auto timeBoundIt = upperTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->objectives.size(), false))).first; timeBoundIt->second.set(objIndex); VT digitizationError = storm::utility::one<VT>(); digitizationError -= std::exp(-maxRate * (*obj.upperTimeBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound); errorAwayFromZero += digitizationError; } if (obj.rewardsArePositive) { this->offsetsToLowerBound[objIndex] = -errorTowardsZero; this->offsetsToUpperBound[objIndex] = errorAwayFromZero; } else { this->offsetsToLowerBound[objIndex] = -errorAwayFromZero; this->offsetsToUpperBound[objIndex] = errorTowardsZero; } } } template <class SparseMaModelType> template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type."); } template <class SparseMaModelType> std::unique_ptr<typename SparseMaPcaaWeightVectorChecker<SparseMaModelType>::MinMaxSolverData> SparseMaPcaaWeightVectorChecker<SparseMaModelType>::initMinMaxSolver(SubModel const& PS) const { std::unique_ptr<MinMaxSolverData> result(new MinMaxSolverData()); storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory; result->solver = minMaxSolverFactory.create(PS.toPS); result->solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); result->solver->setTrackScheduler(true); result->solver->setCachingEnabled(true); result->b.resize(PS.getNumberOfChoices()); return result; } template <class SparseMaModelType> std::unique_ptr<typename SparseMaPcaaWeightVectorChecker<SparseMaModelType>::LinEqSolverData> SparseMaPcaaWeightVectorChecker<SparseMaModelType>::initLinEqSolver(SubModel const& PS) const { std::unique_ptr<LinEqSolverData> result(new LinEqSolverData()); // We choose Jacobi since we call the solver very frequently on 'easy' inputs (note that jacobi without preconditioning has very little overhead). result->factory.getSettings().setSolutionMethod(storm::solver::GmmxxLinearEquationSolverSettings<ValueType>::SolutionMethod::Jacobi); result->factory.getSettings().setPreconditioner(storm::solver::GmmxxLinearEquationSolverSettings<ValueType>::Preconditioner::None); result->b.resize(PS.getNumberOfStates()); return result; } template <class SparseMaModelType> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::updateDataToCurrentEpoch(SubModel& MS, SubModel& PS, MinMaxSolverData& minMax, storm::storage::BitVector& consideredObjectives, uint_fast64_t const& currentEpoch, std::vector<ValueType> const& weightVector, TimeBoundMap::iterator& lowerTimeBoundIt, TimeBoundMap const& lowerTimeBounds, TimeBoundMap::iterator& upperTimeBoundIt, TimeBoundMap const& upperTimeBounds) { //Note that lower time bounds are always strict. Hence, we need to react when the current epoch equals the stored bound. if(lowerTimeBoundIt != lowerTimeBounds.end() && currentEpoch == lowerTimeBoundIt->first) { for(auto objIndex : lowerTimeBoundIt->second) { // No more reward is earned for this objective. storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], -weightVector[objIndex]); storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], -weightVector[objIndex]); MS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(MS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>()); PS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(PS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>()); } ++lowerTimeBoundIt; } if(upperTimeBoundIt != upperTimeBounds.end() && currentEpoch == upperTimeBoundIt->first) { consideredObjectives |= upperTimeBoundIt->second; for(auto objIndex : upperTimeBoundIt->second) { // This objective now plays a role in the weighted sum storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], weightVector[objIndex]); storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], weightVector[objIndex]); } ++upperTimeBoundIt; } // Update the solver data PS.toMS.multiplyWithVector(MS.weightedSolutionVector, minMax.b); storm::utility::vector::addVectors(minMax.b, PS.weightedRewardVector, minMax.b); } template <class SparseMaModelType> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector<uint_fast64_t>& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives, std::vector<ValueType> const& weightVector) const { // compute a choice vector for the probabilistic states that is optimal w.r.t. the weighted reward vector minMax.solver->solveEquations(PS.weightedSolutionVector, minMax.b); auto newScheduler = minMax.solver->getScheduler(); if(consideredObjectives.getNumberOfSetBits() == 1 && !storm::utility::isZero(weightVector[*consideredObjectives.begin()])) { // In this case there is no need to perform the computation on the individual objectives optimalChoicesAtCurrentEpoch = newScheduler->getChoices(); auto objIndex = *consideredObjectives.begin(); PS.objectiveSolutionVectors[objIndex] = PS.weightedSolutionVector; if(!storm::utility::isOne(weightVector[objIndex])) { storm::utility::vector::scaleVectorInPlace(PS.objectiveSolutionVectors[objIndex], storm::utility::one<ValueType>()/weightVector[objIndex]); } } else { // check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed if(linEq.solver == nullptr || newScheduler->getChoices() != optimalChoicesAtCurrentEpoch) { optimalChoicesAtCurrentEpoch = newScheduler->getChoices(); linEq.solver = nullptr; storm::storage::SparseMatrix<ValueType> linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true); linEqMatrix.convertToEquationSystem(); linEq.solver = linEq.factory.create(std::move(linEqMatrix)); linEq.solver->setCachingEnabled(true); } // Get the results for the individual objectives. // Note that we do not consider an estimate for each objective (as done in the unbounded phase) since the results from the previous epoch are already pretty close for(auto objIndex : consideredObjectives) { auto const& objectiveRewardVectorPS = PS.objectiveRewardVectors[objIndex]; auto const& objectiveSolutionVectorMS = MS.objectiveSolutionVectors[objIndex]; // compute rhs of equation system, i.e., PS.toMS * x + Rewards // To safe some time, only do this for the obtained optimal choices auto itGroupIndex = PS.toPS.getRowGroupIndices().begin(); auto itChoiceOffset = optimalChoicesAtCurrentEpoch.begin(); for(auto& bValue : linEq.b) { uint_fast64_t row = (*itGroupIndex) + (*itChoiceOffset); bValue = objectiveRewardVectorPS[row]; for(auto const& entry : PS.toMS.getRow(row)){ bValue += entry.getValue() * objectiveSolutionVectorMS[entry.getColumn()]; } ++itGroupIndex; ++itChoiceOffset; } linEq.solver->solveEquations(PS.objectiveSolutionVectors[objIndex], linEq.b); } } } template <class SparseMaModelType> void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives, std::vector<ValueType> const& weightVector) const { MS.toMS.multiplyWithVector(MS.weightedSolutionVector, MS.auxChoiceValues); storm::utility::vector::addVectors(MS.weightedRewardVector, MS.auxChoiceValues, MS.weightedSolutionVector); MS.toPS.multiplyWithVector(PS.weightedSolutionVector, MS.auxChoiceValues); storm::utility::vector::addVectors(MS.weightedSolutionVector, MS.auxChoiceValues, MS.weightedSolutionVector); if(consideredObjectives.getNumberOfSetBits() == 1 && !storm::utility::isZero(weightVector[*consideredObjectives.begin()])) { // In this case there is no need to perform the computation on the individual objectives auto objIndex = *consideredObjectives.begin(); MS.objectiveSolutionVectors[objIndex] = MS.weightedSolutionVector; if(!storm::utility::isOne(weightVector[objIndex])) { storm::utility::vector::scaleVectorInPlace(MS.objectiveSolutionVectors[objIndex], storm::utility::one<ValueType>()/weightVector[objIndex]); } } else { for(auto objIndex : consideredObjectives) { MS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); storm::utility::vector::addVectors(MS.objectiveRewardVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); MS.toPS.multiplyWithVector(PS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); storm::utility::vector::addVectors(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); } } } template class SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>; template double SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::getDigitizationConstant<double>(std::vector<double> const& direction) const; template void SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitize<double>(SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::SubModel& subModel, double const& digitizationConstant) const; template void SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitizeTimeBounds<double>(SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, double const& digitizationConstant); #ifdef STORM_HAVE_CARL // template class SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>; // template storm::RationalNumber SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::getDigitizationConstant<storm::RationalNumber>(std::vector<double> const& direction) const; // template void SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitize<storm::RationalNumber>(SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::SubModel& subModel, storm::RationalNumber const& digitizationConstant) const; // template void SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitizeTimeBounds<storm::RationalNumber>(SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaPcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, storm::RationalNumber const& digitizationConstant); #endif } } }