#include "src/modelchecker/region/SparseMdpRegionModelChecker.h" #include #include #include #include "src/adapters/CarlAdapter.h" #include "src/logic/Formulas.h" #include "src/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "src/modelchecker/region/RegionCheckResult.h" #include "src/modelchecker/propositional/SparsePropositionalModelChecker.h" #include "src/models/sparse/StandardRewardModel.h" #include "src/settings/SettingsManager.h" #include "src/settings/modules/RegionSettings.h" #include "src/solver/OptimizationDirection.h" #include "src/storage/sparse/StateType.h" #include "src/storage/FlexibleSparseMatrix.h" #include "src/utility/constants.h" #include "src/utility/graph.h" #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/exceptions/InvalidArgumentException.h" #include "src/exceptions/InvalidPropertyException.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidSettingsException.h" #include "src/exceptions/NotImplementedException.h" #include "src/exceptions/UnexpectedException.h" #include "src/exceptions/NotSupportedException.h" namespace storm { namespace modelchecker { namespace region { template SparseMdpRegionModelChecker::SparseMdpRegionModelChecker(std::shared_ptr model) : AbstractSparseRegionModelChecker(model){ STORM_LOG_THROW(model->isOfType(storm::models::ModelType::Mdp), storm::exceptions::InvalidArgumentException, "Tried to create an mdp region model checker for a model that is not an mdp"); } template SparseMdpRegionModelChecker::~SparseMdpRegionModelChecker(){ //intentionally left empty } template bool SparseMdpRegionModelChecker::canHandle(storm::logic::Formula const& formula) const { //for simplicity we only support state formulas with eventually (e.g. P<0.5 [ F "target" ]) if (formula.isProbabilityOperatorFormula()) { storm::logic::ProbabilityOperatorFormula const& probabilityOperatorFormula = formula.asProbabilityOperatorFormula(); return probabilityOperatorFormula.hasBound() && this->canHandle(probabilityOperatorFormula.getSubformula()); //} else if (formula.isRewardOperatorFormula()) { // storm::logic::RewardOperatorFormula const& rewardOperatorFormula = formula.asRewardOperatorFormula(); // return rewardOperatorFormula.hasBound() && this->canHandle(rewardOperatorFormula.getSubformula()); } else if (formula.isEventuallyFormula()) { storm::logic::EventuallyFormula const& eventuallyFormula = formula.asEventuallyFormula(); if (eventuallyFormula.getSubformula().isPropositionalFormula()) { return true; } // } else if (formula.isReachabilityRewardFormula()) { // storm::logic::ReachabilityRewardFormula reachabilityRewardFormula = formula.asReachabilityRewardFormula(); // if (reachabilityRewardFormula.getSubformula().isPropositionalFormula()) { // return true; // } } STORM_LOG_DEBUG("Region Model Checker could not handle (sub)formula " << formula); return false; } template void SparseMdpRegionModelChecker::preprocess(std::shared_ptr& simpleModel, std::shared_ptr& simpleFormula, bool& isApproximationApplicable, boost::optional& constantResult){ STORM_LOG_DEBUG("Preprocessing for MDPs started."); STORM_LOG_THROW(this->getModel()->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::InvalidArgumentException, "Input model is required to have exactly one initial state."); storm::storage::BitVector maybeStates, targetStates; preprocessForProbabilities(maybeStates, targetStates, isApproximationApplicable, constantResult); if(constantResult && constantResult.get()>=storm::utility::zero()){ //The result is already known. Nothing else to do here return; } STORM_LOG_DEBUG("Elimination of deterministic states with constant outgoing transitions is happening now."); // Determine the set of states that is reachable from the initial state without jumping over a target state. storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(this->getModel()->getTransitionMatrix(), this->getModel()->getInitialStates(), maybeStates, targetStates); // Subtract from the maybe states the set of states that is not reachable (on a path from the initial to a target state). maybeStates &= reachableStates; // Create a vector for the probabilities to go to a target state in one step. std::vector oneStepProbabilities = this->getModel()->getTransitionMatrix().getConstrainedRowGroupSumVector(maybeStates, targetStates); // Determine the initial state of the sub-model. storm::storage::sparse::state_type initialState = *(this->getModel()->getInitialStates() % maybeStates).begin(); // We then build the submatrix that only has the transitions of the maybe states. storm::storage::SparseMatrix submatrix = this->getModel()->getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates); boost::optional> noStateRewards; // Eliminate all deterministic states with only constant outgoing transitions // Convert the reduced matrix to a more flexible format to be able to perform state elimination more easily. storm::storage::FlexibleSparseMatrix flexibleTransitions(submatrix); storm::storage::FlexibleSparseMatrix flexibleBackwardTransitions(submatrix.transpose(), true); // Create a bit vector that represents the current subsystem, i.e., states that we have not eliminated. storm::storage::BitVector subsystem(submatrix.getRowGroupCount(), true); //The states that we consider to eliminate storm::storage::BitVector considerToEliminate(submatrix.getRowGroupCount(), true); considerToEliminate.set(initialState, false); for (auto const& state : considerToEliminate) { bool eliminateThisState=true; if(submatrix.getRowGroupSize(state) == 1){ //state is deterministic. Check if outgoing transitions are constant for(auto const& entry : submatrix.getRowGroup(state)){ if(!storm::utility::isConstant(entry.getValue())){ eliminateThisState=false; break; } } if(!storm::utility::isConstant(oneStepProbabilities[submatrix.getRowGroupIndices()[state]])){ eliminateThisState=false; } } else { eliminateThisState = false; } if(eliminateThisState){ storm::storage::FlexibleSparseMatrix::eliminateState(flexibleTransitions, oneStepProbabilities, state, submatrix.getRowGroupIndices()[state], flexibleBackwardTransitions, noStateRewards); subsystem.set(state,false); } } STORM_LOG_DEBUG("Eliminated " << subsystem.size() - subsystem.getNumberOfSetBits() << " of " << subsystem.size() << " states that had constant outgoing transitions."); //Build the simple model STORM_LOG_DEBUG("Building the resulting simplified model."); //The matrix. The flexibleTransitions matrix might have empty rows where states have been eliminated. //The new matrix should not have such rows. We therefore leave them out, but we have to change the indices of the states accordingly. std::vector newStateIndexMap(flexibleTransitions.getNumberOfRows(), flexibleTransitions.getNumberOfRows()); //initialize with some illegal index storm::storage::sparse::state_type newStateIndex=0; for(auto const& state : subsystem){ newStateIndexMap[state]=newStateIndex; ++newStateIndex; } //We need to add a target state to which the oneStepProbabilities will lead as well as a sink state to which the "missing" probability will lead storm::storage::sparse::state_type numStates=newStateIndex+2; storm::storage::sparse::state_type targetState=numStates-2; storm::storage::sparse::state_type sinkState= numStates-1; //We can now fill in the data. storm::storage::SparseMatrixBuilder matrixBuilder(0, numStates, 0, true, true, numStates); std::size_t curRow = 0; for(auto oldRowGroup : subsystem){ matrixBuilder.newRowGroup(curRow); for (auto oldRow = submatrix.getRowGroupIndices()[oldRowGroup]; oldRow < submatrix.getRowGroupIndices()[oldRowGroup+1]; ++oldRow){ ParametricType missingProbability=storm::utility::region::getNewFunction(storm::utility::one()); //go through columns: for(auto& entry: flexibleTransitions.getRow(oldRow)){ STORM_LOG_THROW(newStateIndexMap[entry.getColumn()]!=flexibleTransitions.getNumberOfRows(), storm::exceptions::UnexpectedException, "There is a transition to a state that should have been eliminated."); missingProbability-=entry.getValue(); matrixBuilder.addNextValue(curRow,newStateIndexMap[entry.getColumn()], storm::utility::simplify(entry.getValue())); } //transition to target state if(!storm::utility::isZero(oneStepProbabilities[oldRow])){ missingProbability-=oneStepProbabilities[oldRow]; matrixBuilder.addNextValue(curRow, targetState, storm::utility::simplify(oneStepProbabilities[oldRow])); } //transition to sink state if(!storm::utility::isZero(storm::utility::simplify(missingProbability))){ matrixBuilder.addNextValue(curRow, sinkState, missingProbability); } ++curRow; } } //add self loops on the additional states (i.e., target and sink) matrixBuilder.newRowGroup(curRow); matrixBuilder.addNextValue(curRow, targetState, storm::utility::one()); ++curRow; matrixBuilder.newRowGroup(curRow); matrixBuilder.addNextValue(curRow, sinkState, storm::utility::one()); //Get a new labeling storm::models::sparse::StateLabeling labeling(numStates); storm::storage::BitVector initLabel(numStates, false); initLabel.set(newStateIndexMap[initialState], true); labeling.addLabel("init", std::move(initLabel)); storm::storage::BitVector targetLabel(numStates, false); targetLabel.set(targetState, true); labeling.addLabel("target", std::move(targetLabel)); storm::storage::BitVector sinkLabel(numStates, false); sinkLabel.set(sinkState, true); labeling.addLabel("sink", std::move(sinkLabel)); //Other ingredients std::unordered_map noRewardModels; boost::optional>> noChoiceLabeling; simpleModel = std::make_shared>(matrixBuilder.build(), std::move(labeling), std::move(noRewardModels), std::move(noChoiceLabeling)); //Get the simplified formula std::shared_ptr targetFormulaPtr(new storm::logic::AtomicLabelFormula("target")); std::shared_ptr eventuallyFormula(new storm::logic::EventuallyFormula(targetFormulaPtr)); simpleFormula = std::shared_ptr(new storm::logic::ProbabilityOperatorFormula(this->getSpecifiedFormula()->getComparisonType(), this->getSpecifiedFormulaBound(), eventuallyFormula)); } template void SparseMdpRegionModelChecker::preprocessForProbabilities(storm::storage::BitVector& maybeStates, storm::storage::BitVector& targetStates, bool& isApproximationApplicable, boost::optional& constantResult) { STORM_LOG_DEBUG("Preprocessing for Mdps and reachability probabilities invoked."); //Get Target States storm::modelchecker::SparsePropositionalModelChecker modelChecker(*(this->getModel())); std::unique_ptr targetStatesResultPtr = modelChecker.check( this->getSpecifiedFormula()->asProbabilityOperatorFormula().getSubformula().asEventuallyFormula().getSubformula() ); targetStates = std::move(targetStatesResultPtr->asExplicitQualitativeCheckResult().getTruthValuesVector()); //maybeStates: Compute the subset of states that have a probability of 0 or 1, respectively and reduce the considered states accordingly. std::pair statesWithProbability01; if (this->specifiedFormulaHasLowerBound()){ statesWithProbability01 = storm::utility::graph::performProb01Min(this->getModel()->getTransitionMatrix(), this->getModel()->getTransitionMatrix().getRowGroupIndices(), this->getModel()->getBackwardTransitions(), storm::storage::BitVector(this->getModel()->getNumberOfStates(),true), targetStates); } else { statesWithProbability01 = storm::utility::graph::performProb01Max(this->getModel()->getTransitionMatrix(), this->getModel()->getTransitionMatrix().getRowGroupIndices(), this->getModel()->getBackwardTransitions(), storm::storage::BitVector(this->getModel()->getNumberOfStates(),true), targetStates); } maybeStates = ~(statesWithProbability01.first | statesWithProbability01.second); // If the initial state is known to have either probability 0 or 1, we can directly set the reachProbFunction. storm::storage::sparse::state_type initialState = *(this->getModel()->getInitialStates().begin()); if (!maybeStates.get(initialState)) { STORM_LOG_WARN("The probability of the initial state is constant (zero or one)"); constantResult = statesWithProbability01.first.get(initialState) ? storm::utility::zero() : storm::utility::one(); isApproximationApplicable = true; return; //nothing else to do... } //extend target states targetStates=statesWithProbability01.second; //check if approximation is applicable and whether the result is constant isApproximationApplicable=true; bool isResultConstant=true; for (auto state=maybeStates.begin(); (state!=maybeStates.end()) && isApproximationApplicable; ++state) { for(auto const& entry : this->getModel()->getTransitionMatrix().getRowGroup(*state)){ if(!storm::utility::isConstant(entry.getValue())){ isResultConstant=false; if(!storm::utility::region::functionIsLinear(entry.getValue())){ isApproximationApplicable=false; break; } } } } if(isResultConstant){ STORM_LOG_WARN("For the given property, the reachability Value is constant, i.e., independent of the region"); constantResult = storm::utility::region::convertNumber(-1.0); //-1 denotes that the result is constant but not yet computed } } template bool SparseMdpRegionModelChecker::checkPoint(ParameterRegion& region, std::mapconst& point, bool favorViaFunction) { if(this->checkFormulaOnSamplingPoint(point)){ if (region.getCheckResult()!=RegionCheckResult::EXISTSSAT){ region.setSatPoint(point); if(region.getCheckResult()==RegionCheckResult::EXISTSVIOLATED){ region.setCheckResult(RegionCheckResult::EXISTSBOTH); return true; } region.setCheckResult(RegionCheckResult::EXISTSSAT); } } else{ if (region.getCheckResult()!=RegionCheckResult::EXISTSVIOLATED){ region.setViolatedPoint(point); if(region.getCheckResult()==RegionCheckResult::EXISTSSAT){ region.setCheckResult(RegionCheckResult::EXISTSBOTH); return true; } region.setCheckResult(RegionCheckResult::EXISTSVIOLATED); } } return false; } template bool SparseMdpRegionModelChecker::checkSmt(ParameterRegion& region) { STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "checkSmt invoked but smt solving has not been implemented for MDPs."); } #ifdef STORM_HAVE_CARL template class SparseMdpRegionModelChecker>, double>; #endif } // namespace region } // namespace modelchecker } // namespace storm