#include "storm/modelchecker/multiobjective/pcaa/RewardBoundedMdpPcaaWeightVectorChecker.h" #include "storm/adapters/RationalFunctionAdapter.h" #include "storm/environment/solver/MinMaxSolverEnvironment.h" #include "storm/environment/solver/NativeSolverEnvironment.h" #include "storm/exceptions/InvalidPropertyException.h" #include "storm/exceptions/InvalidOperationException.h" #include "storm/exceptions/IllegalArgumentException.h" #include "storm/exceptions/NotSupportedException.h" #include "storm/exceptions/UnexpectedException.h" #include "storm/exceptions/UncheckedRequirementException.h" #include "storm/logic/Formulas.h" #include "storm/models/sparse/Mdp.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/modelchecker/multiobjective/preprocessing/SparseMultiObjectiveRewardAnalysis.h" #include "storm/settings/SettingsManager.h" #include "storm/settings/modules/IOSettings.h" #include "storm/settings/modules/GeneralSettings.h" #include "storm/settings/modules/CoreSettings.h" #include "storm/solver/MinMaxLinearEquationSolver.h" #include "storm/solver/LinearEquationSolver.h" #include "storm/utility/ProgressMeasurement.h" #include "storm/utility/SignalHandler.h" #include "storm/io/export.h" #include "storm/utility/macros.h" #include "storm/utility/vector.h" namespace storm { namespace modelchecker { namespace multiobjective { template RewardBoundedMdpPcaaWeightVectorChecker::RewardBoundedMdpPcaaWeightVectorChecker(preprocessing::SparseMultiObjectivePreprocessorResult const& preprocessorResult) : PcaaWeightVectorChecker(preprocessorResult.objectives), swAll(true), rewardUnfolding(*preprocessorResult.preprocessedModel, preprocessorResult.objectives) { auto rewardAnalysis = preprocessing::SparseMultiObjectiveRewardAnalysis::analyze(preprocessorResult); STORM_LOG_THROW(rewardAnalysis.rewardFinitenessType == preprocessing::RewardFinitenessType::AllFinite, storm::exceptions::NotSupportedException, "There is a scheduler that yields infinite reward for one objective. This is not supported."); STORM_LOG_THROW(preprocessorResult.preprocessedModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "The model has multiple initial states."); // Update the objective bounds with what the reward unfolding can compute for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { this->objectives[objIndex].lowerResultBound = rewardUnfolding.getLowerObjectiveBound(objIndex); this->objectives[objIndex].upperResultBound = rewardUnfolding.getUpperObjectiveBound(objIndex); } numCheckedEpochs = 0; numChecks = 0; } template RewardBoundedMdpPcaaWeightVectorChecker::~RewardBoundedMdpPcaaWeightVectorChecker() { swAll.stop(); if (storm::settings::getModule().isShowStatisticsSet()) { STORM_PRINT_AND_LOG("--------------------------------------------------" << std::endl); STORM_PRINT_AND_LOG("Statistics:" << std::endl); STORM_PRINT_AND_LOG("--------------------------------------------------" << std::endl); STORM_PRINT_AND_LOG(" #checked weight vectors: " << numChecks << "." << std::endl); STORM_PRINT_AND_LOG(" #checked epochs overall: " << numCheckedEpochs << "." << std::endl); STORM_PRINT_AND_LOG("# checked epochs per weight vector: " << numCheckedEpochs / numChecks << "." << std::endl); STORM_PRINT_AND_LOG(" overall Time: " << swAll << "." << std::endl); STORM_PRINT_AND_LOG(" Epoch Model building time: " << swEpochModelBuild << "." << std::endl); STORM_PRINT_AND_LOG(" Epoch Model checking time: " << swEpochModelAnalysis << "." << std::endl); STORM_PRINT_AND_LOG("--------------------------------------------------" << std::endl); } } template void RewardBoundedMdpPcaaWeightVectorChecker::check(Environment const& env, std::vector const& weightVector) { ++numChecks; STORM_LOG_INFO("Analyzing weight vector #" << numChecks << ": " << storm::utility::vector::toString(weightVector)); // In case we want to export the cdf, we will collect the corresponding data std::vector> cdfData; auto initEpoch = rewardUnfolding.getStartEpoch(); auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch); EpochCheckingData cachedData; ValueType precision = rewardUnfolding.getRequiredEpochModelPrecision(initEpoch, storm::utility::convertNumber(storm::settings::getModule().getPrecision())); Environment newEnv = env; newEnv.solver().minMax().setPrecision(storm::utility::convertNumber(precision)); newEnv.solver().setLinearEquationSolverPrecision(storm::utility::convertNumber(precision)); storm::utility::ProgressMeasurement progress("epochs"); progress.setMaxCount(epochOrder.size()); progress.startNewMeasurement(0); uint64_t numCheckedEpochs = 0; for (auto const& epoch : epochOrder) { computeEpochSolution(newEnv, epoch, weightVector, cachedData); if (storm::settings::getModule().isExportCdfSet() && !rewardUnfolding.getEpochManager().hasBottomDimension(epoch)) { std::vector cdfEntry; for (uint64_t i = 0; i < rewardUnfolding.getEpochManager().getDimensionCount(); ++i) { uint64_t offset = rewardUnfolding.getDimension(i).boundType == helper::rewardbounded::DimensionBoundType::LowerBound ? 1 : 0; cdfEntry.push_back(storm::utility::convertNumber(rewardUnfolding.getEpochManager().getDimensionOfEpoch(epoch, i) + offset) * rewardUnfolding.getDimension(i).scalingFactor); } auto const& solution = rewardUnfolding.getInitialStateResult(epoch); auto solutionIt = solution.begin(); ++solutionIt; cdfEntry.insert(cdfEntry.end(), solutionIt, solution.end()); cdfData.push_back(std::move(cdfEntry)); } ++numCheckedEpochs; progress.updateProgress(numCheckedEpochs); if (storm::utility::resources::isTerminate()) { break; } } if (storm::settings::getModule().isExportCdfSet()) { std::vector headers; for (uint64_t i = 0; i < rewardUnfolding.getEpochManager().getDimensionCount(); ++i) { headers.push_back("obj" + std::to_string(rewardUnfolding.getDimension(i).objectiveIndex) + ":" + rewardUnfolding.getDimension(i).formula->toString()); } for (uint64_t i = 0; i < this->objectives.size(); ++i) { headers.push_back("obj" + std::to_string(i)); } storm::utility::exportDataToCSVFile(storm::settings::getModule().getExportCdfDirectory() + "cdf" + std::to_string(numChecks) + ".csv", cdfData, weightVector, headers); } auto solution = rewardUnfolding.getInitialStateResult(initEpoch); auto solutionIt = solution.begin(); ++solutionIt; underApproxResult = std::vector(solutionIt, solution.end()); overApproxResult = underApproxResult; } template void RewardBoundedMdpPcaaWeightVectorChecker::computeEpochSolution(Environment const& env, typename helper::rewardbounded::MultiDimensionalRewardUnfolding::Epoch const& epoch, std::vector const& weightVector, EpochCheckingData& cachedData) { ++numCheckedEpochs; swEpochModelBuild.start(); auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch); swEpochModelBuild.stop(); swEpochModelAnalysis.start(); std::vector::SolutionType> result; result.reserve(epochModel.epochInStates.getNumberOfSetBits()); uint64_t solutionSize = this->objectives.size() + 1; // If the epoch matrix is empty we do not need to solve linear equation systems if (epochModel.epochMatrix.getEntryCount() == 0) { std::vector weights = weightVector; for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { if (storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType())) { weights[objIndex] *= -storm::utility::one(); } } auto stepSolutionIt = epochModel.stepSolutions.begin(); auto stepChoiceIt = epochModel.stepChoices.begin(); for (auto state : epochModel.epochInStates) { // Obtain the best choice for this state according to the weighted combination of objectives ValueType bestValue; uint64_t bestChoice = std::numeric_limits::max(); auto bestChoiceStepSolutionIt = epochModel.stepSolutions.end(); uint64_t lastChoice = epochModel.epochMatrix.getRowGroupIndices()[state + 1]; bool firstChoice = true; for (uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state]; choice < lastChoice; ++choice) { ValueType choiceValue = storm::utility::zero(); // Obtain the (weighted) objective rewards for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { if (epochModel.objectiveRewardFilter[objIndex].get(choice)) { choiceValue += weights[objIndex] * epochModel.objectiveRewards[objIndex][choice]; } } // Obtain the step solution if this is a step choice while (*stepChoiceIt < choice) { ++stepChoiceIt; ++stepSolutionIt; } if (*stepChoiceIt == choice) { choiceValue += stepSolutionIt->front(); // Check if this choice is better if (firstChoice || choiceValue > bestValue) { bestValue = std::move(choiceValue); bestChoice = choice; bestChoiceStepSolutionIt = stepSolutionIt; } } else if (firstChoice || choiceValue > bestValue) { bestValue = std::move(choiceValue); bestChoice = choice; bestChoiceStepSolutionIt = epochModel.stepSolutions.end(); } firstChoice = false; } // Insert the solution w.r.t. this choice result.emplace_back(); result.back().reserve(solutionSize); result.back().push_back(std::move(bestValue)); if (bestChoiceStepSolutionIt != epochModel.stepSolutions.end()) { for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { if (epochModel.objectiveRewardFilter[objIndex].get(bestChoice)) { result.back().push_back((epochModel.objectiveRewards[objIndex][bestChoice] + (*bestChoiceStepSolutionIt)[objIndex + 1])); } else { result.back().push_back((*bestChoiceStepSolutionIt)[objIndex + 1]); } } } else { for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { if (epochModel.objectiveRewardFilter[objIndex].get(bestChoice)) { result.back().push_back((epochModel.objectiveRewards[objIndex][bestChoice])); } else { result.back().push_back(storm::utility::zero()); } } } } } else { updateCachedData(env, epochModel, cachedData, weightVector); // Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives assert(cachedData.bMinMax.capacity() >= epochModel.epochMatrix.getRowCount()); assert(cachedData.xMinMax.size() == epochModel.epochMatrix.getRowGroupCount()); cachedData.bMinMax.assign(epochModel.epochMatrix.getRowCount(), storm::utility::zero()); for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex]; if (!storm::utility::isZero(weight)) { std::vector const& objectiveReward = epochModel.objectiveRewards[objIndex]; for (auto choice : epochModel.objectiveRewardFilter[objIndex]) { cachedData.bMinMax[choice] += weight * objectiveReward[choice]; } } } auto stepSolutionIt = epochModel.stepSolutions.begin(); for (auto choice : epochModel.stepChoices) { cachedData.bMinMax[choice] += stepSolutionIt->front(); ++stepSolutionIt; } // Invoke the min max solver cachedData.minMaxSolver->solveEquations(env, cachedData.xMinMax, cachedData.bMinMax); for (auto state : epochModel.epochInStates) { result.emplace_back(); result.back().reserve(solutionSize); result.back().push_back(cachedData.xMinMax[state]); } // Check whether the linear equation solver needs to be updated auto const& choices = cachedData.minMaxSolver->getSchedulerChoices(); if (cachedData.schedulerChoices != choices) { std::vector choicesTmp = choices; cachedData.minMaxSolver->setInitialScheduler(std::move(choicesTmp)); cachedData.schedulerChoices = choices; storm::solver::GeneralLinearEquationSolverFactory linEqSolverFactory; bool needEquationSystem = linEqSolverFactory.getEquationProblemFormat(env) == storm::solver::LinearEquationSolverProblemFormat::EquationSystem; storm::storage::SparseMatrix subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, needEquationSystem); if (needEquationSystem) { subMatrix.convertToEquationSystem(); } cachedData.linEqSolver = linEqSolverFactory.create(env, std::move(subMatrix)); cachedData.linEqSolver->setCachingEnabled(true); } // Formulate for each objective the linear equation system induced by the performed choices assert(cachedData.bLinEq.size() == choices.size()); for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { auto const& obj = this->objectives[objIndex]; std::vector const& objectiveReward = epochModel.objectiveRewards[objIndex]; auto rowGroupIndexIt = epochModel.epochMatrix.getRowGroupIndices().begin(); auto choiceIt = choices.begin(); auto stepChoiceIt = epochModel.stepChoices.begin(); auto stepSolutionIt = epochModel.stepSolutions.begin(); std::vector& x = cachedData.xLinEq[objIndex]; auto xIt = x.begin(); for (auto& b_i : cachedData.bLinEq) { uint64_t i = *rowGroupIndexIt + *choiceIt; if (epochModel.objectiveRewardFilter[objIndex].get(i)) { b_i = objectiveReward[i]; } else { b_i = storm::utility::zero(); } while (*stepChoiceIt < i) { ++stepChoiceIt; ++stepSolutionIt; } if (i == *stepChoiceIt) { b_i += (*stepSolutionIt)[objIndex + 1]; ++stepChoiceIt; ++stepSolutionIt; } // We can already set x_i correctly if row i is empty. // Appearingly, some linear equation solvers struggle to converge otherwise. if (epochModel.epochMatrix.getRow(i).getNumberOfEntries() == 0) { *xIt = b_i; } ++xIt; ++rowGroupIndexIt; ++choiceIt; } assert(x.size() == choices.size()); auto req = cachedData.linEqSolver->getRequirements(env); cachedData.linEqSolver->clearBounds(); if (obj.lowerResultBound) { req.clearLowerBounds(); cachedData.linEqSolver->setLowerBound(*obj.lowerResultBound); } if (obj.upperResultBound) { cachedData.linEqSolver->setUpperBound(*obj.upperResultBound); req.clearUpperBounds(); } STORM_LOG_THROW(!req.hasEnabledCriticalRequirement(), storm::exceptions::UncheckedRequirementException, "Solver requirements " + req.getEnabledRequirementsAsString() + " not checked."); cachedData.linEqSolver->solveEquations(env, x, cachedData.bLinEq); auto resultIt = result.begin(); for (auto state : epochModel.epochInStates) { resultIt->push_back(x[state]); ++resultIt; } } } rewardUnfolding.setSolutionForCurrentEpoch(std::move(result)); swEpochModelAnalysis.stop(); } template void RewardBoundedMdpPcaaWeightVectorChecker::updateCachedData(Environment const& env, helper::rewardbounded::EpochModel const& epochModel, EpochCheckingData& cachedData, std::vector const& weightVector) { if (epochModel.epochMatrixChanged) { // Update the cached MinMaxSolver data cachedData.bMinMax.resize(epochModel.epochMatrix.getRowCount()); cachedData.xMinMax.assign(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero()); storm::solver::GeneralMinMaxLinearEquationSolverFactory minMaxSolverFactory; cachedData.minMaxSolver = minMaxSolverFactory.create(env, epochModel.epochMatrix); cachedData.minMaxSolver->setHasUniqueSolution(); cachedData.minMaxSolver->setHasNoEndComponents(); cachedData.minMaxSolver->setTrackScheduler(true); cachedData.minMaxSolver->setCachingEnabled(true); auto req = cachedData.minMaxSolver->getRequirements(env); boost::optional lowerBound = this->computeWeightedResultBound(true, weightVector, storm::storage::BitVector(weightVector.size(), true)); if (lowerBound) { cachedData.minMaxSolver->setLowerBound(lowerBound.get()); req.clearLowerBounds(); } boost::optional upperBound = this->computeWeightedResultBound(false, weightVector, storm::storage::BitVector(weightVector.size(), true)); if (upperBound) { cachedData.minMaxSolver->setUpperBound(upperBound.get()); req.clearUpperBounds(); } STORM_LOG_THROW(!req.hasEnabledCriticalRequirement(), storm::exceptions::UncheckedRequirementException, "Solver requirements " + req.getEnabledRequirementsAsString() + " not checked."); cachedData.minMaxSolver->setRequirementsChecked(true); cachedData.minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); // Clear the scheduler choices so that an update of the linEqSolver is enforced cachedData.schedulerChoices.clear(); cachedData.schedulerChoices.reserve(epochModel.epochMatrix.getRowGroupCount()); // Update data for linear equation solving cachedData.bLinEq.resize(epochModel.epochMatrix.getRowGroupCount()); cachedData.xLinEq.resize(this->objectives.size()); for (auto& x_o : cachedData.xLinEq) { x_o.assign(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero()); } } } template std::vector::ValueType> RewardBoundedMdpPcaaWeightVectorChecker::getUnderApproximationOfInitialStateResults() const { STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); return underApproxResult.get(); } template std::vector::ValueType> RewardBoundedMdpPcaaWeightVectorChecker::getOverApproximationOfInitialStateResults() const { STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); return overApproxResult.get(); } template class RewardBoundedMdpPcaaWeightVectorChecker>; #ifdef STORM_HAVE_CARL template class RewardBoundedMdpPcaaWeightVectorChecker>; #endif } } }