Browse Source

started on refactoring of code for parametric model simplifications

main
TimQu 8 years ago
parent
commit
fc70945aba
  1. 2
      src/storm/modelchecker/region/ApproximationModel.cpp
  2. 2
      src/storm/modelchecker/region/ApproximationModel.h
  3. 2
      src/storm/modelchecker/region/SamplingModel.cpp
  4. 2
      src/storm/modelchecker/region/SamplingModel.h
  5. 20
      src/storm/modelchecker/region/SparseDtmcRegionModelChecker.cpp
  6. 2
      src/storm/modelchecker/region/SparseDtmcRegionModelChecker.h
  7. 5
      src/storm/modelchecker/region/SparseMdpRegionModelChecker.cpp
  8. 2
      src/storm/modelchecker/region/SparseMdpRegionModelChecker.h
  9. 8
      src/storm/modelchecker/region/SparseRegionModelChecker.cpp
  10. 14
      src/storm/modelchecker/region/SparseRegionModelChecker.h
  11. 162
      src/storm/transformer/GoalStateMerger.h
  12. 72
      src/storm/transformer/SparseParametricDtmcSimplifier.cpp
  13. 29
      src/storm/transformer/SparseParametricDtmcSimplifier.h
  14. 159
      src/storm/transformer/SparseParametricModelSimplifier.cpp
  15. 69
      src/storm/transformer/SparseParametricModelSimplifier.h

2
src/storm/modelchecker/region/ApproximationModel.cpp

@ -23,7 +23,7 @@ namespace storm {
namespace region {
template<typename ParametricSparseModelType, typename ConstantType>
ApproximationModel<ParametricSparseModelType, ConstantType>::ApproximationModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula> formula) {
ApproximationModel<ParametricSparseModelType, ConstantType>::ApproximationModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula const> formula) {
//First some simple checks and initializations
this->typeOfParametricModel = parametricModel.getType();
if(formula->isProbabilityOperatorFormula()){

2
src/storm/modelchecker/region/ApproximationModel.h

@ -40,7 +40,7 @@ namespace storm {
* The (single) initial state should be disjoint from these states. (otherwise the result would be independent of the parameters, anyway)
* @note This will not check whether approximation is applicable
*/
ApproximationModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula> formula);
ApproximationModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula const> formula);
virtual ~ApproximationModel();
/*!

2
src/storm/modelchecker/region/SamplingModel.cpp

@ -31,7 +31,7 @@ namespace storm {
namespace region {
template<typename ParametricSparseModelType, typename ConstantType>
SamplingModel<ParametricSparseModelType, ConstantType>::SamplingModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula> formula) : modelInstantiator(parametricModel){
SamplingModel<ParametricSparseModelType, ConstantType>::SamplingModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula const> formula) : modelInstantiator(parametricModel){
//First some simple checks and initializations..
this->typeOfParametricModel = parametricModel.getType();
if(formula->isProbabilityOperatorFormula()){

2
src/storm/modelchecker/region/SamplingModel.h

@ -40,7 +40,7 @@ namespace storm {
* * "sink", labeled on states from which a target state can not be reached.
* The (single) initial state should be disjoint from these states. (otherwise the result would be independent of the parameters, anyway)
*/
SamplingModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula> formula);
SamplingModel(ParametricSparseModelType const& parametricModel, std::shared_ptr<storm::logic::OperatorFormula const> formula);
virtual ~SamplingModel();
/*!

20
src/storm/modelchecker/region/SparseDtmcRegionModelChecker.cpp

@ -31,6 +31,8 @@
#include "storm/exceptions/NotSupportedException.h"
#include "storm/logic/FragmentSpecification.h"
#include "storm/transformer/SparseParametricDtmcSimplifier.h"
namespace storm {
namespace modelchecker {
namespace region {
@ -72,7 +74,7 @@ namespace storm {
template<typename ParametricSparseModelType, typename ConstantType>
void SparseDtmcRegionModelChecker<ParametricSparseModelType, ConstantType>::preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel,
std::shared_ptr<storm::logic::OperatorFormula>& simpleFormula,
std::shared_ptr<storm::logic::OperatorFormula const>& simpleFormula,
bool& isApproximationApplicable,
boost::optional<ConstantType>& constantResult){
STORM_LOG_DEBUG("Preprocessing for DTMC started.");
@ -95,6 +97,17 @@ namespace storm {
//The result is already known. Nothing else to do here
return;
}
storm::transformer::SparseParametricDtmcSimplifier<ParametricSparseModelType> simplifier(*this->getModel());
if(!simplifier.simplify(*this->getSpecifiedFormula())) {
STORM_LOG_THROW(false, storm::exceptions::UnexpectedException, "Simplification was not possible");
}
simpleModel = simplifier.getSimplifiedModel();
STORM_LOG_THROW(simplifier.getSimplifiedFormula()->isOperatorFormula(), storm::exceptions::UnexpectedException, "Expected that the simplified formula is an Operator formula");
simpleFormula = std::dynamic_pointer_cast<storm::logic::OperatorFormula const>(simplifier.getSimplifiedFormula());
/*
STORM_LOG_DEBUG("Elimination of states with constant outgoing transitions is happening now.");
// Determine the set of states that is reachable from the initial state without jumping over a target state.
storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates(this->getModel()->getTransitionMatrix(), this->getModel()->getInitialStates(), maybeStates, targetStates);
@ -241,16 +254,17 @@ namespace storm {
std::shared_ptr<storm::logic::AtomicLabelFormula> targetFormulaPtr(new storm::logic::AtomicLabelFormula("target"));
if(this->isComputeRewards()){
std::shared_ptr<storm::logic::EventuallyFormula> eventuallyFormula(new storm::logic::EventuallyFormula(targetFormulaPtr, storm::logic::FormulaContext::Reward));
simpleFormula = std::shared_ptr<storm::logic::OperatorFormula>(new storm::logic::RewardOperatorFormula(eventuallyFormula, boost::none, storm::logic::OperatorInformation(boost::none, this->getSpecifiedFormula()->getBound())));
simpleFormula = std::shared_ptr<storm::logic::OperatorFormula const>(new storm::logic::RewardOperatorFormula(eventuallyFormula, boost::none, storm::logic::OperatorInformation(boost::none, this->getSpecifiedFormula()->getBound())));
} else {
std::shared_ptr<storm::logic::EventuallyFormula> eventuallyFormula(new storm::logic::EventuallyFormula(targetFormulaPtr));
simpleFormula = std::shared_ptr<storm::logic::OperatorFormula>(new storm::logic::ProbabilityOperatorFormula(eventuallyFormula, storm::logic::OperatorInformation(boost::none, this->getSpecifiedFormula()->getBound())));
simpleFormula = std::shared_ptr<storm::logic::OperatorFormula const>(new storm::logic::ProbabilityOperatorFormula(eventuallyFormula, storm::logic::OperatorInformation(boost::none, this->getSpecifiedFormula()->getBound())));
}
//Check if the reachability function needs to be computed
if((this->getSettings().getSmtMode()==storm::settings::modules::RegionSettings::SmtMode::FUNCTION) ||
(this->getSettings().getSampleMode()==storm::settings::modules::RegionSettings::SampleMode::EVALUATE)){
this->computeReachabilityFunction(*(this->getSimpleModel())->template as<storm::models::sparse::Dtmc<ParametricType>>());
}
*/
}
template<typename ParametricSparseModelType, typename ConstantType>

2
src/storm/modelchecker/region/SparseDtmcRegionModelChecker.h

@ -54,7 +54,7 @@ namespace storm {
*
* @note this->specifiedFormula and this->computeRewards has to be set accordingly before calling this function
*/
virtual void preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel, std::shared_ptr<storm::logic::OperatorFormula>& simpleFormula, bool& isApproximationApplicable, boost::optional<ConstantType>& constantResult);
virtual void preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel, std::shared_ptr<storm::logic::OperatorFormula const>& simpleFormula, bool& isApproximationApplicable, boost::optional<ConstantType>& constantResult);
private:
/*!

5
src/storm/modelchecker/region/SparseMdpRegionModelChecker.cpp

@ -72,7 +72,7 @@ namespace storm {
template<typename ParametricSparseModelType, typename ConstantType>
void SparseMdpRegionModelChecker<ParametricSparseModelType, ConstantType>::preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel,
std::shared_ptr<storm::logic::OperatorFormula>& simpleFormula,
std::shared_ptr<storm::logic::OperatorFormula const>& simpleFormula,
bool& isApproximationApplicable,
boost::optional<ConstantType>& constantResult){
STORM_LOG_DEBUG("Preprocessing for MDPs started.");
@ -104,6 +104,7 @@ namespace storm {
//The states that we consider to eliminate
storm::storage::BitVector considerToEliminate(submatrix.getRowGroupCount(), true);
considerToEliminate.set(initialState, false);
std::vector<uint64_t> statesToEliminate;
@ -197,7 +198,7 @@ namespace storm {
//Get the simplified formula
std::shared_ptr<storm::logic::AtomicLabelFormula> targetFormulaPtr(new storm::logic::AtomicLabelFormula("target"));
std::shared_ptr<storm::logic::EventuallyFormula> eventuallyFormula(new storm::logic::EventuallyFormula(targetFormulaPtr));
simpleFormula = std::shared_ptr<storm::logic::OperatorFormula>(new storm::logic::ProbabilityOperatorFormula(eventuallyFormula, storm::logic::OperatorInformation(boost::none, this->getSpecifiedFormula()->getBound())));
simpleFormula = std::shared_ptr<storm::logic::OperatorFormula const>(new storm::logic::ProbabilityOperatorFormula(eventuallyFormula, storm::logic::OperatorInformation(boost::none, this->getSpecifiedFormula()->getBound())));
}
template<typename ParametricSparseModelType, typename ConstantType>

2
src/storm/modelchecker/region/SparseMdpRegionModelChecker.h

@ -40,7 +40,7 @@ namespace storm {
*
* @note this->specifiedFormula and this->computeRewards has to be set accordingly before calling this function
*/
virtual void preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel, std::shared_ptr<storm::logic::OperatorFormula>& simpleFormula, bool& isApproximationApplicable, boost::optional<ConstantType>& constantResult);
virtual void preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel, std::shared_ptr<storm::logic::OperatorFormula const>& simpleFormula, bool& isApproximationApplicable, boost::optional<ConstantType>& constantResult);
private:
/*!

8
src/storm/modelchecker/region/SparseRegionModelChecker.cpp

@ -73,7 +73,7 @@ namespace storm {
}
template<typename ParametricSparseModelType, typename ConstantType>
std::shared_ptr<storm::logic::OperatorFormula> const& SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::getSpecifiedFormula() const {
std::shared_ptr<storm::logic::OperatorFormula const> const& SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::getSpecifiedFormula() const {
return this->specifiedFormula;
}
@ -103,7 +103,7 @@ namespace storm {
}
template<typename ParametricSparseModelType, typename ConstantType>
std::shared_ptr<storm::logic::OperatorFormula> const& SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::getSimpleFormula() const {
std::shared_ptr<storm::logic::OperatorFormula const> const& SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::getSimpleFormula() const {
return this->simpleFormula;
}
@ -192,7 +192,7 @@ namespace storm {
}
template<typename ParametricSparseModelType, typename ConstantType>
void SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::initializeApproximationModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula> formula) {
void SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::initializeApproximationModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula const> formula) {
std::chrono::high_resolution_clock::time_point timeInitApproxModelStart = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Initializing the Approximation Model...");
STORM_LOG_THROW(this->isApproximationApplicable, storm::exceptions::UnexpectedException, "Approximation model requested but approximation is not applicable");
@ -203,7 +203,7 @@ namespace storm {
}
template<typename ParametricSparseModelType, typename ConstantType>
void SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::initializeSamplingModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula> formula) {
void SparseRegionModelChecker<ParametricSparseModelType, ConstantType>::initializeSamplingModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula const> formula) {
STORM_LOG_DEBUG("Initializing the Sampling Model....");
std::chrono::high_resolution_clock::time_point timeInitSamplingModelStart = std::chrono::high_resolution_clock::now();
this->samplingModel=std::make_shared<SamplingModel<ParametricSparseModelType, ConstantType>>(model, formula);

14
src/storm/modelchecker/region/SparseRegionModelChecker.h

@ -150,7 +150,7 @@ namespace storm {
/*!
* Returns the formula that has been specified upon initialization of this
*/
std::shared_ptr<storm::logic::OperatorFormula> const& getSpecifiedFormula() const;
std::shared_ptr<storm::logic::OperatorFormula const> const& getSpecifiedFormula() const;
//SparseRegionModelCheckerSettings& getSettings();
SparseRegionModelCheckerSettings const& getSettings() const;
@ -165,7 +165,7 @@ namespace storm {
bool const& isComputeRewards() const;
bool isResultConstant() const;
std::shared_ptr<ParametricSparseModelType> const& getSimpleModel() const;
std::shared_ptr<storm::logic::OperatorFormula> const& getSimpleFormula() const;
std::shared_ptr<storm::logic::OperatorFormula const> const& getSimpleFormula() const;
/*!
* Makes the required preprocessing steps for the specified model and formula
@ -174,7 +174,7 @@ namespace storm {
* In the latter case, the result is already computed and set to the given parameter. (otherwise the parameter is not touched).
* @note this->specifiedFormula and this->computeRewards has to be set accordingly, before calling this function
*/
virtual void preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel, std::shared_ptr<storm::logic::OperatorFormula>& simpleFormula, bool& isApproximationApplicable, boost::optional<ConstantType>& constantResult) = 0;
virtual void preprocess(std::shared_ptr<ParametricSparseModelType>& simpleModel, std::shared_ptr<storm::logic::OperatorFormula const>& simpleFormula, bool& isApproximationApplicable, boost::optional<ConstantType>& constantResult) = 0;
/*!
* Instantiates the approximation model to compute bounds on the maximal/minimal reachability probability (or reachability reward).
@ -236,23 +236,23 @@ namespace storm {
*
* @note does not check whether approximation can be applied
*/
void initializeApproximationModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula> formula);
void initializeApproximationModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula const> formula);
/*!
* initializes the Sampling Model
*/
void initializeSamplingModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula> formula);
void initializeSamplingModel(ParametricSparseModelType const& model, std::shared_ptr<storm::logic::OperatorFormula const> formula);
// The model this model checker is supposed to analyze.
std::shared_ptr<ParametricSparseModelType> model;
//The currently specified formula
std::shared_ptr<storm::logic::OperatorFormula> specifiedFormula;
std::shared_ptr<storm::logic::OperatorFormula const> specifiedFormula;
//A flag that is true iff we are interested in rewards
bool computeRewards;
// the original model after states with constant transitions have been eliminated
std::shared_ptr<ParametricSparseModelType> simpleModel;
// a formula that can be checked on the simplified model
std::shared_ptr<storm::logic::OperatorFormula> simpleFormula;
std::shared_ptr<storm::logic::OperatorFormula const> simpleFormula;
// a flag that is true if approximation is applicable, i.e., there are only linear functions at transitions of the model
bool isApproximationApplicable;
// the model that is used to approximate the reachability values

162
src/storm/transformer/GoalStateMerger.h

@ -0,0 +1,162 @@
#pragma once
#include <limits>
#include <memory>
#include <boost/optional.hpp>
#include "storm/utility/constants.h"
#include "storm/utility/macros.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/exceptions/InvalidArgumentException.h"
namespace storm {
namespace transformer {
/*
* Merges the given target and sink states into a single state with a selfloop
*/
template <typename SparseModelType>
class GoalStateMerger {
public:
/* Computes a submodel of the specified model that only considers the states given by maybeStates as well as
* * one target state to which all transitions to a state selected by targetStates are redirected and
* * one sink state to which all transitions to a state selected by sinkStates are redirected.
* If there is no transition to either target or sink, the corresponding state will not be created.
*
* The two given bitvectors targetStates and sinkStates are modified such that they represent the corresponding state in the obtained submodel.
*
* Notes:
* * The resulting model will not have any rewardmodels, labels (other then "init") etc.
* * It is assumed that the given set of maybeStates can only be left via either a target or a sink state. Otherwise an exception is thrown.
* * It is assumed that maybeStates, targetStates, and sinkStates are all disjoint. Otherwise an exception is thrown.
*/
static std::shared_ptr<SparseModelType> mergeTargetAndSinkStates(SparseModelType const& model, storm::storage::BitVector const& maybeStates, storm::storage::BitVector& targetStates, storm::storage::BitVector& sinkStates) {
STORM_LOG_THROW(maybeStates.isDisjointFrom(targetStates) && targetStates.isDisjointFrom(sinkStates) && sinkStates.isDisjointFrom(maybeStates), storm::exceptions::InvalidArgumentException, "maybestates, targetstates, and sinkstates are assumed to be disjoint when creating the submodel. However, this is not the case.");
storm::storage::SparseMatrix<typename SparseModelType::ValueType> const& origMatrix = model.getTransitionMatrix();
// Get the number of rows, cols and entries that the resulting transition matrix will have.
uint_fast64_t resNumStates(maybeStates.getNumberOfSetBits()), resNumActions(0), resNumTransitions(0);
bool targetStateRequired = !model.getInitialStates().isDisjointFrom(targetStates);
bool sinkStateRequired = !model.getInitialStates().isDisjointFrom(targetStates);
for( auto state : maybeStates) {
resNumActions += origMatrix.getRowGroupSize(state);
bool hasTransitionToTarget(false), hasTransitionToSink(false);
auto const& endOfRowGroup = origMatrix.getRowGroupIndices()[state+1];
for (uint_fast64_t row = origMatrix.getRowGroupIndices()[state]; row < endOfRowGroup; ++row) {
for (auto const& entry : origMatrix.getRow(row)) {
if(maybeStates.get(entry.getColumn())) {
++resNumTransitions;
} else if (targetStates.get(entry.getColumn())) {
hasTransitionToTarget = true;
} else if (sinkStates.get(entry.getColumn())) {
hasTransitionToSink = true;
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "There is a transition originating from a maybestate that does not lead to a maybe-, target-, or sinkstate.");
}
}
if(hasTransitionToTarget) {
++resNumTransitions;
targetStateRequired = true;
}
if(hasTransitionToSink) {
++resNumTransitions;
sinkStateRequired = true;
}
}
}
// Get the index of the target/ sink state in the resulting model (if these states will exist)
uint_fast64_t targetState(std::numeric_limits<uint_fast64_t>::max()), sinkState(std::numeric_limits<uint_fast64_t>::max()); // init with some invalid state
if(targetStateRequired) {
targetState = resNumStates;
++resNumStates;
++resNumActions;
++resNumTransitions;
}
if(sinkStateRequired) {
sinkState = resNumStates;
++resNumStates;
++resNumActions;
++resNumTransitions;
}
// Get a Mapping that yields for each column in the old matrix the corresponding column in the new matrix
std::vector<uint_fast64_t> oldToNewIndexMap(maybeStates.size(), std::numeric_limits<uint_fast64_t>::max()); // init with some invalid state
uint_fast64_t newStateIndex = 0;
for (auto maybeState : maybeStates) {
oldToNewIndexMap[maybeState] = newStateIndex;
++newStateIndex;
}
// Build the transition matrix
storm::storage::SparseMatrixBuilder<typename SparseModelType::ValueType> builder(resNumActions, resNumStates, resNumTransitions, true, true, resNumStates);
uint_fast64_t currRow = 0;
for (auto state : maybeStates) {
builder.newRowGroup(currRow);
boost::optional<typename SparseModelType::ValueType> targetProbability, sinkProbability;
auto const& endOfRowGroup = origMatrix.getRowGroupIndices()[state+1];
for (uint_fast64_t row = origMatrix.getRowGroupIndices()[state]; row < endOfRowGroup; ++row) {
for (auto const& entry : origMatrix.getRow(row)) {
if(maybeStates.get(entry.getColumn())) {
builder.addNextValue(currRow, oldToNewIndexMap[entry.getColumn()], entry.getValue());
} else if (targetStates.get(entry.getColumn())) {
targetProbability = targetProbability.is_initialized() ? *targetProbability + entry.getValue() : entry.getValue();
} else if (sinkStates.get(entry.getColumn())) {
sinkProbability = sinkProbability.is_initialized() ? *sinkProbability + entry.getValue() : entry.getValue();
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "There is a transition originating from a maybestate that does not lead to a maybe-, target-, or sinkstate.");
}
}
if(targetProbability) {
builder.addNextValue(currRow, targetState, storm::utility::simplify(*targetProbability));
}
if(sinkProbability) {
builder.addNextValue(currRow, sinkState, storm::utility::simplify(*sinkProbability));
}
++currRow;
}
}
// Add the selfloops at target and sink
if(targetStateRequired) {
builder.newRowGroup(currRow);
builder.addNextValue(currRow, targetState, storm::utility::one<typename SparseModelType::ValueType>());
++currRow;
}
if(sinkStateRequired) {
builder.newRowGroup(currRow);
builder.addNextValue(currRow, sinkState, storm::utility::one<typename SparseModelType::ValueType>());
++currRow;
}
// Get the labeling for the initial states
storm::storage::BitVector initialStates = model.getInitialStates() % maybeStates;
initialStates.resize(resNumStates, false);
if(!model.getInitialStates().isDisjointFrom(targetStates)) {
initialStates.set(targetState, true);
}
if(!model.getInitialStates().isDisjointFrom(sinkStates)) {
initialStates.set(sinkState, true);
}
storm::models::sparse::StateLabeling labeling(resNumStates);
labeling.addLabel("init", std::move(initialStates));
// modify the given target and sink states
targetStates = storm::storage::BitVector(resNumStates, false);
if(targetStateRequired) {
targetStates.set(targetState, true);
}
sinkStates = storm::storage::BitVector(resNumStates, false);
if(sinkStateRequired) {
sinkStates.set(sinkState, true);
}
// Return the result
return std::make_shared<SparseModelType>(builder.build(), std::move(labeling));
}
};
}
}

72
src/storm/transformer/SparseParametricDtmcSimplifier.cpp

@ -0,0 +1,72 @@
#include "storm/transformer/SparseParametricDtmcSimplifier.h"
#include "storm/adapters/CarlAdapter.h"
#include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/transformer/GoalStateMerger.h"
#include "storm/utility/graph.h"
namespace storm {
namespace transformer {
template<typename SparseModelType>
SparseParametricDtmcSimplifier<SparseModelType>::SparseParametricDtmcSimplifier(SparseModelType const& model) : SparseParametricModelSimplifier<SparseModelType>(model) {
// intentionally left empty
}
template<typename SparseModelType>
bool SparseParametricDtmcSimplifier<SparseModelType>::simplifyForUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) {
// Get the prob0, prob1 and the maybeStates
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> propositionalChecker(this->originalModel);
if(!propositionalChecker.canHandle(formula.getSubformula().asUntilFormula().getLeftSubformula()) || !propositionalChecker.canHandle(formula.getSubformula().asUntilFormula().getRightSubformula())) {
STORM_LOG_DEBUG("Can not simplify when Until-formula has non-propositional subformula(s). Formula: " << formula);
return false;
}
storm::storage::BitVector phiStates = std::move(propositionalChecker.check(formula.getSubformula().asUntilFormula().getLeftSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector());
storm::storage::BitVector psiStates = std::move(propositionalChecker.check(formula.getSubformula().asUntilFormula().getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector());
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(this->originalModel.getBackwardTransitions(), phiStates, psiStates);
// Only consider the maybestates that are reachable from one initial state without hopping over a target (i.e., prob1) state
storm::storage::BitVector reachableGreater0States = storm::utility::graph::getReachableStates(this->originalModel.getTransitionMatrix(), this->originalModel.getInitialStates(), ~statesWithProbability01.first, statesWithProbability01.second);
storm::storage::BitVector maybeStates = reachableGreater0States & ~statesWithProbability01.second;
// obtain the resulting subsystem
this->simplifiedModel = storm::transformer::GoalStateMerger<SparseModelType>::mergeTargetAndSinkStates(this->originalModel, maybeStates, statesWithProbability01.second, statesWithProbability01.first);
this->simplifiedModel->getStateLabeling().addLabel("target", statesWithProbability01.second);
this->simplifiedModel->getStateLabeling().addLabel("sink", statesWithProbability01.first);
// obtain the simplified formula for the simplified model
auto labelFormula = std::make_shared<storm::logic::AtomicLabelFormula const> ("target");
auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula const>(labelFormula, storm::logic::FormulaContext::Probability);
this->simplifiedFormula = std::make_shared<storm::logic::ProbabilityOperatorFormula const>(eventuallyFormula, formula.getOperatorInformation());
// Eliminate all states for which all outgoing transitions are constant
this->simplifiedModel = this->eliminateConstantDeterministicStates(*this->simplifiedModel);
return true;
}
template<typename SparseModelType>
bool SparseParametricDtmcSimplifier<SparseModelType>::simplifyForBoundedUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
return false;
}
template<typename SparseModelType>
bool SparseParametricDtmcSimplifier<SparseModelType>::simplifyForReachabilityRewards(storm::logic::RewardOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
return false;
}
template<typename SparseModelType>
bool SparseParametricDtmcSimplifier<SparseModelType>::simplifyForCumulativeRewards(storm::logic::RewardOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
return false;
}
template class SparseParametricDtmcSimplifier<storm::models::sparse::Dtmc<storm::RationalFunction>>;
}
}

29
src/storm/transformer/SparseParametricDtmcSimplifier.h

@ -0,0 +1,29 @@
#pragma once
#include "storm/transformer/SparseParametricModelSimplifier.h"
namespace storm {
namespace transformer {
/*!
* This class performs different steps to simplify the given (parametric) model.
* Checking the obtained simplified formula on the simplified model yields the same result as checking the original formula on the original model (wrt. to the initial states of the two models)
* End Components of nondeterministic models are removed whenever this is valid for the corresponding formula. This allows us to apply, e.g., value iteration that does not start from the 0,...,0 vector.
*/
template<typename SparseModelType>
class SparseParametricDtmcSimplifier : public SparseParametricModelSimplifier<SparseModelType> {
public:
SparseParametricDtmcSimplifier(SparseModelType const& model);
protected:
// Perform the simplification for the corresponding formula type
virtual bool simplifyForUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) override;
virtual bool simplifyForBoundedUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) override;
virtual bool simplifyForReachabilityRewards(storm::logic::RewardOperatorFormula const& formula) override;
virtual bool simplifyForCumulativeRewards(storm::logic::RewardOperatorFormula const& formula) override;
};
}
}

159
src/storm/transformer/SparseParametricModelSimplifier.cpp

@ -0,0 +1,159 @@
#include <storm/exceptions/InvalidArgumentException.h>
#include "storm/transformer/SparseParametricModelSimplifier.h"
#include "storm/adapters/CarlAdapter.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/solver/stateelimination/PrioritizedStateEliminator.h"
#include "storm/storage/FlexibleSparseMatrix.h"
#include "storm/utility/vector.h"
#include "storm/exceptions/InvalidStateException.h"
#include "storm/exceptions/NotImplementedException.h"
namespace storm {
namespace transformer {
template<typename SparseModelType>
SparseParametricModelSimplifier<SparseModelType>::SparseParametricModelSimplifier(SparseModelType const& model) : originalModel(model) {
// intentionally left empty
}
template<typename SparseModelType>
bool SparseParametricModelSimplifier<SparseModelType>::simplify(storm::logic::Formula const& formula) {
// Make sure that there is no old result from a previous call
simplifiedModel = nullptr;
simplifiedFormula = nullptr;
if (formula.isProbabilityOperatorFormula()) {
storm::logic::ProbabilityOperatorFormula const& probOpForm = formula.asProbabilityOperatorFormula();
if (probOpForm.getSubformula().isUntilFormula()) {
return simplifyForUntilProbabilities(probOpForm);
} else if (probOpForm.getSubformula().isReachabilityProbabilityFormula()) {
return simplifyForReachabilityProbabilities(probOpForm);
} else if (probOpForm.getSubformula().isBoundedUntilFormula()) {
return simplifyForBoundedUntilProbabilities(probOpForm);
}
} else if (formula.isRewardOperatorFormula()) {
storm::logic::RewardOperatorFormula rewOpForm = formula.asRewardOperatorFormula();
if (rewOpForm.getSubformula().isReachabilityRewardFormula()) {
return simplifyForReachabilityRewards(rewOpForm);
} else if (rewOpForm.getSubformula().isCumulativeRewardFormula()) {
return simplifyForCumulativeRewards(rewOpForm);
}
}
// reaching this point means that the provided formula is not supported. Thus, no simplification is possible.
STORM_LOG_DEBUG("Simplification not possible because the formula is not suppoerted. Formula: " << formula);
return false;
}
template<typename SparseModelType>
std::shared_ptr<SparseModelType> SparseParametricModelSimplifier<SparseModelType>::getSimplifiedModel() const {
STORM_LOG_THROW(simplifiedModel, storm::exceptions::InvalidStateException, "Tried to get the simplified model but simplification was not invoked before.");
return simplifiedModel;
}
template<typename SparseModelType>
std::shared_ptr<storm::logic::Formula const> SparseParametricModelSimplifier<SparseModelType>::getSimplifiedFormula() const {
STORM_LOG_THROW(simplifiedFormula, storm::exceptions::InvalidStateException, "Tried to get the simplified formula but simplification was not invoked before.");
return simplifiedFormula;
}
template<typename SparseModelType>
bool SparseParametricModelSimplifier<SparseModelType>::simplifyForUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
STORM_LOG_DEBUG("Simplification not possible because the formula is not suppoerted. Formula: " << formula);
return false;
}
template<typename SparseModelType>
bool SparseParametricModelSimplifier<SparseModelType>::simplifyForReachabilityProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) {
// transform to until formula
auto untilFormula = std::make_shared<storm::logic::UntilFormula const>(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asEventuallyFormula().getSubformula().asSharedPointer());
return simplifyForUntilProbabilities(storm::logic::ProbabilityOperatorFormula(untilFormula,formula.getOperatorInformation()));
}
template<typename SparseModelType>
bool SparseParametricModelSimplifier<SparseModelType>::simplifyForBoundedUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
STORM_LOG_DEBUG("Simplification not possible because the formula is not suppoerted. Formula: " << formula);
return false;
}
template<typename SparseModelType>
bool SparseParametricModelSimplifier<SparseModelType>::simplifyForReachabilityRewards(storm::logic::RewardOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
STORM_LOG_DEBUG("Simplification not possible because the formula is not suppoerted. Formula: " << formula);
return false;
}
template<typename SparseModelType>
bool SparseParametricModelSimplifier<SparseModelType>::simplifyForCumulativeRewards(storm::logic::RewardOperatorFormula const& formula) {
// If this method was not overriden by any subclass, simplification is not possible
STORM_LOG_DEBUG("Simplification not possible because the formula is not suppoerted. Formula: " << formula);
return false;
}
template<typename SparseModelType>
std::shared_ptr<SparseModelType> SparseParametricModelSimplifier<SparseModelType>::eliminateConstantDeterministicStates(SparseModelType const& model) {
storm::storage::SparseMatrix<typename SparseModelType::ValueType> const& sparseMatrix = model.getTransitionMatrix();
// Get the states without any label
storm::storage::BitVector considerForElimination(model.getNumberOfStates(), false);
for(auto const& label : model.getStateLabeling().getLabels()) {
considerForElimination |= model.getStateLabeling().getStates(label);
}
considerForElimination.complement();
// get the state-based reward values (or the 0..0 vector if there are no rewards)
std::vector<typename SparseModelType::ValueType> stateValues;
if(model.hasUniqueRewardModel()) {
stateValues = model.getUniqueRewardModel().getTotalRewardVector(sparseMatrix);
} else {
STORM_LOG_THROW(!model.hasRewardModel(), storm::exceptions::InvalidArgumentException, "Invoked state elimination but there are multiple reward models defined");
stateValues = std::vector<typename SparseModelType::ValueType>(model.getNumberOfStates(), storm::utility::zero<typename SparseModelType::ValueType>());
}
// Find the states that are to be eliminated
std::vector<uint_fast64_t> statesToEliminate;
storm::storage::BitVector keptStates(sparseMatrix.getRowGroupCount(), true);
storm::storage::BitVector keptRows(sparseMatrix.getRowCount(), true);
for (auto state : considerForElimination) {
if (sparseMatrix.getRowGroupSize(state) == 1 && storm::utility::isConstant(stateValues[state])) {
bool hasOnlyConstEntries = true;
for (auto const& entry : sparseMatrix.getRowGroup(state)) {
if(!storm::utility::isConstant(entry.getColumn())) {
hasOnlyConstEntries = false;
break;
}
}
if (hasOnlyConstEntries) {
statesToEliminate.push_back(state);
keptStates.set(state, false);
keptRows.set(sparseMatrix.getRowGroupIndices()[state], false);
}
}
}
storm::storage::FlexibleSparseMatrix<typename SparseModelType::ValueType> flexibleMatrix(sparseMatrix);
storm::storage::FlexibleSparseMatrix<typename SparseModelType::ValueType> flexibleBackwardTransitions(sparseMatrix.transpose(true), true);
storm::solver::stateelimination::PrioritizedStateEliminator<typename SparseModelType::ValueType> stateEliminator(flexibleMatrix, flexibleBackwardTransitions, statesToEliminate, stateValues);
stateEliminator.eliminateAll();
flexibleMatrix.createSubmatrix(keptRows, keptStates);
stateValues = storm::utility::vector::filterVector(stateValues, keptRows);
std::unordered_map<std::string, typename SparseModelType::RewardModelType> rewardModels;
if(model.hasUniqueRewardModel()) {
rewardModels.insert(std::make_pair(model.getRewardModels().begin()->first, typename SparseModelType::RewardModelType(boost::none, stateValues)));
}
return std::make_shared<SparseModelType>(flexibleMatrix.createSparseMatrix(), model.getStateLabeling().getSubLabeling(keptStates), std::move(rewardModels));
}
template class SparseParametricModelSimplifier<storm::models::sparse::Dtmc<storm::RationalFunction>>;
template class SparseParametricModelSimplifier<storm::models::sparse::Mdp<storm::RationalFunction>>;
}
}

69
src/storm/transformer/SparseParametricModelSimplifier.h

@ -0,0 +1,69 @@
#pragma once
#include <memory>
#include <boost/optional.hpp>
#include <string>
#include "storm/logic/Formulas.h"
#include "storm/storage/BitVector.h"
namespace storm {
namespace transformer {
/*!
* This class performs different steps to simplify the given (parametric) model.
* Checking the obtained simplified formula on the simplified model yields the same result as checking the original formula on the original model (wrt. to the initial states of the two models)
* End Components of nondeterministic models are removed whenever this is valid for the corresponding formula. This allows us to apply, e.g., value iteration that does not start from the 0,...,0 vector.
*/
template<typename SparseModelType>
class SparseParametricModelSimplifier {
public:
SparseParametricModelSimplifier(SparseModelType const& model);
/*
* Invokes the simplification of the model w.r.t. the given formula.
* Returns true, iff simplification was successful
*/
bool simplify( storm::logic::Formula const& formula);
/*
* Retrieves the simplified model.
* Note that simplify(formula) needs to be called first and has to return true. Otherwise an exception is thrown
*/
std::shared_ptr<SparseModelType> getSimplifiedModel() const;
/*
* Retrieves the simplified formula.
* Note that simplify(formula) needs to be called first and has to return true. Otherwise an exception is thrown
*/
std::shared_ptr<storm::logic::Formula const> getSimplifiedFormula() const;
protected:
// Perform the simplification for the corresponding formula type
virtual bool simplifyForUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula);
virtual bool simplifyForReachabilityProbabilities(storm::logic::ProbabilityOperatorFormula const& formula);
virtual bool simplifyForBoundedUntilProbabilities(storm::logic::ProbabilityOperatorFormula const& formula);
virtual bool simplifyForReachabilityRewards(storm::logic::RewardOperatorFormula const& formula);
virtual bool simplifyForCumulativeRewards(storm::logic::RewardOperatorFormula const& formula);
/*!
* Eliminates all states that satisfy
* * there is only one enabled action (i.e., there is no nondeterministic choice at the state),
* * all outgoing transitions are constant,
* * there is no statelabel defined, and
* * (if applicable) the reward collected at the state is constant.
*
* Assumes that there is at most one reward model defined. Otherwise an exception is thrown.
*/
static std::shared_ptr<SparseModelType> eliminateConstantDeterministicStates(SparseModelType const& model);
SparseModelType const& originalModel;
std::shared_ptr<SparseModelType> simplifiedModel;
std::shared_ptr<storm::logic::Formula const> simplifiedFormula;
};
}
}
Loading…
Cancel
Save