Browse Source

Nondeterministic Infinite horizon: Split value getters into StateValueGetter and ActionValueGetters. Made VI code more general, so that they may also be used for Markov Automata.

tempestpy_adaptions
Tim Quatmann 4 years ago
parent
commit
fc66e01ed5
  1. 438
      src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.cpp
  2. 16
      src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h

438
src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.cpp

@ -31,36 +31,56 @@ namespace storm {
template <typename ValueType>
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLongRunAverageProbabilities(Environment const& env, storm::storage::BitVector const& psiStates) {
return computeLongRunAverageValues(env, [&psiStates] (uint64_t stateIndex, uint64_t) { return psiStates.get(stateIndex) ? storm::utility::one<ValueType>() : storm::utility::zero<ValueType>();});
return computeLongRunAverageValues(env,
[&psiStates] (uint64_t stateIndex) { return psiStates.get(stateIndex) ? storm::utility::one<ValueType>() : storm::utility::zero<ValueType>(); },
[] (uint64_t) { return storm::utility::zero<ValueType>(); }
);
}
template <typename ValueType>
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLongRunAverageRewards(Environment const& env, storm::models::sparse::StandardRewardModel<ValueType> const& rewardModel) {
if (_markovianStates) {
return computeLongRunAverageValues(env, [&] (uint64_t stateIndex, uint64_t globalChoiceIndex) {
if (rewardModel.hasStateRewards() && _markovianStates->get(stateIndex)) {
return rewardModel.getTotalStateActionReward(stateIndex, globalChoiceIndex, _transitionMatrix, (ValueType) (storm::utility::one<ValueType>() / (*_exitRates)[stateIndex]));
} else {
return rewardModel.getTotalStateActionReward(stateIndex, globalChoiceIndex, _transitionMatrix, storm::utility::zero<ValueType>());
}
});
std::function<ValueType(uint64_t stateIndex)> stateRewardsGetter;
if (rewardModel.hasStateRewards()) {
stateRewardsGetter = [&rewardModel] (uint64_t stateIndex) { return rewardModel.getStateReward(stateIndex); };
} else {
stateRewardsGetter = [] (uint64_t) { return storm::utility::zero<ValueType>(); };
}
std::function<ValueType(uint64_t globalChoiceIndex)> actionRewardsGetter;
if (rewardModel.hasStateActionRewards() || rewardModel.hasTransitionRewards()) {
if (rewardModel.hasTransitionRewards()) {
actionRewardsGetter = [&] (uint64_t globalChoiceIndex) { return rewardModel.getStateActionAndTransitionReward(globalChoiceIndex, this->_transitionMatrix); };
} else {
actionRewardsGetter = [&] (uint64_t globalChoiceIndex) { return rewardModel.getStateActionReward(globalChoiceIndex); };
}
} else {
return computeLongRunAverageValues(env, [&] (uint64_t stateIndex, uint64_t globalChoiceIndex) {
return rewardModel.getTotalStateActionReward(stateIndex, globalChoiceIndex, _transitionMatrix);
});
stateRewardsGetter = [] (uint64_t) { return storm::utility::zero<ValueType>(); };
}
return computeLongRunAverageValues(env, stateRewardsGetter, actionRewardsGetter);
}
template <typename ValueType>
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLongRunAverageValues(Environment const& env, std::vector<ValueType> const& combinedStateActionRewards) {
return computeLongRunAverageValues(env, [&combinedStateActionRewards] (uint64_t, uint64_t globalChoiceIndex) {
return combinedStateActionRewards[globalChoiceIndex];
});
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLongRunAverageValues(Environment const& env, std::vector<ValueType> const* stateValues, std::vector<ValueType> const* actionValues) {
std::function<ValueType(uint64_t stateIndex)> stateValuesGetter;
if (stateValues) {
stateValuesGetter = [&stateValues] (uint64_t stateIndex) { return (*stateValues)[stateIndex]; };
} else {
stateValuesGetter = [] (uint64_t) { return storm::utility::zero<ValueType>(); };
}
std::function<ValueType(uint64_t actionIndex)> actionValuesGetter;
if (actionValues) {
actionValuesGetter = [&actionValues] (uint64_t globalChoiceIndex) { return (*actionValues)[globalChoiceIndex]; };
} else {
actionValuesGetter = [] (uint64_t) { return storm::utility::zero<ValueType>(); };
}
return computeLongRunAverageValues(env, stateValuesGetter, actionValuesGetter);
}
template <typename ValueType>
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLongRunAverageValues(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter) {
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLongRunAverageValues(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateRewardsGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionRewardsGetter) {
// Prepare an environment for the underlying solvers
auto underlyingSolverEnvironment = env;
@ -86,7 +106,7 @@ namespace storm {
std::vector<ValueType> mecLraValues;
mecLraValues.reserve(mecDecomposition.size());
for (auto const& mec : mecDecomposition) {
mecLraValues.push_back(computeLraForMec(underlyingSolverEnvironment, combinedStateActionRewardsGetter, mec));
mecLraValues.push_back(computeLraForMec(underlyingSolverEnvironment, stateRewardsGetter, actionRewardsGetter, mec));
}
// Solve the resulting SSP where end components are collapsed into single auxiliary states
@ -129,36 +149,45 @@ namespace storm {
}
template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMec(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
bool SparseNondeterministicInfiniteHorizonHelper<ValueType>::isContinuousTime() const {
STORM_LOG_ASSERT((_markovianStates == nullptr) == (_exitRates == nullptr), "Inconsistent information given: Have Markovian states but no exit rates (or vice versa)." );
return _markovianStates != nullptr;
}
template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMec(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateRewardsGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
// FIXME: MA
// If the mec only consists of a single state, we compute the LRA value directly
if (++mec.begin() == mec.end()) {
if (mec.size() == 1) {
uint64_t state = mec.begin()->first;
auto choiceIt = mec.begin()->second.begin();
ValueType result = combinedStateActionRewardsGetter(state, *choiceIt);
uint64_t bestChoice = *choiceIt;
for (++choiceIt; choiceIt != mec.begin()->second.end(); ++choiceIt) {
ValueType choiceValue = combinedStateActionRewardsGetter(state, *choiceIt);
if (this->minimize()) {
if (result > choiceValue) {
result = std::move(choiceValue);
if (isContinuousTime()) {
// Singleton MECs have to consist of a Markovian state because of the non-Zenoness assumption. Then, there is just one possible choice.
STORM_LOG_THROW(_markovianStates->get(state), storm::exceptions::InvalidOperationException, "Markov Automaton has Zeno behavior. Computation of Long Run Average values not supported.");
STORM_LOG_ASSERT(mec.begin()->second.size() == 1, "Markovian state has Nondeterministic behavior.");
if (isProduceSchedulerSet()) {
_producedOptimalChoices.get()[state] = 0;
}
return stateRewardsGetter(state) + (*_exitRates)[state] * actionRewardsGetter(*choiceIt);
} else {
// Find the choice with the highest/lowest reward
ValueType bestValue = actionRewardsGetter(*choiceIt);
uint64_t bestChoice = *choiceIt;
for (++choiceIt; choiceIt != mec.begin()->second.end(); ++choiceIt) {
ValueType currentValue = actionRewardsGetter(*choiceIt);
if ((this->minimize() && currentValue < bestValue) || (this->maximize() && currentValue > bestValue)) {
bestValue = std::move(currentValue);
bestChoice = *choiceIt;
}
} else {
if (result < choiceValue) {
result = std::move(choiceValue);
bestChoice = *choiceIt;
}
}
if (isProduceSchedulerSet()) {
_producedOptimalChoices.get()[state] = bestChoice - _transitionMatrix.getRowGroupIndices()[state];
}
return bestValue + stateRewardsGetter(state);
}
if (isProduceSchedulerSet()) {
_producedOptimalChoices.get()[state] = bestChoice - _transitionMatrix.getRowGroupIndices()[state];
}
return result;
}
// Solve MEC with the method specified in the settings
// Solve nontrivial MEC with the method specified in the settings
storm::solver::LraMethod method = env.solver().lra().getNondetLraMethod();
if ((storm::NumberTraits<ValueType>::IsExact || env.solver().isForceExact()) && env.solver().lra().isNondetLraMethodSetFromDefault() && method != storm::solver::LraMethod::LinearProgramming) {
STORM_LOG_INFO("Selecting 'LP' as the solution technique for long-run properties to guarantee exact results. If you want to override this, please explicitly specify a different LRA method.");
@ -169,144 +198,281 @@ namespace storm {
}
STORM_LOG_ERROR_COND(!isProduceSchedulerSet() || method == storm::solver::LraMethod::ValueIteration, "Scheduler generation not supported for the chosen LRA method. Try value-iteration.");
if (method == storm::solver::LraMethod::LinearProgramming) {
return computeLraForMecLp(env, combinedStateActionRewardsGetter, mec);
return computeLraForMecLp(env, stateRewardsGetter, actionRewardsGetter, mec);
} else if (method == storm::solver::LraMethod::ValueIteration) {
return computeLraForMecVi(env, combinedStateActionRewardsGetter, mec);
return computeLraForMecVi(env, stateRewardsGetter, actionRewardsGetter, mec);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Unsupported technique.");
}
}
/*!
* Abstract helper class that performs a single iteration of the value iteration method
*/
template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMecVi(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
// Initialize data about the mec
storm::storage::BitVector mecStates(_transitionMatrix.getRowGroupCount(), false);
storm::storage::BitVector mecChoices(_transitionMatrix.getRowCount(), false);
for (auto const& stateChoicesPair : mec) {
mecStates.set(stateChoicesPair.first);
for (auto const& choice : stateChoicesPair.second) {
mecChoices.set(choice);
class LraViHelper {
public:
LraViHelper(storm::storage::MaximalEndComponent const& mec, storm::storage::SparseMatrix<ValueType> const& transitionMatrix) : _mec(mec), _transitionMatrix(transitionMatrix) {
// Intentionally left empty
}
virtual ~LraViHelper() = default;
/*!
* performs a single iteration step.
* If a choices vector is given, the optimal choices will be inserted at the appropriate states.
* Note that these choices will be inserted w.r.t. the original model states/choices, i.e. the size of the vector should match the state-count of the input model
* @return the current estimate of the LRA value
*/
virtual void iterate(Environment const& env, storm::solver::OptimizationDirection const& dir, std::vector<uint64_t>* choices = nullptr) = 0;
struct ConvergenceCheckResult {
bool isPrecisionAchieved;
ValueType currentValue;
};
/*!
* Checks whether the curently computed value achieves the desired precision
*/
virtual ConvergenceCheckResult checkConvergence(bool relative, ValueType precision) = 0;
/*!
* Must be called between two calls of iterate.
*/
virtual void prepareNextIteration() = 0;
protected:
/*!
*
* @param xPrevious the 'old' values
* @param xCurrent the 'new' values
* @param threshold the threshold
* @param relative whether the relative difference should be considered
* @return The first component is true if the (relative) difference between the maximal and the minimal entry-wise change of the two value vectors is below or equal to the provided threshold.
* In this case, the second component is the average of the maximal and the minimal change.
* If the threshold is exceeded, the computation is aborted early and the second component is only an approximation of the averages.
*/
std::pair<bool, ValueType> checkMinMaxDiffBelowThreshold(std::vector<ValueType> const& xPrevious, std::vector<ValueType> const& xCurrent, ValueType const& threshold, bool relative) const {
STORM_LOG_ASSERT(xPrevious.size() == xCurrent.size(), "Unexpected Dimension Mismatch");
STORM_LOG_ASSERT(threshold > storm::utility::zero<ValueType>(), "Did not expect a non-positive threshold.");
auto x1It = xPrevious.begin();
auto x1Ite = xPrevious.end();
auto x2It = xCurrent.begin();
ValueType maxDiff = (*x2It - *x1It);
ValueType minDiff = maxDiff;
bool result = true;
// The difference between maxDiff and minDiff is zero at this point. Thus, it doesn't make sense to check the threshold now.
for (++x1It, ++x2It; x1It != x1Ite; ++x1It, ++x2It) {
ValueType diff = (*x2It - *x1It);
// Potentially update maxDiff or minDiff
bool skipCheck = false;
if (maxDiff < diff) {
maxDiff = diff;
} else if (minDiff > diff) {
minDiff = diff;
} else {
skipCheck = true;
}
// Check convergence
if (!skipCheck && (maxDiff - minDiff) > (relative ? (threshold * minDiff) : threshold)) {
result = false;
break;
}
}
ValueType avgDiff = (maxDiff + minDiff) / (storm::utility::convertNumber<ValueType>(2.0));
return {result, avgDiff};
}
boost::container::flat_map<uint64_t, uint64_t> toSubModelStateMapping;
uint64_t currState = 0;
toSubModelStateMapping.reserve(mecStates.getNumberOfSetBits());
for (auto const& mecState : mecStates) {
toSubModelStateMapping.insert(std::pair<uint64_t, uint64_t>(mecState, currState));
++currState;
}
// Get a transition matrix that only considers the states and choices within the MEC
storm::storage::SparseMatrixBuilder<ValueType> mecTransitionBuilder(mecChoices.getNumberOfSetBits(), mecStates.getNumberOfSetBits(), 0, true, true, mecStates.getNumberOfSetBits());
std::vector<ValueType> choiceValues;
choiceValues.reserve(mecChoices.getNumberOfSetBits());
uint64_t currRow = 0;
ValueType selfLoopProb = storm::utility::convertNumber<ValueType>(env.solver().lra().getAperiodicFactor());
ValueType scalingFactor = storm::utility::one<ValueType>() - selfLoopProb;
for (auto const& mecState : mecStates) {
mecTransitionBuilder.newRowGroup(currRow);
uint64_t groupStart = _transitionMatrix.getRowGroupIndices()[mecState];
uint64_t groupEnd = _transitionMatrix.getRowGroupIndices()[mecState + 1];
for (uint64_t choice = mecChoices.getNextSetIndex(groupStart); choice < groupEnd; choice = mecChoices.getNextSetIndex(choice + 1)) {
bool insertedDiagElement = false;
for (auto const& entry : _transitionMatrix.getRow(choice)) {
uint64_t column = toSubModelStateMapping[entry.getColumn()];
if (!insertedDiagElement && entry.getColumn() > mecState) {
mecTransitionBuilder.addNextValue(currRow, toSubModelStateMapping[mecState], selfLoopProb);
insertedDiagElement = true;
storm::storage::MaximalEndComponent const& _mec;
storm::storage::SparseMatrix<ValueType> const& _transitionMatrix;
};
/*!
* Abstract helper class that performs a single iteration of the value iteration method
* @see Ashok et al.: Value Iteration for Long-Run Average Reward in Markov Decision Processes (CAV'17), https://doi.org/10.1007/978-3-319-63387-9_10
*/
template <typename ValueType>
class MdpLraViHelper : public LraViHelper<ValueType> {
public:
MdpLraViHelper(storm::storage::MaximalEndComponent const& mec, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::function<ValueType(uint64_t stateIndex)> const& stateRewardsGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionRewardsGetter, ValueType const& aperiodicFactor) : LraViHelper<ValueType>(mec, transitionMatrix), _x1(mec.size(), storm::utility::zero<ValueType>()), _x2(_x1), _x1IsCurrent(true) {
// We add a selfloop to each state (which is necessary for convergence)
// Very roughly, this selfloop avoids that the values can flip around like this: [1, 0] -> [0, 1] -> [1, 0] -> ...
ValueType selfLoopProb = aperiodicFactor;
// Introducing the selfloop also requires the rewards to be scaled by the following factor.
_scalingFactor = storm::utility::one<ValueType>() - selfLoopProb;
uint64_t numMecStates = this->_mec.size();
boost::container::flat_map<uint64_t, uint64_t> toSubModelStateMapping;
toSubModelStateMapping.reserve(this->_mec.size());
uint64_t currState = 0;
uint64_t numMecChoices = 0;
for (auto const& stateChoices : this->_mec) {
toSubModelStateMapping.insert(std::pair<uint64_t, uint64_t>(stateChoices.first, currState));
++currState;
numMecChoices += stateChoices.second.size();
}
assert(currState == numMecStates);
// Get a transition matrix that only considers the states and choices within the MEC
storm::storage::SparseMatrixBuilder<ValueType> mecTransitionBuilder(numMecChoices, numMecStates, 0, true, true, numMecStates);
_choiceValues.reserve(numMecChoices);
uint64_t currRow = 0;
for (auto const& stateChoices : this->_mec) {
auto const& mecState = stateChoices.first;
auto const& mecChoices = stateChoices.second;
mecTransitionBuilder.newRowGroup(currRow);
for (auto const& choice : mecChoices) {
bool insertedDiagElement = false;
for (auto const& entry : this->_transitionMatrix.getRow(choice)) {
uint64_t column = toSubModelStateMapping[entry.getColumn()];
if (!insertedDiagElement && entry.getColumn() > mecState) {
mecTransitionBuilder.addNextValue(currRow, toSubModelStateMapping[mecState], selfLoopProb);
insertedDiagElement = true;
}
if (!insertedDiagElement && entry.getColumn() == mecState) {
mecTransitionBuilder.addNextValue(currRow, column, selfLoopProb + _scalingFactor * entry.getValue());
insertedDiagElement = true;
} else {
mecTransitionBuilder.addNextValue(currRow, column, _scalingFactor * entry.getValue());
}
}
if (!insertedDiagElement && entry.getColumn() == mecState) {
mecTransitionBuilder.addNextValue(currRow, column, selfLoopProb + scalingFactor * entry.getValue());
insertedDiagElement = true;
} else {
mecTransitionBuilder.addNextValue(currRow, column, scalingFactor * entry.getValue());
if (!insertedDiagElement) {
mecTransitionBuilder.addNextValue(currRow, toSubModelStateMapping[mecState], selfLoopProb);
}
// Compute the rewards obtained for this choice
_choiceValues.push_back(_scalingFactor * (stateRewardsGetter(mecState) + actionRewardsGetter(choice)));
++currRow;
}
if (!insertedDiagElement) {
mecTransitionBuilder.addNextValue(currRow, toSubModelStateMapping[mecState], selfLoopProb);
}
_mecTransitions = mecTransitionBuilder.build();
STORM_LOG_ASSERT(_mecTransitions.isProbabilistic(), "The MEC-Matrix is not probabilistic.");
STORM_LOG_ASSERT(_mecTransitions.getRowGroupCount() == _x1.size(), "Unexpected size mismatch for created matrix.");
STORM_LOG_ASSERT(_x1.size() == _x2.size(), "Unexpected size mismatch for created matrix.");
}
virtual void iterate(Environment const& env, storm::solver::OptimizationDirection const& dir, std::vector<uint64_t>* choices = nullptr) override {
// Initialize a multipler if it does not exist, yet
if (!_multiplier) {
_multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, _mecTransitions);
}
if (choices == nullptr) {
// Perform a simple matrix-vector multiplication
_multiplier->multiplyAndReduce(env, dir, xCurrent(), &_choiceValues, xPrevious());
} else {
// Perform a simple matrix-vector multiplication but also keep track of the choices within the _mecTransitions
std::vector<uint64_t> mecChoices(_mecTransitions.getRowGroupCount());
_multiplier->multiplyAndReduce(env, dir, xCurrent(), &_choiceValues, xPrevious(), &mecChoices);
// Transform the local choices (within this mec) to global indices
uint64_t mecState = 0;
for (auto const& stateChoices : this->_mec) {
uint64_t mecChoice = mecChoices[mecState];
STORM_LOG_ASSERT(mecChoice < stateChoices.second.size(), "The selected choice does not seem to exist.");
uint64_t globalChoiceIndex = *(stateChoices.second.begin() + mecChoice);
(*choices)[stateChoices.first] = globalChoiceIndex - this->_transitionMatrix.getRowGroupIndices()[stateChoices.first];
++mecState;
}
// Compute the rewards obtained for this choice
choiceValues.push_back(scalingFactor * combinedStateActionRewardsGetter(mecState, choice));
++currRow;
}
// Swap current and previous x vectors
_x1IsCurrent = !_x1IsCurrent;
}
auto mecTransitions = mecTransitionBuilder.build();
STORM_LOG_ASSERT(mecTransitions.isProbabilistic(), "The MEC-Matrix is not probabilistic.");
// start the iterations
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().lra().getPrecision()) / scalingFactor;
bool relative = env.solver().lra().getRelativeTerminationCriterion();
std::vector<ValueType> x(mecTransitions.getRowGroupCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> xPrime = x;
auto dir = this->getOptimizationDirection();
virtual typename LraViHelper<ValueType>::ConvergenceCheckResult checkConvergence(bool relative, ValueType precision) override {
typename LraViHelper<ValueType>::ConvergenceCheckResult res;
std::tie(res.isPrecisionAchieved, res.currentValue) = this->checkMinMaxDiffBelowThreshold(xPrevious(), xCurrent(), precision, relative);
res.currentValue /= _scalingFactor; // "Undo" the scaling of the rewards
return res;
}
auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, mecTransitions);
ValueType maxDiff, minDiff;
virtual void prepareNextIteration() override {
// To avoid large (and numerically unstable) x-values, we substract a reference value.
ValueType referenceValue = xCurrent().front();
storm::utility::vector::applyPointwise<ValueType, ValueType>(xCurrent(), xCurrent(), [&referenceValue] (ValueType const& x_i) -> ValueType { return x_i - referenceValue; });
}
uint64_t iter = 0;
private:
std::vector<ValueType>& xCurrent() {
return _x1IsCurrent ? _x1 : _x2;
}
std::vector<ValueType>& xPrevious() {
return _x1IsCurrent ? _x2 : _x1;
}
storm::storage::SparseMatrix<ValueType> _mecTransitions;
std::vector<ValueType> _x1, _x2, _choiceValues;
bool _x1IsCurrent;
std::unique_ptr<storm::solver::Multiplier<ValueType>> _multiplier;
ValueType _scalingFactor;
};
template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMecVi(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateRewardsGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
// Collect some parameters of the computation.
ValueType aperiodicFactor = storm::utility::convertNumber<ValueType>(env.solver().lra().getAperiodicFactor());
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().lra().getPrecision()) / aperiodicFactor;
bool relative = env.solver().lra().getRelativeTerminationCriterion();
boost::optional<uint64_t> maxIter;
if (env.solver().lra().isMaximalIterationCountSet()) {
maxIter = env.solver().lra().getMaximalIterationCount();
}
auto dir = this->getOptimizationDirection();
// Create an object for the iterations
std::shared_ptr<LraViHelper<ValueType>> iterationHelper;
if (isContinuousTime()) {
// TODO
} else {
iterationHelper = std::make_shared<MdpLraViHelper<ValueType>>(mec, _transitionMatrix, stateRewardsGetter, actionRewardsGetter, aperiodicFactor);
}
// start the iterations
ValueType result = storm::utility::zero<ValueType>();
uint64_t iter = 0;
while (!maxIter.is_initialized() || iter < maxIter.get()) {
++iter;
// Compute the obtained values for the next step
multiplier->multiplyAndReduce(env, dir, x, &choiceValues, x);
// update xPrime and check for convergence
// to avoid large (and numerically unstable) x-values, we substract a reference value.
auto xIt = x.begin();
auto xPrimeIt = xPrime.begin();
ValueType refVal = *xIt;
maxDiff = *xIt - *xPrimeIt;
minDiff = maxDiff;
*xIt -= refVal;
*xPrimeIt = *xIt;
for (++xIt, ++xPrimeIt; xIt != x.end(); ++xIt, ++xPrimeIt) {
ValueType diff = *xIt - *xPrimeIt;
maxDiff = std::max(maxDiff, diff);
minDiff = std::min(minDiff, diff);
*xIt -= refVal;
*xPrimeIt = *xIt;
}
if ((maxDiff - minDiff) <= (relative ? (precision * minDiff) : precision)) {
iterationHelper->iterate(env, dir);
// Check if we are done
auto convergenceCheckResult = iterationHelper->checkConvergence(relative, precision);
result = convergenceCheckResult.currentValue;
if (convergenceCheckResult.isPrecisionAchieved) {
break;
}
if (storm::utility::resources::isTerminate()) {
break;
}
iterationHelper->prepareNextIteration();
}
if (maxIter.is_initialized() && iter == maxIter.get()) {
STORM_LOG_WARN("LRA computation did not converge within " << iter << " iterations.");
} else if (storm::utility::resources::isTerminate()) {
STORM_LOG_WARN("LRA computation aborted after " << iter << " iterations.");
} else {
STORM_LOG_TRACE("LRA computation converged after " << iter << " iterations.");
}
if (isProduceSchedulerSet()) {
std::vector<uint_fast64_t> localMecChoices(mecTransitions.getRowGroupCount(), 0);
multiplier->multiplyAndReduce(env, dir, x, &choiceValues, x, &localMecChoices);
auto localMecChoiceIt = localMecChoices.begin();
for (auto const& mecState : mecStates) {
// Get the choice index of the selected mec choice with respect to the global transition matrix.
uint_fast64_t globalChoice = mecChoices.getNextSetIndex(_transitionMatrix.getRowGroupIndices()[mecState]);
for (uint_fast64_t i = 0; i < *localMecChoiceIt; ++i) {
globalChoice = mecChoices.getNextSetIndex(globalChoice + 1);
}
STORM_LOG_ASSERT(globalChoice < _transitionMatrix.getRowGroupIndices()[mecState + 1], "Invalid global choice for mec state.");
_producedOptimalChoices.get()[mecState] = globalChoice - _transitionMatrix.getRowGroupIndices()[mecState];
++localMecChoiceIt;
}
// We will be doing one more iteration step and track scheduler choices this time.
iterationHelper->prepareNextIteration();
iterationHelper->iterate(env, dir, &_producedOptimalChoices.get());
}
return (maxDiff + minDiff) / (storm::utility::convertNumber<ValueType>(2.0) * scalingFactor);
return result;
}
template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMecLp(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMecLp(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateRewardsGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
std::shared_ptr<storm::solver::LpSolver<ValueType>> solver = storm::utility::solver::getLpSolver<ValueType>("LRA for MEC");
solver->setOptimizationDirection(invert(this->getOptimizationDirection()));
@ -330,7 +496,7 @@ namespace storm {
for (auto element : _transitionMatrix.getRow(choice)) {
constraint = constraint + stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue());
}
constraint = solver->getConstant(combinedStateActionRewardsGetter(state, choice)) + constraint;
constraint = solver->getConstant(stateRewardsGetter(state) + actionRewardsGetter(choice)) + constraint;
if (this->minimize()) {
constraint = stateToVariableMap.at(state) <= constraint;

16
src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h

@ -44,13 +44,13 @@ namespace storm {
* Computes the long run average value given the provided action-based rewards
* @return a value for each state
*/
std::vector<ValueType> computeLongRunAverageValues(Environment const& env, std::vector<ValueType> const& combinedStateActionRewards);
std::vector<ValueType> computeLongRunAverageValues(Environment const& env, std::vector<ValueType> const* stateValues = nullptr, std::vector<ValueType> const* actionValues = nullptr);
/*!
* Computes the long run average value given the provided state-action-based rewards
* @return a value for each state
*/
std::vector<ValueType> computeLongRunAverageValues(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter);
std::vector<ValueType> computeLongRunAverageValues(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateValuesGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionValuesGetter);
/*!
* Sets whether an optimal scheduler shall be constructed during the computation
@ -81,21 +81,27 @@ namespace storm {
storm::storage::Scheduler<ValueType> extractScheduler() const;
protected:
/*!
* @return true iff this is a computation on a continuous time model (i.e. MA)
*/
bool isContinuousTime() const;
/*!
* @pre if scheduler production is enabled, the _producedOptimalChoices vector should be initialized and sufficiently large
* @return the (unique) optimal LRA value for the given mec.
* @post _producedOptimalChoices contains choices for the states of the given MEC which yield the returned LRA value.
*/
ValueType computeLraForMec(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter, storm::storage::MaximalEndComponent const& mec);
ValueType computeLraForMec(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateValuesGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec);
/*!
* As computeLraForMec but uses value iteration as a solution method (independent of what is set in env)
*/
ValueType computeLraForMecVi(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter, storm::storage::MaximalEndComponent const& mec);
ValueType computeLraForMecVi(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateValuesGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec);
/*!
* As computeLraForMec but uses linear programming as a solution method (independent of what is set in env)
*/
ValueType computeLraForMecLp(Environment const& env, std::function<ValueType(uint64_t stateIndex, uint64_t globalChoiceIndex)> const& combinedStateActionRewardsGetter, storm::storage::MaximalEndComponent const& mec);
ValueType computeLraForMecLp(Environment const& env, std::function<ValueType(uint64_t stateIndex)> const& stateValuesGetter, std::function<ValueType(uint64_t globalChoiceIndex)> const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec);
/*!
* @return Lra values for each state
Loading…
Cancel
Save