Browse Source

updated dft->gspn translation to now have basis support for spares

tempestpy_adaptions
Sebastian Junges 8 years ago
parent
commit
faee1dfeee
  1. 6
      src/storm-dft-cli/storm-dyftee.cpp
  2. 923
      src/storm/transformations/dft/DftToGspnTransformator.cpp
  3. 174
      src/storm/transformations/dft/DftToGspnTransformator.h

6
src/storm-dft-cli/storm-dyftee.cpp

@ -4,6 +4,7 @@
#include "storm/cli/cli.h" #include "storm/cli/cli.h"
#include "storm/exceptions/BaseException.h" #include "storm/exceptions/BaseException.h"
#include "storm/utility/macros.h" #include "storm/utility/macros.h"
#include "storm/transformations/dft/DftToGspnTransformator.h"
#include "storm/settings/modules/GeneralSettings.h" #include "storm/settings/modules/GeneralSettings.h"
#include "storm/settings/modules/CoreSettings.h" #include "storm/settings/modules/CoreSettings.h"
@ -78,6 +79,11 @@ template <typename ValueType>
storm::gspn::GSPN transformDFT(std::string filename) { storm::gspn::GSPN transformDFT(std::string filename) {
storm::parser::DFTGalileoParser<ValueType> parser; storm::parser::DFTGalileoParser<ValueType> parser;
storm::storage::DFT<ValueType> dft = parser.parseDFT(filename); storm::storage::DFT<ValueType> dft = parser.parseDFT(filename);
<<<<<<< f8986fe6139bddaf5068477b0f70ac1f806f8576:src/storm-dft-cli/storm-dyftee.cpp
=======
storm::transformations::dft::DftToGspnTransformator<ValueType> gspnTransformator(dft);
gspnTransformator.transform();
>>>>>>> updated dft->gspn translation to now have basis support for spares:src/storm/storm-dyftee.cpp
} }
/*! /*!

923
src/storm/transformations/dft/DftToGspnTransformator.cpp

@ -0,0 +1,923 @@
#include "DftToGspnTransformator.h"
#include "storm/exceptions/NotImplementedException.h"
#include <memory>
namespace storm {
namespace transformations {
namespace dft {
// Prevent some magic constants
static constexpr const uint64_t defaultPriority = 0;
static constexpr const uint64_t defaultCapacity = 0;
template <typename ValueType>
DftToGspnTransformator<ValueType>::DftToGspnTransformator(storm::storage::DFT<ValueType> const& dft) : mDft(dft) {
// Intentionally left empty.
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::transform() {
builder.setGspnName("DftToGspnTransformation");
// Loop through every DFT element and draw them as a GSPN.
drawGSPNElements();
// When all DFT elements are drawn, draw the connections between them.
drawGSPNConnections();
// Draw functional/probability dependencies into the GSPN.
drawGSPNDependencies();
// Draw restrictions into the GSPN (i.e. SEQ or MUTEX).
drawGSPNRestrictions();
// Write GSPN to file.
writeGspn(true);
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawGSPNElements() {
// Loop through every DFT element and draw them as a GSPN.
for (std::size_t i = 0; i < mDft.nrElements(); i++) {
auto dftElement = mDft.getElement(i);
bool isRepresentative = mDft.isRepresentative(i);
// Check which type the element is and call the corresponding drawing-function.
switch (dftElement->type()) {
case storm::storage::DFTElementType::AND:
drawAND(std::static_pointer_cast<storm::storage::DFTAnd<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::OR:
drawOR(std::static_pointer_cast<storm::storage::DFTOr<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::VOT:
drawVOT(std::static_pointer_cast<storm::storage::DFTVot<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::PAND:
drawPAND(std::static_pointer_cast<storm::storage::DFTPand<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::SPARE:
drawSPARE(std::static_pointer_cast<storm::storage::DFTSpare<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::POR:
drawPOR(std::static_pointer_cast<storm::storage::DFTPor<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::SEQ:
// No method call needed here. SEQ only consists of restrictions, which are handled later.
break;
case storm::storage::DFTElementType::MUTEX:
// No method call needed here. MUTEX only consists of restrictions, which are handled later.
break;
case storm::storage::DFTElementType::BE:
drawBE(std::static_pointer_cast<storm::storage::DFTBE<ValueType> const>(dftElement), isRepresentative);
break;
case storm::storage::DFTElementType::CONSTF:
drawCONSTF(dftElement, isRepresentative);
break;
case storm::storage::DFTElementType::CONSTS:
drawCONSTS(dftElement, isRepresentative);
break;
case storm::storage::DFTElementType::PDEP:
drawPDEP(std::static_pointer_cast<storm::storage::DFTDependency<ValueType> const>(dftElement), isRepresentative);
break;
default:
STORM_LOG_ASSERT(false, "DFT type unknown.");
break;
}
}
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawBE(std::shared_ptr<storm::storage::DFTBE<ValueType> const> dftBE, bool isRepresentative) {
uint64_t beActive = builder.addPlace(defaultCapacity, isBEActive(dftBE) ? 1 : 0, dftBE->name() + STR_ACTIVATED);
activeNodes.emplace(dftBE->id(), beActive);
uint64_t beFailed = builder.addPlace(defaultCapacity, 0, dftBE->name() + STR_FAILED);
uint64_t unavailableNode = 0;
if (isRepresentative) {
unavailableNode = addUnavailableNode(dftBE);
}
assert(failedNodes.size() == dftBE->id());
failedNodes.push_back(beFailed);
uint64_t tActive = builder.addTimedTransition(defaultPriority, dftBE->activeFailureRate(), dftBE->name() + "_activeFailing");
builder.addInputArc(beActive, tActive);
builder.addInhibitionArc(beFailed, tActive);
builder.addOutputArc(tActive, beActive);
builder.addOutputArc(tActive, beFailed);
uint64_t tPassive = builder.addTimedTransition(defaultPriority, dftBE->passiveFailureRate(), dftBE->name() + "_passiveFailing");
builder.addInhibitionArc(beActive, tPassive);
builder.addInhibitionArc(beFailed, tPassive);
builder.addOutputArc(tPassive, beFailed);
if (isRepresentative) {
builder.addOutputArc(tActive, unavailableNode);
builder.addOutputArc(tPassive, unavailableNode);
}
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawAND(std::shared_ptr<storm::storage::DFTAnd<ValueType> const> dftAnd, bool isRepresentative) {
uint64_t nodeFailed = builder.addPlace(defaultCapacity, 0, dftAnd->name() + STR_FAILED);
assert(failedNodes.size() == dftAnd->id());
failedNodes.push_back(nodeFailed);
uint64_t unavailableNode = 0;
if (isRepresentative) {
unavailableNode = addUnavailableNode(dftAnd);
}
uint64_t tAndFailed = builder.addImmediateTransition( getFailPriority(dftAnd) , 0.0, dftAnd->name() + STR_FAILING );
builder.addInhibitionArc(nodeFailed, tAndFailed);
builder.addOutputArc(tAndFailed, nodeFailed);
if (isRepresentative) {
builder.addOutputArc(tAndFailed, unavailableNode);
}
for(auto const& child : dftAnd->children()) {
assert(failedNodes.size() > child->id());
builder.addInputArc(failedNodes[child->id()], tAndFailed);
}
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawOR(std::shared_ptr<storm::storage::DFTOr<ValueType> const> dftOr, bool isRepresentative) {
uint64_t nodeFailed = builder.addPlace(defaultCapacity, 0, dftOr->name() + STR_FAILED);
assert(failedNodes.size() == dftOr->id());
failedNodes.push_back(nodeFailed);
uint64_t unavailableNode = 0;
if (isRepresentative) {
unavailableNode = addUnavailableNode(dftOr);
}
uint64_t i = 0;
for (auto const& child : dftOr->children()) {
uint64_t tNodeFailed = builder.addImmediateTransition( getFailPriority(dftOr) , 0.0, dftOr->name() + STR_FAILING + std::to_string(i) );
builder.addInhibitionArc(nodeFailed, tNodeFailed);
builder.addOutputArc(tNodeFailed, nodeFailed);
if (isRepresentative) {
builder.addOutputArc(tNodeFailed, unavailableNode);
}
assert(failedNodes.size() > child->id());
builder.addInputArc(failedNodes[child->id()], tNodeFailed);
++i;
}
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawVOT(std::shared_ptr<storm::storage::DFTVot<ValueType> const> dftVot, bool isRepresentative) {
uint64_t nodeFailed = builder.addPlace(defaultCapacity, 0, dftVot->name() + STR_FAILED);
assert(failedNodes.size() == dftVot->id());
failedNodes.push_back(nodeFailed);
uint64_t unavailableNode = 0;
if (isRepresentative) {
unavailableNode = addUnavailableNode(dftVot);
}
uint64_t nodeCollector = builder.addPlace(dftVot->nrChildren(), 0, dftVot->name() + "_collector");
uint64_t tNodeFailed = builder.addImmediateTransition(getFailPriority(dftVot), 0.0, dftVot->name() + STR_FAILING);
builder.addOutputArc(tNodeFailed, nodeFailed);
if (isRepresentative) {
builder.addOutputArc(tNodeFailed, unavailableNode);
}
builder.addInhibitionArc(nodeFailed, tNodeFailed);
builder.addInputArc(nodeCollector, tNodeFailed, dftVot->threshold());
builder.addOutputArc(tNodeFailed, nodeCollector, dftVot->threshold());
uint64_t i = 0;
for (auto const& child : dftVot->children()) {
uint64_t childInhibPlace = builder.addPlace(1, 0, dftVot->name() + "_child_fail_inhib" + std::to_string(i));
uint64_t tCollect = builder.addImmediateTransition(getFailPriority(dftVot), 0.0, dftVot->name() + "_child_collect" + std::to_string(i));
builder.addOutputArc(tCollect, nodeCollector);
builder.addOutputArc(tCollect, childInhibPlace);
builder.addInhibitionArc(childInhibPlace, tCollect);
builder.addInputArc(failedNodes[child->id()], tCollect);
++i;
}
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawPAND(std::shared_ptr<storm::storage::DFTPand<ValueType> const> dftPand, bool isRepresentative) {
uint64_t nodeFailed = builder.addPlace(defaultCapacity, 0, dftPand->name() + STR_FAILED);
assert(failedNodes.size() == dftPand->id());
failedNodes.push_back(nodeFailed);
uint64_t unavailableNode = 0;
if (isRepresentative) {
unavailableNode = addUnavailableNode(dftPand);
}
uint64_t nodeFS = builder.addPlace(defaultCapacity, 0, dftPand->name() + STR_FAILSAVE);
uint64_t tNodeFailed = builder.addImmediateTransition(getFailPriority(dftPand), 0.0, dftPand->name() + STR_FAILING);
builder.addInhibitionArc(nodeFailed, tNodeFailed);
builder.addInhibitionArc(nodeFS, tNodeFailed);
builder.addOutputArc(tNodeFailed, nodeFailed);
if (isRepresentative) {
builder.addOutputArc(tNodeFailed, nodeFailed);
}
for(auto const& child : dftPand->children()) {
builder.addInputArc(failedNodes[child->id()], tNodeFailed);
}
for (uint64_t j = 1; j < dftPand->nrChildren(); ++j) {
uint64_t tfs = builder.addImmediateTransition(getFailPriority(dftPand), 0.0, dftPand->name() + STR_FAILSAVING + std::to_string(j));
builder.addInputArc(failedNodes[dftPand->children().at(j)->id()], tfs);
builder.addInhibitionArc(failedNodes[dftPand->children().at(j-1)->id()], tfs);
builder.addOutputArc(tfs, nodeFS);
}
}
//
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawSPARE(std::shared_ptr<storm::storage::DFTSpare<ValueType> const> dftSpare, bool isRepresentative) {
uint64_t nodeFailed = builder.addPlace(defaultCapacity, 0, dftSpare->name() + STR_FAILED);
failedNodes.push_back(nodeFailed);
uint64_t unavailableNode = 0;
if (isRepresentative) {
unavailableNode = addUnavailableNode(dftSpare);
}
uint64_t spareActive = builder.addPlace(defaultCapacity, 0, dftSpare->name() + STR_ACTIVATED);
activeNodes.emplace(dftBE->id(), beActive);
std::vector<uint64_t> cucNodes;
std::vector<uint64_t> nextClaimNodes;
std::vector<uint64_t> nextclTransitions;
std::vector<uint64_t> nextconsiderTransitions;
uint64_t j = 0;
for(auto const& child : dftSpare->children()) {
if (j > 0) {
nextClaimNodes.push_back(builder.addPlace(defaultCapacity, 0, dftSpare->name()+ "_consider_" + child->name()));
builder.addOutputArc(nextclTransitions.back(), nextClaimNodes.back(), 1);
if (j > 1) {
builder.addOutputArc(nextconsiderTransitions.back(), nextClaimNodes.back());
}
uint64_t tnextconsider = builder.addImmediateTransition(getFailPriority(dftSpare), 0.0, dftSpare->name() + "_cannot_claim_" + child->name());
builder.addInputArc(nextClaimNodes.back(), tnextconsider);
builder.addInputArc(unavailableNodes.at(child->id()), tnextconsider);
nextconsiderTransitions.push_back(tnextconsider);
}
cucNodes.push_back(builder.addPlace(defaultCapacity, j == 0 ? 1 : 0, dftSpare->name() + "_claimed_" + child->name()));
if (j > 0) {
uint64 tclaim = builder.addImmediateTransition(getFailPriority(dftSpare), 0.0, dftSpare->name() + "_claim_" + child->name());
builder.addInhibitionArc(unavailableNodes.at(child->id()), tclaim);
builder.addInputArc(nextClaimNodes.back(), tclaim);
builder.addOutputArc(tclaim, cucNodes.back());
}
uint64_t tnextcl = builder.addImmediateTransition(getFailPriority(dftSpare), 0.0, dftSpare->name() + "_next_claim_" + std::to_string(j));
builder.addInputArc(cucNodes.back(), tnextcl);
builder.addOutputArc(tnextcl, cucNodes.back());
builder.addInputArc(failedNodes.at(child->id()), tnextcl);
builder.addOutputArc(tnextcl, failedNodes.at(child->id()));
nextclTransitions.push_back(tnextcl);
++j;
}
builder.addOutputArc(nextconsiderTransitions.back(), nodeFailed);
builder.addOutputArc(nextclTransitions.back(), nodeFailed);
if (isRepresentative) {
builder.addOutputArc(nextconsiderTransitions.back(), unavailableNode);
builder.addOutputArc(nextclTransitions.back(), unavailableNode);
}
// uint_fast64_t priority = getPriority(0, dftSpare);
//
// // This codeblock can be removed later, when I am 100% sure it is not needed anymore.
// /*
// storm::gspn::Place placeSPAREActivated;
// placeSPAREActivated.setName(dftSpare->name() + STR_ACTIVATED);
// placeSPAREActivated.setNumberOfInitialTokens(isBEActive(dftSpare));
// mGspn.addPlace(placeSPAREActivated);
//
// storm::gspn::ImmediateTransition<storm::gspn::GSPN::WeightType> immediateTransitionPCActivating;
// immediateTransitionPCActivating.setName(dftSpare->children()[0]->name() + STR_ACTIVATING);
// immediateTransitionPCActivating.setPriority(priority);
// immediateTransitionPCActivating.setWeight(0.0);
// immediateTransitionPCActivating.setInputArcMultiplicity(placeSPAREActivated, 1);
// immediateTransitionPCActivating.setOutputArcMultiplicity(placeSPAREActivated, 1);
// mGspn.addImmediateTransition(immediateTransitionPCActivating);
// */
//
// auto children = dftSpare->children();
//
// // Draw places and transitions that belong to each spare child.
// for (std::size_t i = 1; i < children.size(); i++) {
// auto placeChildClaimedPreexist = mGspn.getPlace(children[i]->name() + "_claimed");
//
// if (!placeChildClaimedPreexist.first) { // Only draw this place if it doesn't exist jet.
// storm::gspn::Place placeChildClaimed;
// placeChildClaimed.setName(children[i]->name() + "_claimed");
// placeChildClaimed.setNumberOfInitialTokens(0);
// mGspn.addPlace(placeChildClaimed);
//
// storm::gspn::ImmediateTransition<storm::gspn::GSPN::WeightType> immediateTransitionSpareChildActivating;
// immediateTransitionSpareChildActivating.setName(children[i]->name() + STR_ACTIVATING);
// immediateTransitionSpareChildActivating.setPriority(priority);
// immediateTransitionSpareChildActivating.setWeight(0.0);
// immediateTransitionSpareChildActivating.setInputArcMultiplicity(placeChildClaimed, 1);
// immediateTransitionSpareChildActivating.setOutputArcMultiplicity(placeChildClaimed, 1);
// mGspn.addImmediateTransition(immediateTransitionSpareChildActivating);
// }
//
// auto placeChildClaimedExist = mGspn.getPlace(children[i]->name() + "_claimed");
//
// storm::gspn::Place placeSPAREClaimedChild;
// placeSPAREClaimedChild.setName(dftSpare->name() + "_claimed_" + children[i]->name());
// placeSPAREClaimedChild.setNumberOfInitialTokens(0);
// mGspn.addPlace(placeSPAREClaimedChild);
//
// storm::gspn::ImmediateTransition<storm::gspn::GSPN::WeightType> immediateTransitionChildClaiming;
// immediateTransitionChildClaiming.setName(dftSpare->name() + "_claiming_" + children[i]->name());
// immediateTransitionChildClaiming.setPriority(priority + 1); // Higher priority needed!
// immediateTransitionChildClaiming.setWeight(0.0);
// immediateTransitionChildClaiming.setInhibitionArcMultiplicity(placeChildClaimedExist.second, 1);
// immediateTransitionChildClaiming.setOutputArcMultiplicity(placeChildClaimedExist.second, 1);
// immediateTransitionChildClaiming.setOutputArcMultiplicity(placeSPAREClaimedChild, 1);
// mGspn.addImmediateTransition(immediateTransitionChildClaiming);
//
// storm::gspn::Place placeSPAREChildConsumed;
// if (i < children.size() - 1) {
// placeSPAREChildConsumed.setName(dftSpare->name() + "_" + children[i]->name() + "_consumed");
// }
// else {
// placeSPAREChildConsumed.setName(dftSpare->name() + STR_FAILED);
// }
// placeSPAREChildConsumed.setNumberOfInitialTokens(0);
// mGspn.addPlace(placeSPAREChildConsumed);
//
// storm::gspn::ImmediateTransition<storm::gspn::GSPN::WeightType> immediateTransitionChildConsuming1;
// immediateTransitionChildConsuming1.setName(dftSpare->name() + "_" + children[i]->name() + "_consuming1");
// immediateTransitionChildConsuming1.setPriority(priority);
// immediateTransitionChildConsuming1.setWeight(0.0);
// immediateTransitionChildConsuming1.setOutputArcMultiplicity(placeSPAREChildConsumed, 1);
// immediateTransitionChildConsuming1.setInhibitionArcMultiplicity(placeSPAREChildConsumed, 1);
// immediateTransitionChildConsuming1.setInhibitionArcMultiplicity(placeSPAREClaimedChild, 1);
// mGspn.addImmediateTransition(immediateTransitionChildConsuming1);
//
// storm::gspn::ImmediateTransition<storm::gspn::GSPN::WeightType> immediateTransitionChildConsuming2;
// immediateTransitionChildConsuming2.setName(dftSpare->name() + "_" + children[i]->name() + "_consuming2");
// immediateTransitionChildConsuming2.setPriority(priority);
// immediateTransitionChildConsuming2.setWeight(0.0);
// immediateTransitionChildConsuming2.setOutputArcMultiplicity(placeSPAREChildConsumed, 1);
// immediateTransitionChildConsuming2.setInhibitionArcMultiplicity(placeSPAREChildConsumed, 1);
// immediateTransitionChildConsuming2.setOutputArcMultiplicity(placeSPAREClaimedChild, 1);
// immediateTransitionChildConsuming2.setInputArcMultiplicity(placeSPAREClaimedChild, 1);
// mGspn.addImmediateTransition(immediateTransitionChildConsuming2);
// }
//
// // Draw connections between all spare childs.
// for (std::size_t i = 1; i < children.size() - 1; i++) {
// auto placeSPAREChildConsumed = mGspn.getPlace(dftSpare->name() + "_" + children[i]->name() + "_consumed");
// auto immediateTransitionChildClaiming = mGspn.getImmediateTransition(dftSpare->name() + "_claiming_" + children[i + 1]->name());
// auto immediateTransitionChildConsuming1 = mGspn.getImmediateTransition(dftSpare->name() + "_" + children[i + 1]->name() + "_consuming1");
//
// immediateTransitionChildClaiming.second->setOutputArcMultiplicity(placeSPAREChildConsumed.second, 1);
// immediateTransitionChildClaiming.second->setInputArcMultiplicity(placeSPAREChildConsumed.second, 1);
//
// immediateTransitionChildConsuming1.second->setOutputArcMultiplicity(placeSPAREChildConsumed.second, 1);
// immediateTransitionChildConsuming1.second->setInputArcMultiplicity(placeSPAREChildConsumed.second, 1);
// }
}
//
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawPOR(std::shared_ptr<storm::storage::DFTPor<ValueType> const> dftPor, bool isRepresentative) {
uint64_t nodeFailed = builder.addPlace(defaultCapacity, 0, dftPor->name() + STR_FAILED);
uint64_t nodeFS = builder.addPlace(defaultCapacity, 0, dftPor->name() + STR_FAILSAVE);
uint64_t tfail = builder.addImmediateTransition(getFailPriority(dftPor), 0.0, dftPor->name() + STR_FAILING);
builder.addInhibitionArc(nodeFS, tfail);
builder.addInputArc(failedNodes.at(dftPor->children().front()->id()), tfail);
builder.addOutputArc(tfail, failedNodes.at(dftPor->children().front()->id()));
builder.addOutputArc(tfail, nodeFailed);
builder.addInhibitionArc(nodeFailed, tfail);
uint64_t j = 0;
for (auto const& child : dftPor->children()) {
uint64_t tfailsf = builder.addImmediateTransition(getFailPriority(dftPor), 0.0, dftPor->name() + STR_FAILSAVING + std::to_string(j));
builder.addInputArc(failedNodes.at(child->id()), tfailsf);
builder.addOutputArc(tfailsf, failedNodes.at(child->id()));
// TODO
// builder.addInhibitionArc(<#const uint_fast64_t &from#>, <#const uint_fast64_t &to#>)
++j;
}
}
//
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawCONSTF(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftConstF, bool isRepresentative) {
// storm::gspn::Place placeCONSTFFailed;
// placeCONSTFFailed.setName(dftConstF->name() + STR_FAILED);
// placeCONSTFFailed.setNumberOfInitialTokens(1);
// mGspn.addPlace(placeCONSTFFailed);
}
//
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawCONSTS(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftConstS, bool isRepresentative) {
// storm::gspn::Place placeCONSTSFailed;
// placeCONSTSFailed.setName(dftConstS->name() + STR_FAILED);
// placeCONSTSFailed.setNumberOfInitialTokens(0);
// placeCONSTSFailed.setCapacity(0); // It cannot contain a token, because it cannot fail.
// mGspn.addPlace(placeCONSTSFailed);
}
//
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawPDEP(std::shared_ptr<storm::storage::DFTDependency<ValueType> const> dftDependency, bool isRepresentative) {
// // Only draw dependency, if it wasn't drawn before.
// std::string gateName = dftDependency->name().substr(0, dftDependency->name().find("_"));
// auto exists = mGspn.getPlace(gateName + STR_FAILED);
// if (!exists.first) {
// storm::gspn::Place placeDEPFailed;
// placeDEPFailed.setName(gateName + STR_FAILED);
// placeDEPFailed.setNumberOfInitialTokens(0);
// mGspn.addPlace(placeDEPFailed);
//
// storm::gspn::TimedTransition<double> timedTransitionDEPFailure;
// timedTransitionDEPFailure.setName(gateName + STR_FAILING);
// timedTransitionDEPFailure.setPriority(getPriority(0, dftDependency));
// timedTransitionDEPFailure.setRate(dftDependency->probability());
// timedTransitionDEPFailure.setOutputArcMultiplicity(placeDEPFailed, 1);
// timedTransitionDEPFailure.setInhibitionArcMultiplicity(placeDEPFailed, 1);
// mGspn.addTimedTransition(timedTransitionDEPFailure);
// }
}
template<typename ValueType>
uint64_t DftToGspnTransformator<ValueType>::addUnavailableNode(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftElement) {
uint64_t unavailableNode = builder.addPlace(defaultCapacity, 1, dftElement->name() + "_unavailable");
assert(unavailableNode != 0);
unavailableNodes.emplace(dftElement->id(), unavailableNode);
return unavailableNode;
}
//
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawGSPNConnections() {
// // Check for every element, if they have parents (all will have at least 1, except the top event).
// for (std::size_t i = 0; i < mDft.nrElements(); i++) {
// auto child = mDft.getElement(i);
// auto parents = child->parentIds();
//
// // Draw a connection to every parent.
// for (std::size_t j = 0; j < parents.size(); j++) {
// // Check the type of the parent and act accordingly (every parent gate has different entry points...).
// switch (mDft.getElement(parents[j])->type()) {
// case storm::storage::DFTElementType::AND:
// {
// auto andEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + STR_FAILING);
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
// if (andEntry.first && childExit.first) { // Only add arcs if the objects have been found.
// andEntry.second->setInputArcMultiplicity(childExit.second, 1);
// andEntry.second->setOutputArcMultiplicity(childExit.second, 1);
// }
// break;
// }
// case storm::storage::DFTElementType::OR:
// {
// auto orEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_" + child->name() + STR_FAILING);
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
// if (orEntry.first && childExit.first) { // Only add arcs if the objects have been found.
// orEntry.second->setInputArcMultiplicity(childExit.second, 1);
// orEntry.second->setOutputArcMultiplicity(childExit.second, 1);
// }
// break;
// }
// case storm::storage::DFTElementType::VOT:
// {
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
// auto parentEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_" + child->name() + "_collecting");
//
// if (childExit.first && parentEntry.first) { // Only add arcs if the objects have been found.
// parentEntry.second->setInputArcMultiplicity(childExit.second, 1);
// parentEntry.second->setOutputArcMultiplicity(childExit.second, 1);
// }
//
// break;
// }
// case storm::storage::DFTElementType::PAND:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTPand<ValueType> const>(mDft.getElement(parents[j]))->children();
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
// auto pandEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + STR_FAILING);
//
// if (childExit.first && pandEntry.first) { // Only add arcs if the objects have been found.
// pandEntry.second->setInputArcMultiplicity(childExit.second, 1);
// pandEntry.second->setOutputArcMultiplicity(childExit.second, 1);
//
// if (children[0] == child) { // Current element is primary child.
// auto pandEntry2 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_0" + STR_FAILSAVING);
//
// if (pandEntry2.first) {
// pandEntry2.second->setInhibitionArcMultiplicity(childExit.second, 1);
// }
// }
// else { // Current element is not the primary child.
// for (std::size_t k = 1; k < children.size(); k++) {
// if (children[k] == child) {
// auto pandEntry2 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_" + std::to_string((k - 1)) + STR_FAILSAVING);
// auto pandEntry3 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_" + std::to_string((k)) + STR_FAILSAVING);
//
// if (pandEntry2.first) {
// pandEntry2.second->setInputArcMultiplicity(childExit.second, 1);
// pandEntry2.second->setOutputArcMultiplicity(childExit.second, 1);
// }
//
// if (pandEntry3.first) {
// pandEntry3.second->setInhibitionArcMultiplicity(childExit.second, 1);
// }
//
// continue;
// }
// }
// }
// }
//
// break;
// }
// case storm::storage::DFTElementType::SPARE:
// {
// // Check if current child is a primary or spare child.
// auto children = std::static_pointer_cast<storm::storage::DFTSpare<ValueType> const>(mDft.getElement(parents[j]))->children();
//
// if (child == children[0]) { // Primary child.
// auto spareExit = mGspn.getImmediateTransition(child->name() + STR_ACTIVATING);
//
// std::vector<int> ids = getAllBEIDsOfElement(child);
// for (std::size_t k = 0; k < ids.size(); k++) {
// auto childEntry = mGspn.getPlace(mDft.getElement(ids[k])->name() + STR_ACTIVATED);
//
// if (spareExit.first && childEntry.first) { // Only add arcs if the objects have been found.
// spareExit.second->setInhibitionArcMultiplicity(childEntry.second, 1);
// spareExit.second->setOutputArcMultiplicity(childEntry.second, 1);
// }
// }
//
// // Draw lines from "primary child_failed" to SPARE.
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
// auto spareEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_claiming_" + children[1]->name());
// auto spareEntry2 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_" + children[1]->name() + "_consuming1");
//
// if (childExit.first && spareEntry.first && spareEntry2.first) { // Only add arcs if the objects have been found.
// spareEntry.second->setInputArcMultiplicity(childExit.second, 1);
// spareEntry.second->setOutputArcMultiplicity(childExit.second, 1);
//
// spareEntry2.second->setInputArcMultiplicity(childExit.second, 1);
// spareEntry2.second->setOutputArcMultiplicity(childExit.second, 1);
// }
// }
// else { // A spare child.
// auto spareExit = mGspn.getImmediateTransition(child->name() + STR_ACTIVATING);
// auto spareExit2 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_claiming_" + child->name());
//
// std::vector<int> ids = getAllBEIDsOfElement(child);
// for (std::size_t k = 0; k < ids.size(); k++) {
// auto childEntry = mGspn.getPlace(mDft.getElement(ids[k])->name() + STR_ACTIVATED);
//
// if (spareExit.first && spareExit2.first && childEntry.first) { // Only add arcs if the objects have been found.
// if (!spareExit.second->existsInhibitionArc(childEntry.second)) {
// spareExit.second->setInhibitionArcMultiplicity(childEntry.second, 1);
// }
// if (!spareExit.second->existsOutputArc(childEntry.second)) {
// spareExit.second->setOutputArcMultiplicity(childEntry.second, 1);
// }
// if (!spareExit2.second->existsInhibitionArc(childEntry.second)) {
// spareExit2.second->setInhibitionArcMultiplicity(childEntry.second, 1);
// }
// }
// }
//
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
// auto spareEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_claiming_" + child->name());
// auto spareEntry2 = mGspn.getImmediateTransition(child->name() + STR_ACTIVATING);
// auto spareEntry3 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + "_" + child->name() + "_consuming2");
//
// if (childExit.first && spareEntry.first && spareEntry2.first && spareEntry3.first) { // Only add arcs if the objects have been found.
// spareEntry.second->setInhibitionArcMultiplicity(childExit.second, 1);
//
// if (!spareEntry2.second->existsInhibitionArc(childExit.second)) {
// spareEntry2.second->setInhibitionArcMultiplicity(childExit.second, 1);
// }
//
// spareEntry3.second->setInputArcMultiplicity(childExit.second, 1);
// spareEntry3.second->setOutputArcMultiplicity(childExit.second, 1);
// }
// }
//
// break;
// }
// case storm::storage::DFTElementType::POR:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTPand<ValueType> const>(mDft.getElement(parents[j]))->children();
// auto porEntry = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + STR_FAILING);
// auto porEntry2 = mGspn.getImmediateTransition(mDft.getElement(parents[j])->name() + STR_FAILSAVING);
// auto childExit = mGspn.getPlace(child->name() + STR_FAILED);
//
// if (porEntry.first && porEntry2.first && childExit.first) { // Only add arcs if the objects have been found.
// if (children[0] == child) { // Current element is primary child.
// porEntry.second->setInputArcMultiplicity(childExit.second, 1);
// porEntry.second->setOutputArcMultiplicity(childExit.second, 1);
// porEntry2.second->setInhibitionArcMultiplicity(childExit.second, 1);
//
// }
// else { // Current element is not the primary child.
// porEntry2.second->setInputArcMultiplicity(childExit.second, 1);
// porEntry2.second->setOutputArcMultiplicity(childExit.second, 1);
// }
// }
//
// break;
// }
// case storm::storage::DFTElementType::SEQ:
// {
// // Sequences are realized with restrictions. Nothing to do here.
// break;
// }
// case storm::storage::DFTElementType::MUTEX:
// {
// // MUTEX are realized with restrictions. Nothing to do here.
// break;
// }
// case storm::storage::DFTElementType::BE:
// {
// // The parent is never a Basic Event.
// break;
// }
// case storm::storage::DFTElementType::CONSTF:
// {
// // The parent is never a Basic Event.
// break;
// }
// case storm::storage::DFTElementType::CONSTS:
// {
// // The parent is never a Basic Event.
// break;
// }
// case storm::storage::DFTElementType::PDEP:
// {
// // The parent is never a DEP. Hence the connections must be drawn somewhere else.
// break;
// }
// default:
// {
// STORM_LOG_ASSERT(false, "DFT type unknown.");
// break;
// }
// }
// }
// }
}
template <typename ValueType>
bool DftToGspnTransformator<ValueType>::isBEActive(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftElement)
{
// If element is the top element, return true.
if (dftElement->id() == mDft.getTopLevelIndex()) {
return true;
}
else { // Else look at all parents.
auto parents = dftElement->parents();
std::vector<bool> pathValidities;
for (std::size_t i = 0; i < parents.size(); i++) {
// Add all parents to the vector, except if the parent is a SPARE and the current element is an inactive child of the SPARE.
if (parents[i]->type() == storm::storage::DFTElementType::SPARE) {
auto children = std::static_pointer_cast<storm::storage::DFTSpare<ValueType> const>(parents[i])->children();
if (children[0]->id() != dftElement->id()) {
continue;
}
}
pathValidities.push_back(isBEActive(parents[i]));
}
// Check all vector entries. If one is true, a "valid" path has been found.
for (std::size_t i = 0; i < pathValidities.size(); i++) {
if (pathValidities[i]) {
return true;
}
}
}
// No "valid" path found. BE is inactive.
return false;
}
template <typename ValueType>
uint64_t DftToGspnTransformator<ValueType>::getFailPriority(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftElement)
{
return mDft.maxRank() - dftElement->rank();
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawGSPNDependencies() {
// for (std::size_t i = 0; i < mDft.nrElements(); i++) {
// auto dftElement = mDft.getElement(i);
//
// if (dftElement->isDependency()) {
// std::string gateName = dftElement->name().substr(0, dftElement->name().find("_"));
// auto depEntry = mGspn.getTimedTransition(gateName + STR_FAILING);
// auto trigger = mGspn.getPlace(std::static_pointer_cast<storm::storage::DFTDependency<ValueType> const>(dftElement)->nameTrigger() + STR_FAILED);
//
// if (depEntry.first && trigger.first) { // Only add arcs if the objects have been found.
// if (!depEntry.second->existsInputArc(trigger.second)) {
// depEntry.second->setInputArcMultiplicity(trigger.second, 1);
// }
// if (!depEntry.second->existsOutputArc(trigger.second)){
// depEntry.second->setOutputArcMultiplicity(trigger.second, 1);
// }
// }
//
// auto dependent = mGspn.getPlace(std::static_pointer_cast<storm::storage::DFTDependency<ValueType> const>(dftElement)->nameDependent() + STR_FAILED);
//
// if (dependent.first) { // Only add arcs if the objects have been found.
// depEntry.second->setOutputArcMultiplicity(dependent.second, 1);
// }
// }
// }
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::drawGSPNRestrictions() {
// for (std::size_t i = 0; i < mDft.nrElements(); i++) {
// auto dftElement = mDft.getElement(i);
//
// if (dftElement->isRestriction()) {
// switch (dftElement->type()) {
// case storm::storage::DFTElementType::SEQ:
// {
// auto children = mDft.getRestriction(i)->children();
//
// for (std::size_t j = 0; j < children.size() - 1; j++) {
// auto suppressor = mGspn.getPlace(children[j]->name() + STR_FAILED);
//
// switch (children[j + 1]->type()) {
// case storm::storage::DFTElementType::BE: // If suppressed is a BE, add 2 arcs to timed transitions.
// {
// auto suppressedActive = mGspn.getTimedTransition(children[j + 1]->name() + "_activeFailing");
// auto suppressedPassive = mGspn.getTimedTransition(children[j + 1]->name() + "_passiveFailing");
//
// if (suppressor.first && suppressedActive.first && suppressedPassive.first) { // Only add arcs if the objects have been found.
// suppressedActive.second->setInputArcMultiplicity(suppressor.second, 1);
// suppressedActive.second->setOutputArcMultiplicity(suppressor.second, 1);
// suppressedPassive.second->setInputArcMultiplicity(suppressor.second, 1);
// suppressedPassive.second->setOutputArcMultiplicity(suppressor.second, 1);
// }
// break;
// }
// default: // If supressed is not a BE, add single arc to immediate transition.
// {
// auto suppressed = mGspn.getImmediateTransition(children[j + 1]->name() + STR_FAILING);
//
// if (suppressor.first && suppressed.first) { // Only add arcs if the objects have been found.
// suppressed.second->setInputArcMultiplicity(suppressor.second, 1);
// suppressed.second->setOutputArcMultiplicity(suppressor.second, 1);
// }
// break;
// }
// }
// }
// break;
// }
// case storm::storage::DFTElementType::MUTEX:
// {
// // MUTEX is not implemented by the DFTGalileoParser yet. Nothing to do here.
// STORM_LOG_ASSERT(false, "MUTEX is not supported by DftToGspnTransformator.");
// break;
// }
// default:
// {
// break;
// }
// }
// }
// }
}
template <typename ValueType>
std::vector<int> DftToGspnTransformator<ValueType>::getAllBEIDsOfElement(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftElement) {
// std::vector<int> ids;
//
// switch (dftElement->type()) {
// case storm::storage::DFTElementType::AND:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTAnd<ValueType> const>(dftElement)->children();
//
// for (std::size_t i = 0; i < children.size(); i++) {
// std::vector<int> newIds = getAllBEIDsOfElement(children[i]);
// ids.insert(ids.end(), newIds.begin(), newIds.end());
// }
// break;
// }
// case storm::storage::DFTElementType::OR:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTOr<ValueType> const>(dftElement)->children();
//
// for (std::size_t i = 0; i < children.size(); i++) {
// std::vector<int> newIds = getAllBEIDsOfElement(children[i]);
// ids.insert(ids.end(), newIds.begin(), newIds.end());
// }
// break;
// }
// case storm::storage::DFTElementType::VOT:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTVot<ValueType> const>(dftElement)->children();
//
// for (std::size_t i = 0; i < children.size(); i++) {
// std::vector<int> newIds = getAllBEIDsOfElement(children[i]);
// ids.insert(ids.end(), newIds.begin(), newIds.end());
// }
// break;
// }
// case storm::storage::DFTElementType::PAND:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTPand<ValueType> const>(dftElement)->children();
//
// for (std::size_t i = 0; i < children.size(); i++) {
// std::vector<int> newIds = getAllBEIDsOfElement(children[i]);
// ids.insert(ids.end(), newIds.begin(), newIds.end());
// }
// break;
// }
// case storm::storage::DFTElementType::SPARE:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTSpare<ValueType> const>(dftElement)->children();
//
// // Only regard the primary child of a SPARE. The spare childs are not allowed to be listed here.
// for (std::size_t i = 0; i < 1; i++) {
// std::vector<int> newIds = getAllBEIDsOfElement(children[i]);
// ids.insert(ids.end(), newIds.begin(), newIds.end());
// }
// break;
// }
// case storm::storage::DFTElementType::POR:
// {
// auto children = std::static_pointer_cast<storm::storage::DFTPor<ValueType> const>(dftElement)->children();
//
// for (std::size_t i = 0; i < children.size(); i++) {
// std::vector<int> newIds = getAllBEIDsOfElement(children[i]);
// ids.insert(ids.end(), newIds.begin(), newIds.end());
// }
// break;
// }
// case storm::storage::DFTElementType::BE:
// case storm::storage::DFTElementType::CONSTF:
// case storm::storage::DFTElementType::CONSTS:
// {
// ids.push_back(dftElement->id());
// break;
// }
// case storm::storage::DFTElementType::SEQ:
// case storm::storage::DFTElementType::MUTEX:
// case storm::storage::DFTElementType::PDEP:
// {
// break;
// }
// default:
// {
// STORM_LOG_ASSERT(false, "DFT type unknown.");
// break;
// }
// }
//
// return ids;
}
template <typename ValueType>
void DftToGspnTransformator<ValueType>::writeGspn(bool toFile) {
if (toFile) {
// Writing to file
std::ofstream file;
file.open("gspn.dot");
storm::gspn::GSPN* gspn = builder.buildGspn();
gspn->writeDotToStream(file);
delete gspn;
file.close();
} else {
// Writing to console
storm::gspn::GSPN* gspn = builder.buildGspn();
gspn->writeDotToStream(std::cout);
delete gspn;
}
}
// Explicitly instantiate the class.
template class DftToGspnTransformator<double>;
#ifdef STORM_HAVE_CARL
// template class DftToGspnTransformator<storm::RationalFunction>;
#endif
} // namespace dft
} // namespace transformations
} // namespace storm

174
src/storm/transformations/dft/DftToGspnTransformator.h

@ -0,0 +1,174 @@
#pragma once
#include "storm/storage/dft/DFT.h"
#include "storm/storage/gspn/GSPN.h"
#include "storm/storage/gspn/GspnBuilder.h"
namespace storm {
namespace transformations {
namespace dft {
/*!
* Transformator for DFT -> GSPN.
*/
template<typename ValueType>
class DftToGspnTransformator {
public:
/*!
* Constructor.
*
* @param dft DFT
*/
DftToGspnTransformator(storm::storage::DFT<ValueType> const& dft);
/*!
* Transform the DFT to a GSPN.
*/
void transform();
private:
/*!
* Write Gspn to file or console.
*
* @param toFile If true, the GSPN will be written to a file, otherwise it will
be written to the console.
*/
void writeGspn(bool toFile);
/*
* Draw all elements of the GSPN.
*/
void drawGSPNElements();
/*
* Draw the connections between the elements of the GSPN.
*/
void drawGSPNConnections();
/*
* Draw functional/probability dependencies into the GSPN.
*/
void drawGSPNDependencies();
/*
* Draw restrictions between the elements of the GSPN (i.e. SEQ or MUTEX).
*/
void drawGSPNRestrictions();
/*
* Draw a Petri net Basic Event.
*
* @param dftBE The Basic Event.
*/
void drawBE(std::shared_ptr<storm::storage::DFTBE<ValueType> const> dftBE, bool isRepresentative);
/*
* Draw a Petri net AND.
*
* @param dftAnd The AND gate.
*/
void drawAND(std::shared_ptr<storm::storage::DFTAnd<ValueType> const> dftAnd, bool isRepresentative);
/*
* Draw a Petri net OR.
*
* @param dftOr The OR gate.
*/
void drawOR(std::shared_ptr<storm::storage::DFTOr<ValueType> const> dftOr, bool isRepresentative);
/*
* Draw a Petri net VOT.
*
* @param dftVot The VOT gate.
*/
void drawVOT(std::shared_ptr<storm::storage::DFTVot<ValueType> const> dftVot, bool isRepresentative);
/*
* Draw a Petri net PAND.
* This PAND is inklusive (children are allowed to fail simultaneously and the PAND will fail nevertheless).
*
* @param dftPand The PAND gate.
*/
void drawPAND(std::shared_ptr<storm::storage::DFTPand<ValueType> const> dftPand, bool isRepresentative);
/*
* Draw a Petri net SPARE.
*
* @param dftSpare The SPARE gate.
*/
void drawSPARE(std::shared_ptr<storm::storage::DFTSpare<ValueType> const> dftSpare, bool isRepresentative);
/*
* Draw a Petri net POR.
* This POR is inklusive (children are allowed to fail simultaneously and the POR will fail nevertheless).
*
* @param dftPor The POR gate.
*/
void drawPOR(std::shared_ptr<storm::storage::DFTPor<ValueType> const> dftPor, bool isRepresentative);
/*
* Draw a Petri net CONSTF (Constant Failure, a Basic Event that has already failed).
*
* @param dftPor The CONSTF Basic Event.
*/
void drawCONSTF(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftConstF, bool isRepresentative);
/*
* Draw a Petri net CONSTS (Constant Save, a Basic Event that cannot fail).
*
* @param dftPor The CONSTS Basic Event.
*/
void drawCONSTS(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftConstS, bool isRepresentative);
/*
* Draw a Petri net PDEP (FDEP is included with a firerate of 1).
*/
void drawPDEP(std::shared_ptr<storm::storage::DFTDependency<ValueType> const> dftDependency, bool isRepresentative);
/*
* Return true if BE is active (corresponding place contains one initial token) or false if BE is inactive (corresponding place contains no initial token).
*
* @param dFTElement DFT element.
*/
bool isBEActive(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dFTElement);
/*
* Get the priority of the element.
* The priority is two times the length of the shortest path to the top event.
*
* @param priority The priority of the gate. Top Event has priority 0, its children 2, its grandchildren 4, ...
*
* @param dftElement The element whose priority shall be determined.
*/
uint64_t getFailPriority(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dFTElement);
/*
* Return all ids of BEs, that are successors of the given element and that are not the spare childs of a SPARE.
*
* @param dftElement The element which
*/
std::vector<int> getAllBEIDsOfElement(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftElement);
uint64_t addUnavailableNode(std::shared_ptr<storm::storage::DFTElement<ValueType> const> dftElement);
storm::storage::DFT<ValueType> const& mDft;
storm::gspn::GspnBuilder builder;
std::vector<uint64_t> failedNodes;
std::map<uint64_t, uint64_t> unavailableNodes;
std::map<uint64_t, uint64_t> activeNodes;
static constexpr const char* STR_FAILING = "_failing"; // Name standard for transitions that point towards a place, which in turn indicates the failure of a gate.
static constexpr const char* STR_FAILED = "_failed"; // Name standard for place which indicates the failure of a gate.
static constexpr const char* STR_FAILSAVING = "_failsaving"; // Name standard for transition that point towards a place, which in turn indicates the failsave state of a gate.
static constexpr const char* STR_FAILSAVE = "_failsave"; // Name standard for place which indicates the failsave state of a gate.
static constexpr const char* STR_ACTIVATED = "_activated"; // Name standard for place which indicates the activity.
static constexpr const char* STR_ACTIVATING = "_activating"; // Name standard for transition that point towards a place, which in turn indicates its activity.
};
}
}
}
Loading…
Cancel
Save