@ -31,39 +31,14 @@ namespace storm {
STORM_LOG_THROW ( obj . threshold , storm : : exceptions : : UnexpectedException , " Can not perform achievabilityQuery: No threshold given for at least one objective. " ) ;
queryPoint . push_back ( storm : : utility : : convertNumber < RationalNumberType > ( * obj . threshold ) ) ;
}
achievabilityQuery ( queryPoint ) ;
}
template < class SparseModelType , typename RationalNumberType >
void SparseMultiObjectiveModelCheckerHelper < SparseModelType , RationalNumberType > : : achievabilityQuery ( Point const & queryPoint ) {
storm : : storage : : BitVector individualObjectivesToBeChecked ( info . objectives . size ( ) , true ) ;
while ( true ) { //TODO introduce convergence criterion? (like max num of iterations)
storm : : storage : : geometry : : Halfspace < RationalNumberType > separatingHalfspace = findSeparatingHalfspace ( queryPoint , individualObjectivesToBeChecked ) ;
weightedObjectivesChecker . check ( storm : : utility : : vector : : convertNumericVector < ModelValueType > ( separatingHalfspace . normalVector ( ) ) ) ;
storm : : storage : : TotalScheduler scheduler = weightedObjectivesChecker . getScheduler ( ) ;
Point weightedObjectivesResult = storm : : utility : : vector : : convertNumericVector < RationalNumberType > ( weightedObjectivesChecker . getInitialStateResultOfObjectives ( ) ) ;
// Insert the computed scheduler and check whether we have already seen it before
auto schedulerInsertRes = schedulers . insert ( std : : make_pair ( std : : move ( scheduler ) , paretoOptimalPoints . end ( ) ) ) ;
if ( schedulerInsertRes . second ) {
// The scheduler is new, so insert the newly computed pareto optimal point.
// To each scheduler, we assign the (unique) pareto optimal point it induces.
schedulerInsertRes . first - > second = paretoOptimalPoints . insert ( std : : make_pair ( std : : move ( weightedObjectivesResult ) , std : : vector < WeightVector > ( ) ) ) . first ;
}
// In the case where the scheduler is not new, we assume that the corresponding pareto optimal points for the old and new scheduler are equal
// Note that the values might not be exactly equal due to numerical issues.
Point const & paretoPoint = schedulerInsertRes . first - > second - > first ;
std : : vector < WeightVector > & weightVectors = schedulerInsertRes . first - > second - > second ;
weightVectors . push_back ( std : : move ( separatingHalfspace . normalVector ( ) ) ) ;
updateOverApproximation ( paretoPoint , weightVectors . back ( ) ) ;
refineSolution ( separatingHalfspace . normalVector ( ) ) ;
if ( ! overApproximation - > contains ( queryPoint ) ) {
std : : cout < < " PROPERTY VIOLATED " < < std : : endl ;
return ;
}
updateUnderApproximation ( ) ;
if ( underApproximation - > contains ( queryPoint ) ) {
std : : cout < < " PROPERTY SATISFIED " < < std : : endl ;
return ;
@ -71,6 +46,47 @@ namespace storm {
}
}
template < class SparseModelType , typename RationalNumberType >
void SparseMultiObjectiveModelCheckerHelper < SparseModelType , RationalNumberType > : : refineSolution ( WeightVector const & direction ) {
weightedObjectivesChecker . check ( storm : : utility : : vector : : convertNumericVector < ModelValueType > ( direction ) ) ;
storm : : storage : : TotalScheduler scheduler = weightedObjectivesChecker . getScheduler ( ) ;
Point weightedObjectivesResult = storm : : utility : : vector : : convertNumericVector < RationalNumberType > ( weightedObjectivesChecker . getInitialStateResultOfObjectives ( ) ) ;
// Insert the computed scheduler and check whether we have already seen it before
auto schedulerInsertRes = schedulers . insert ( std : : make_pair ( std : : move ( scheduler ) , paretoOptimalPoints . end ( ) ) ) ;
if ( schedulerInsertRes . second ) {
// The scheduler is new, so insert the newly computed pareto optimal point.
// Due to numerical issues, however, it might be the case that the updated overapproximation will not contain the underapproximation,
// e.g., when the new point is strictly contained in the underapproximation. Check if this is the case.
RationalNumberType computedOffset = storm : : utility : : vector : : dotProduct ( weightedObjectivesResult , direction ) ;
RationalNumberType minimumOffset = computedOffset ;
for ( auto const & paretoPoint : paretoOptimalPoints ) {
minimumOffset = std : : max ( minimumOffset , storm : : utility : : vector : : dotProduct ( paretoPoint . first , direction ) ) ;
}
if ( minimumOffset > computedOffset ) {
// We correct the issue by shifting the weightedObjectivesResult in the given direction such that
// it lies on the hyperplane given by direction and minimumOffset
WeightVector correction ( direction ) ;
storm : : utility : : vector : : scaleVectorInPlace ( correction , ( minimumOffset - computedOffset ) / storm : : utility : : vector : : dotProduct ( direction , direction ) ) ;
storm : : utility : : vector : : addVectors ( weightedObjectivesResult , correction , weightedObjectivesResult ) ;
STORM_LOG_WARN ( " Numerical issues: The weightedObjectivesResult has to be shifted by " < < storm : : utility : : sqrt ( storm : : utility : : vector : : dotProduct ( correction , correction ) ) ) ;
}
// Now insert the point. For the corresponding scheduler, we safe the entry in the map.
schedulerInsertRes . first - > second = paretoOptimalPoints . insert ( std : : make_pair ( std : : move ( weightedObjectivesResult ) , std : : vector < WeightVector > ( ) ) ) . first ;
}
// In the case where the scheduler is not new, we assume that the corresponding pareto optimal points for the old and new scheduler are equal.
// hence, no additional point will be inserted.
// Note that the values might not be exactly equal due to numerical issues.
Point const & paretoPoint = schedulerInsertRes . first - > second - > first ;
std : : vector < WeightVector > & weightVectors = schedulerInsertRes . first - > second - > second ;
weightVectors . push_back ( direction ) ;
updateOverApproximation ( paretoPoint , weightVectors . back ( ) ) ;
updateUnderApproximation ( ) ;
}
template < class SparseModelType , typename RationalNumberType >
storm : : storage : : geometry : : Halfspace < RationalNumberType > SparseMultiObjectiveModelCheckerHelper < SparseModelType , RationalNumberType > : : findSeparatingHalfspace ( Point const & pointToBeSeparated , storm : : storage : : BitVector & individualObjectivesToBeChecked ) {
// First, we check 'simple' weight vectors that correspond to checking a single objective