Browse Source

Removed old LRA code for Markov automata.

main
Tim Quatmann 5 years ago
parent
commit
fa6c47db64
  1. 54
      src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.cpp
  2. 7
      src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.h
  3. 475
      src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp
  4. 28
      src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h

54
src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.cpp

@ -77,73 +77,19 @@ namespace storm {
}
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates) {
// Convert this query to an instance for the sparse engine.
storm::utility::Stopwatch conversionWatch(true);
// Create ODD for the translation.
storm::dd::Odd odd = model.getReachableStates().createOdd();
storm::storage::SparseMatrix<ValueType> explicitTransitionMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
std::vector<ValueType> explicitExitRateVector = exitRateVector.toVector(odd);
conversionWatch.stop();
STORM_LOG_INFO("Converting symbolic matrix to explicit representation done in " << conversionWatch.getTimeInMilliseconds() << "ms.");
auto explicitResult = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(env, dir, explicitTransitionMatrix, explicitTransitionMatrix.transpose(true), explicitExitRateVector, markovianStates.toVector(odd), psiStates.toVector(odd));
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(explicitResult)));
}
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, typename storm::models::symbolic::Model<DdType, ValueType>::RewardModelType const& rewardModel) {
// Convert this query to an instance for the sparse engine.
storm::utility::Stopwatch conversionWatch(true);
// Create ODD for the translation.
storm::dd::Odd odd = model.getReachableStates().createOdd();
std::vector<ValueType> explicitExitRateVector = exitRateVector.toVector(odd);
storm::storage::SparseMatrix<ValueType> explicitTransitionMatrix;
boost::optional<std::vector<ValueType>> optionalStateRewards, optionalStateActionRewards;
if (rewardModel.hasStateRewards()) {
optionalStateRewards = rewardModel.getStateRewardVector().toVector(odd);
}
if (rewardModel.hasStateActionRewards()) {
auto matrixRewards = transitionMatrix.toMatrixVector(rewardModel.getStateActionRewardVector(), model.getNondeterminismVariables(), odd, odd);
explicitTransitionMatrix = std::move(matrixRewards.first);
optionalStateActionRewards = std::move(matrixRewards.second);
} else {
explicitTransitionMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
}
STORM_LOG_THROW(!rewardModel.hasTransitionRewards(), storm::exceptions::NotSupportedException, "Transition rewards are not supported in this engine.");
storm::models::sparse::StandardRewardModel<ValueType> explicitRewardModel(optionalStateRewards, optionalStateActionRewards);
conversionWatch.stop();
STORM_LOG_INFO("Converting symbolic matrix to explicit representation done in " << conversionWatch.getTimeInMilliseconds() << "ms.");
auto explicitResult = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(env, dir, explicitTransitionMatrix, explicitTransitionMatrix.transpose(true), explicitExitRateVector, markovianStates.toVector(odd), explicitRewardModel);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(explicitResult)));
}
// Explicit instantiations.
// Cudd, double.
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::CUDD, double>::RewardModelType const& rewardModel, storm::dd::Bdd<storm::dd::DdType::CUDD> const& targetStates, bool qualitative);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, bool qualitative, double lowerBound, double upperBound);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::CUDD, double>::RewardModelType const& rewardModel);
// Sylvan, double.
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double>::RewardModelType const& rewardModel, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& targetStates, bool qualitative);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, bool qualitative, double lowerBound, double upperBound);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double>::RewardModelType const& rewardModel);
// Sylvan, rational number.
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber>::RewardModelType const& rewardModel, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& targetStates, bool qualitative);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, bool qualitative, double lowerBound, double upperBound);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber>::RewardModelType const& rewardModel);
}
}

7
src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.h

@ -27,13 +27,6 @@ namespace storm {
template<storm::dd::DdType DdType, typename ValueType, typename std::enable_if<!storm::NumberTraits<ValueType>::SupportsExponential, int>::type = 0>
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, double lowerBound, double upperBound);
template<storm::dd::DdType DdType, typename ValueType>
static std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates);
template<storm::dd::DdType DdType, typename ValueType>
static std::unique_ptr<CheckResult> computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, typename storm::models::symbolic::Model<DdType, ValueType>::RewardModelType const& rewardModel);
};
}

475
src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp

@ -717,198 +717,6 @@ namespace storm {
return SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(env, dir, transitionMatrix, backwardTransitions, scaledRewardModel, psiStates, false, produceScheduler);
}
template<typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates) {
uint64_t numberOfStates = transitionMatrix.getRowGroupCount();
// If there are no goal states, we avoid the computation and directly return zero.
if (psiStates.empty()) {
return std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
}
// Likewise, if all bits are set, we can avoid the computation and set.
if (psiStates.full()) {
return std::vector<ValueType>(numberOfStates, storm::utility::one<ValueType>());
}
// Otherwise, reduce the long run average probabilities to long run average rewards.
// Every Markovian goal state gets reward one.
std::vector<ValueType> stateRewards(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(stateRewards, markovianStates & psiStates, storm::utility::one<ValueType>());
storm::models::sparse::StandardRewardModel<ValueType> rewardModel(std::move(stateRewards));
return computeLongRunAverageRewards(env, dir, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, rewardModel);
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel) {
uint64_t numberOfStates = transitionMatrix.getRowGroupCount();
// Start by decomposing the Markov automaton into its MECs.
storm::storage::MaximalEndComponentDecomposition<ValueType> mecDecomposition(transitionMatrix, backwardTransitions);
// Get some data members for convenience.
std::vector<uint64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
// Now start with compute the long-run average for all end components in isolation.
std::vector<ValueType> lraValuesForEndComponents;
// While doing so, we already gather some information for the following steps.
std::vector<uint64_t> stateToMecIndexMap(numberOfStates);
storm::storage::BitVector statesInMecs(numberOfStates);
auto underlyingSolverEnvironment = env;
if (env.solver().isForceSoundness()) {
// For sound computations, the error in the MECS plus the error in the remaining system should be less then the user defined precsion.
underlyingSolverEnvironment.solver().minMax().setPrecision(env.solver().lra().getPrecision() / storm::utility::convertNumber<storm::RationalNumber>(2));
underlyingSolverEnvironment.solver().minMax().setRelativeTerminationCriterion(env.solver().lra().getRelativeTerminationCriterion());
underlyingSolverEnvironment.solver().lra().setPrecision(env.solver().lra().getPrecision() / storm::utility::convertNumber<storm::RationalNumber>(2));
}
for (uint64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) {
storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex];
// Gather information for later use.
for (auto const& stateChoicesPair : mec) {
uint64_t state = stateChoicesPair.first;
statesInMecs.set(state);
stateToMecIndexMap[state] = currentMecIndex;
}
// Compute the LRA value for the current MEC.
lraValuesForEndComponents.push_back(computeLraForMaximalEndComponent(underlyingSolverEnvironment, dir, transitionMatrix, exitRateVector, markovianStates, rewardModel, mec));
}
// For fast transition rewriting, we build some auxiliary data structures.
storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs;
uint64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits();
uint64_t lastStateNotInMecs = 0;
uint64_t numberOfStatesNotInMecs = 0;
std::vector<uint64_t> statesNotInMecsBeforeIndex;
statesNotInMecsBeforeIndex.reserve(numberOfStates);
for (auto state : statesNotContainedInAnyMec) {
while (lastStateNotInMecs <= state) {
statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs);
++lastStateNotInMecs;
}
++numberOfStatesNotInMecs;
}
uint64_t numberOfSspStates = numberOfStatesNotInMecs + mecDecomposition.size();
// Finally, we are ready to create the SSP matrix and right-hand side of the SSP.
std::vector<ValueType> b;
typename storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, numberOfSspStates , 0, false, true, numberOfSspStates);
// If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications).
uint64_t currentChoice = 0;
for (auto state : statesNotContainedInAnyMec) {
sspMatrixBuilder.newRowGroup(currentChoice);
for (uint64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) {
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size());
b.push_back(storm::utility::zero<ValueType>());
for (auto element : transitionMatrix.getRow(choice)) {
if (statesNotContainedInAnyMec.get(element.getColumn())) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue());
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue();
}
}
// Now insert all (cumulative) probability values that target an MEC.
for (uint64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) {
if (auxiliaryStateToProbabilityMap[mecIndex] != 0) {
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]);
}
}
}
}
// Now we are ready to construct the choices for the auxiliary states.
for (uint64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) {
storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex];
sspMatrixBuilder.newRowGroup(currentChoice);
for (auto const& stateChoicesPair : mec) {
uint64_t state = stateChoicesPair.first;
storm::storage::FlatSet<uint64_t> const& choicesInMec = stateChoicesPair.second;
for (uint64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
// If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state.
if (choicesInMec.find(choice) == choicesInMec.end()) {
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size());
b.push_back(storm::utility::zero<ValueType>());
for (auto element : transitionMatrix.getRow(choice)) {
if (statesNotContainedInAnyMec.get(element.getColumn())) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue());
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue();
}
}
// Now insert all (cumulative) probability values that target an MEC.
for (uint64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) {
if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) {
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]);
}
}
++currentChoice;
}
}
}
// For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC.
++currentChoice;
b.push_back(lraValuesForEndComponents[mecIndex]);
}
// Finalize the matrix and solve the corresponding system of equations.
storm::storage::SparseMatrix<ValueType> sspMatrix = sspMatrixBuilder.build(currentChoice, numberOfSspStates, numberOfSspStates);
std::vector<ValueType> x(numberOfSspStates);
// Check for requirements of the solver.
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxLinearEquationSolverFactory;
storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements(underlyingSolverEnvironment, true, true, dir);
requirements.clearBounds();
STORM_LOG_THROW(!requirements.hasEnabledCriticalRequirement(), storm::exceptions::UncheckedRequirementException, "Solver requirements " + requirements.getEnabledRequirementsAsString() + " not checked.");
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(underlyingSolverEnvironment, sspMatrix);
solver->setHasUniqueSolution();
solver->setHasNoEndComponents();
solver->setLowerBound(storm::utility::zero<ValueType>());
solver->setUpperBound(*std::max_element(lraValuesForEndComponents.begin(), lraValuesForEndComponents.end()));
solver->setRequirementsChecked();
solver->solveEquations(underlyingSolverEnvironment, dir, x, b);
// Prepare result vector.
std::vector<ValueType> result(numberOfStates);
// Set the values for states not contained in MECs.
storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, x);
// Set the values for all states in MECs.
for (auto state : statesInMecs) {
result[state] = x[firstAuxiliaryStateIndex + stateToMecIndexMap[state]];
}
return result;
}
template <typename ValueType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseMarkovAutomatonCslHelper::computeReachabilityTimes(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool produceScheduler) {
@ -922,268 +730,6 @@ namespace storm {
return SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(env, dir, transitionMatrix, backwardTransitions, rewardModel, psiStates, false, produceScheduler);
}
template<typename ValueType, typename RewardModelType>
ValueType SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponent(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::MaximalEndComponent const& mec) {
// If the mec only consists of a single state, we compute the LRA value directly
if (++mec.begin() == mec.end()) {
uint64_t state = mec.begin()->first;
STORM_LOG_THROW(markovianStates.get(state), storm::exceptions::InvalidOperationException, "Markov Automaton has Zeno behavior. Computation of Long Run Average values not supported.");
ValueType result = rewardModel.hasStateRewards() ? rewardModel.getStateReward(state) : storm::utility::zero<ValueType>();
if (rewardModel.hasStateActionRewards() || rewardModel.hasTransitionRewards()) {
STORM_LOG_ASSERT(mec.begin()->second.size() == 1, "Markovian state has nondeterministic behavior.");
uint64_t choice = *mec.begin()->second.begin();
result += exitRateVector[state] * rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, storm::utility::zero<ValueType>());
}
return result;
}
// Solve MEC with the method specified in the settings
storm::solver::LraMethod method = env.solver().lra().getNondetLraMethod();
if ((storm::NumberTraits<ValueType>::IsExact || env.solver().isForceExact()) && env.solver().lra().isNondetLraMethodSetFromDefault() && method != storm::solver::LraMethod::LinearProgramming) {
STORM_LOG_INFO("Selecting 'LP' as the solution technique for long-run properties to guarantee exact results. If you want to override this, please explicitly specify a different LRA method.");
method = storm::solver::LraMethod::LinearProgramming;
} else if (env.solver().isForceSoundness() && env.solver().lra().isNondetLraMethodSetFromDefault() && method != storm::solver::LraMethod::ValueIteration) {
STORM_LOG_INFO("Selecting 'VI' as the solution technique for long-run properties to guarantee sound results. If you want to override this, please explicitly specify a different LRA method.");
method = storm::solver::LraMethod::ValueIteration;
}
if (method == storm::solver::LraMethod::LinearProgramming) {
return computeLraForMaximalEndComponentLP(env, dir, transitionMatrix, exitRateVector, markovianStates, rewardModel, mec);
} else if (method == storm::solver::LraMethod::ValueIteration) {
return computeLraForMaximalEndComponentVI(env, dir, transitionMatrix, exitRateVector, markovianStates, rewardModel, mec);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Unsupported technique.");
}
}
template<typename ValueType, typename RewardModelType>
ValueType SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponentLP(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::MaximalEndComponent const& mec) {
std::unique_ptr<storm::utility::solver::LpSolverFactory<ValueType>> lpSolverFactory(new storm::utility::solver::LpSolverFactory<ValueType>());
std::unique_ptr<storm::solver::LpSolver<ValueType>> solver = lpSolverFactory->create("LRA for MEC");
solver->setOptimizationDirection(invert(dir));
// First, we need to create the variables for the problem.
std::map<uint64_t, storm::expressions::Variable> stateToVariableMap;
for (auto const& stateChoicesPair : mec) {
std::string variableName = "x" + std::to_string(stateChoicesPair.first);
stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName);
}
storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", storm::utility::one<ValueType>());
solver->update();
// Now we encode the problem as constraints.
std::vector<uint64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
for (auto const& stateChoicesPair : mec) {
uint64_t state = stateChoicesPair.first;
// Now, based on the type of the state, create a suitable constraint.
if (markovianStates.get(state)) {
STORM_LOG_ASSERT(stateChoicesPair.second.size() == 1, "Markovian state " << state << " is not deterministic: It has " << stateChoicesPair.second.size() << " choices.");
uint64_t choice = *stateChoicesPair.second.begin();
storm::expressions::Expression constraint = stateToVariableMap.at(state);
for (auto element : transitionMatrix.getRow(nondeterministicChoiceIndices[state])) {
constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getManager().rational((element.getValue()));
}
constraint = constraint + solver->getManager().rational(storm::utility::one<ValueType>() / exitRateVector[state]) * k;
storm::expressions::Expression rightHandSide = solver->getManager().rational(rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, (ValueType) (storm::utility::one<ValueType>() / exitRateVector[state])));
if (dir == OptimizationDirection::Minimize) {
constraint = constraint <= rightHandSide;
} else {
constraint = constraint >= rightHandSide;
}
solver->addConstraint("state" + std::to_string(state), constraint);
} else {
// For probabilistic states, we want to add the constraint x_s <= sum P(s, a, s') * x_s' where a is the current action
// and the sum ranges over all states s'.
for (auto choice : stateChoicesPair.second) {
storm::expressions::Expression constraint = stateToVariableMap.at(state);
for (auto element : transitionMatrix.getRow(choice)) {
constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getManager().rational(element.getValue());
}
storm::expressions::Expression rightHandSide = solver->getManager().rational(rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, storm::utility::zero<ValueType>()));
if (dir == OptimizationDirection::Minimize) {
constraint = constraint <= rightHandSide;
} else {
constraint = constraint >= rightHandSide;
}
solver->addConstraint("state" + std::to_string(state), constraint);
}
}
}
solver->optimize();
return solver->getContinuousValue(k);
}
template<typename ValueType, typename RewardModelType>
ValueType SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponentVI(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::MaximalEndComponent const& mec) {
// Initialize data about the mec
storm::storage::BitVector mecStates(transitionMatrix.getRowGroupCount(), false);
storm::storage::BitVector mecChoices(transitionMatrix.getRowCount(), false);
for (auto const& stateChoicesPair : mec) {
mecStates.set(stateChoicesPair.first);
for (auto const& choice : stateChoicesPair.second) {
mecChoices.set(choice);
}
}
storm::storage::BitVector markovianMecStates = mecStates & markovianStates;
storm::storage::BitVector probabilisticMecStates = mecStates & ~markovianStates;
storm::storage::BitVector probabilisticMecChoices = transitionMatrix.getRowFilter(probabilisticMecStates) & mecChoices;
STORM_LOG_THROW(!markovianMecStates.empty(), storm::exceptions::InvalidOperationException, "Markov Automaton has Zeno behavior. Computation of Long Run Average values not supported.");
bool hasProbabilisticStates = !probabilisticMecStates.empty();
// Get the uniformization rate
ValueType uniformizationRate = storm::utility::vector::max_if(exitRateVector, markovianMecStates);
// To ensure that the model is aperiodic, we need to make sure that every Markovian state gets a self loop.
// Hence, we increase the uniformization rate a little.
uniformizationRate *= (storm::utility::one<ValueType>() + storm::utility::convertNumber<ValueType>(env.solver().lra().getAperiodicFactor()));
// Get the transitions of the submodel, that is
// * a matrix aMarkovian with all (uniformized) transitions from Markovian mec states to all Markovian mec states.
// * a matrix aMarkovianToProbabilistic with all (uniformized) transitions from Markovian mec states to all probabilistic mec states.
// * a matrix aProbabilistic with all transitions from probabilistic mec states to other probabilistic mec states.
// * a matrix aProbabilisticToMarkovian with all transitions from probabilistic mec states to all Markovian mec states.
typename storm::storage::SparseMatrix<ValueType> aMarkovian = transitionMatrix.getSubmatrix(true, markovianMecStates, markovianMecStates, true);
typename storm::storage::SparseMatrix<ValueType> aMarkovianToProbabilistic, aProbabilistic, aProbabilisticToMarkovian;
if (hasProbabilisticStates) {
aMarkovianToProbabilistic = transitionMatrix.getSubmatrix(true, markovianMecStates, probabilisticMecStates);
aProbabilistic = transitionMatrix.getSubmatrix(false, probabilisticMecChoices, probabilisticMecStates);
aProbabilisticToMarkovian = transitionMatrix.getSubmatrix(false, probabilisticMecChoices, markovianMecStates);
}
// The matrices with transitions from Markovian states need to be uniformized.
uint64_t subState = 0;
for (auto state : markovianMecStates) {
ValueType uniformizationFactor = exitRateVector[state] / uniformizationRate;
if (hasProbabilisticStates) {
for (auto& entry : aMarkovianToProbabilistic.getRow(subState)) {
entry.setValue(entry.getValue() * uniformizationFactor);
}
}
for (auto& entry : aMarkovian.getRow(subState)) {
if (entry.getColumn() == subState) {
entry.setValue(storm::utility::one<ValueType>() - uniformizationFactor * (storm::utility::one<ValueType>() - entry.getValue()));
} else {
entry.setValue(entry.getValue() * uniformizationFactor);
}
}
++subState;
}
// Compute the rewards obtained in a single uniformization step
std::vector<ValueType> markovianChoiceRewards;
markovianChoiceRewards.reserve(aMarkovian.getRowCount());
for (auto const& state : markovianMecStates) {
ValueType stateRewardScalingFactor = storm::utility::one<ValueType>() / uniformizationRate;
ValueType actionRewardScalingFactor = exitRateVector[state] / uniformizationRate;
assert(transitionMatrix.getRowGroupSize(state) == 1);
uint64_t choice = transitionMatrix.getRowGroupIndices()[state];
markovianChoiceRewards.push_back(rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, stateRewardScalingFactor, actionRewardScalingFactor));
}
std::vector<ValueType> probabilisticChoiceRewards;
if (hasProbabilisticStates) {
probabilisticChoiceRewards.reserve(aProbabilistic.getRowCount());
for (auto const& state : probabilisticMecStates) {
uint64_t groupStart = transitionMatrix.getRowGroupIndices()[state];
uint64_t groupEnd = transitionMatrix.getRowGroupIndices()[state + 1];
for (uint64_t choice = probabilisticMecChoices.getNextSetIndex(groupStart); choice < groupEnd; choice = probabilisticMecChoices.getNextSetIndex(choice + 1)) {
probabilisticChoiceRewards.push_back(rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, storm::utility::zero<ValueType>()));
}
}
}
// start the iterations
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().lra().getPrecision()) / uniformizationRate;
bool relative = env.solver().lra().getRelativeTerminationCriterion();
std::vector<ValueType> v(aMarkovian.getRowCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> w = v;
std::vector<ValueType> x, b;
auto solverEnv = env;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver;
if (hasProbabilisticStates) {
if (env.solver().isForceSoundness()) {
// To get correct results, the inner equation systems are solved exactly.
// TODO investigate how an error would propagate
solverEnv.solver().setForceExact(true);
}
x.resize(aProbabilistic.getRowGroupCount(), storm::utility::zero<ValueType>());
b = probabilisticChoiceRewards;
solver = setUpProbabilisticStatesSolver(solverEnv, dir, aProbabilistic);
}
uint64_t iter = 0;
boost::optional<uint64_t> maxIter;
if (env.solver().lra().isMaximalIterationCountSet()) {
maxIter = env.solver().lra().getMaximalIterationCount();
}
while (!maxIter.is_initialized() || iter < maxIter.get()) {
++iter;
// Compute the expected total rewards for the probabilistic states
if (hasProbabilisticStates) {
if (solver) {
solver->solveEquations(solverEnv, dir, x, b);
} else {
storm::utility::vector::reduceVectorMinOrMax(dir, b, x, aProbabilistic.getRowGroupIndices());
}
}
// now compute the values for the markovian states. We also keep track of the maximal and minimal difference between two values (for convergence checking)
auto vIt = v.begin();
uint64_t row = 0;
ValueType newValue = markovianChoiceRewards[row] + aMarkovian.multiplyRowWithVector(row, w);
if (hasProbabilisticStates) {
newValue += aMarkovianToProbabilistic.multiplyRowWithVector(row, x);
}
ValueType maxDiff = newValue - *vIt;
ValueType minDiff = maxDiff;
*vIt = newValue;
for (++vIt, ++row; row < aMarkovian.getRowCount(); ++vIt, ++row) {
newValue = markovianChoiceRewards[row] + aMarkovian.multiplyRowWithVector(row, w);
if (hasProbabilisticStates) {
newValue += aMarkovianToProbabilistic.multiplyRowWithVector(row, x);
}
ValueType diff = newValue - *vIt;
maxDiff = std::max(maxDiff, diff);
minDiff = std::min(minDiff, diff);
*vIt = newValue;
}
// Check for convergence
if ((maxDiff - minDiff) <= (relative ? (precision * (v.front() + minDiff)) : precision)) {
break;
}
if (storm::utility::resources::isTerminate()) {
break;
}
// update the rhs of the MinMax equation system
ValueType referenceValue = v.front();
storm::utility::vector::applyPointwise<ValueType, ValueType>(v, w, [&referenceValue] (ValueType const& v_i) -> ValueType { return v_i - referenceValue; });
if (hasProbabilisticStates) {
aProbabilisticToMarkovian.multiplyWithVector(w, b);
storm::utility::vector::addVectors(b, probabilisticChoiceRewards, b);
}
}
if (maxIter.is_initialized() && iter == maxIter.get()) {
STORM_LOG_WARN("LRA computation did not converge within " << iter << " iterations.");
} else {
STORM_LOG_TRACE("LRA computation converged after " << iter << " iterations.");
}
return v.front() * uniformizationRate;
}
template std::vector<double> SparseMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, storm::solver::SolveGoal<double>&& goal, storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair);
template MDPSparseModelCheckingHelperReturnType<double> SparseMarkovAutomatonCslHelper::computeUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, bool produceScheduler);
@ -1192,18 +738,8 @@ namespace storm {
template MDPSparseModelCheckingHelperReturnType<double> SparseMarkovAutomatonCslHelper::computeTotalRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel, bool produceScheduler);
template std::vector<double> SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates);
template std::vector<double> SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel);
template MDPSparseModelCheckingHelperReturnType<double> SparseMarkovAutomatonCslHelper::computeReachabilityTimes(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool produceScheduler);
template double SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponent(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template double SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponentLP(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template double SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponentVI(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<double> const& transitionMatrix, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template std::vector<storm::RationalNumber> SparseMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, storm::solver::SolveGoal<storm::RationalNumber>&& goal, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair);
template MDPSparseModelCheckingHelperReturnType<storm::RationalNumber> SparseMarkovAutomatonCslHelper::computeUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, bool produceScheduler);
@ -1212,18 +748,7 @@ namespace storm {
template MDPSparseModelCheckingHelperReturnType<storm::RationalNumber> SparseMarkovAutomatonCslHelper::computeTotalRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<storm::RationalNumber> const& rewardModel, bool produceScheduler);
template std::vector<storm::RationalNumber> SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates);
template std::vector<storm::RationalNumber> SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<storm::RationalNumber> const& rewardModel);
template MDPSparseModelCheckingHelperReturnType<storm::RationalNumber> SparseMarkovAutomatonCslHelper::computeReachabilityTimes(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, storm::storage::SparseMatrix<storm::RationalNumber> const& backwardTransitions, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool produceScheduler);
template storm::RationalNumber SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponent(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<storm::RationalNumber> const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template storm::RationalNumber SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponentLP(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<storm::RationalNumber> const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template storm::RationalNumber SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponentVI(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<storm::RationalNumber> const& transitionMatrix, std::vector<storm::RationalNumber> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<storm::RationalNumber> const& rewardModel, storm::storage::MaximalEndComponent const& mec);
}
}
}

28
src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h

@ -34,37 +34,9 @@ namespace storm {
template <typename ValueType, typename RewardModelType>
static MDPSparseModelCheckingHelperReturnType<ValueType> computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool produceScheduler);
template <typename ValueType>
static std::vector<ValueType> computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates);
template <typename ValueType, typename RewardModelType>
static std::vector<ValueType> computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel);
template <typename ValueType>
static MDPSparseModelCheckingHelperReturnType<ValueType> computeReachabilityTimes(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool produceScheduler);
private:
/*!
* Computes the long-run average value for the given maximal end component of a Markov automaton.
*
* Implementations are based on Linear Programming (LP) and Value Iteration (VI).
*
* @param dir Sets whether the long-run average is to be minimized or maximized.
* @param transitionMatrix The transition matrix of the underlying Markov automaton.
* @param markovianStates A bit vector storing all markovian states.
* @param exitRateVector A vector with exit rates for all states. Exit rates of probabilistic states are
* assumed to be zero.
* @param rewardModel The considered reward model
* @param actionRewards The action rewards (earned instantaneously).
* @param mec The maximal end component to consider for computing the long-run average.
* @return The long-run average of being in a goal state for the given MEC.
*/
template <typename ValueType, typename RewardModelType>
static ValueType computeLraForMaximalEndComponent(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template <typename ValueType, typename RewardModelType>
static ValueType computeLraForMaximalEndComponentLP(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::MaximalEndComponent const& mec);
template <typename ValueType, typename RewardModelType>
static ValueType computeLraForMaximalEndComponentVI(Environment const& env, OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::MaximalEndComponent const& mec);
};

Loading…
Cancel
Save