Browse Source

hybrid and symbolic model checkers working with sylvan

Former-commit-id: d01b92e328
main
dehnert 10 years ago
parent
commit
f8fc39870a
  1. 1
      src/modelchecker/csl/HybridCtmcCslModelChecker.cpp
  2. 2
      src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp
  3. 1
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp
  4. 1
      src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp
  5. 3
      src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp
  6. 1
      src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp
  7. 3
      src/modelchecker/results/HybridQuantitativeCheckResult.cpp
  8. 2
      src/solver/NativeLinearEquationSolver.cpp
  9. 10
      src/storage/dd/cudd/InternalCuddBdd.cpp
  10. 12
      src/storage/dd/sylvan/InternalSylvanBdd.cpp
  11. 307
      test/functional/modelchecker/GmmxxHybridCtmcCslModelCheckerTest.cpp
  12. 162
      test/functional/modelchecker/GmmxxHybridDtmcPrctlModelCheckerTest.cpp
  13. 181
      test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp
  14. 344
      test/functional/modelchecker/NativeHybridCtmcCslModelCheckerTest.cpp
  15. 162
      test/functional/modelchecker/NativeHybridDtmcPrctlModelCheckerTest.cpp
  16. 179
      test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp
  17. 20
      test/functional/modelchecker/SymbolicDtmcPrctlModelCheckerTest.cpp

1
src/modelchecker/csl/HybridCtmcCslModelChecker.cpp

@ -97,6 +97,7 @@ namespace storm {
// Explicitly instantiate the model checker.
template class HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, double>;
template class HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double>;
} // namespace modelchecker
} // namespace storm

2
src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp

@ -286,6 +286,7 @@ namespace storm {
std::vector<ValueType> explicitExitRateVector = exitRateVector.toVector(odd);
std::vector<ValueType> result = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(explicitProbabilityMatrix, psiStates.toVector(odd), &explicitExitRateVector, qualitative, linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(result)));
}
@ -313,6 +314,7 @@ namespace storm {
}
template class HybridCtmcCslHelper<storm::dd::DdType::CUDD, double>;
template class HybridCtmcCslHelper<storm::dd::DdType::Sylvan, double>;
}
}

1
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp

@ -103,5 +103,6 @@ namespace storm {
}
template class HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, double>;
template class HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double>;
}
}

1
src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp

@ -89,5 +89,6 @@ namespace storm {
}
template class HybridMdpPrctlModelChecker<storm::dd::DdType::CUDD, double>;
template class HybridMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double>;
}
}

3
src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp

@ -51,7 +51,7 @@ namespace storm {
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType, ValueType> prob1StatesAsColumn = statesWithProbability01.second.template toAdd<ValueType>();
@ -241,6 +241,7 @@ namespace storm {
}
template class HybridDtmcPrctlHelper<storm::dd::DdType::CUDD, double>;
template class HybridDtmcPrctlHelper<storm::dd::DdType::Sylvan, double>;
}
}
}

1
src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp

@ -261,6 +261,7 @@ namespace storm {
}
template class HybridMdpPrctlHelper<storm::dd::DdType::CUDD, double>;
template class HybridMdpPrctlHelper<storm::dd::DdType::Sylvan, double>;
}
}
}

3
src/modelchecker/results/HybridQuantitativeCheckResult.cpp

@ -12,6 +12,7 @@ namespace storm {
namespace modelchecker {
template<storm::dd::DdType Type, typename ValueType>
HybridQuantitativeCheckResult<Type, ValueType>::HybridQuantitativeCheckResult(storm::dd::Bdd<Type> const& reachableStates, storm::dd::Bdd<Type> const& symbolicStates, storm::dd::Add<Type, ValueType> const& symbolicValues, storm::dd::Bdd<Type> const& explicitStates, storm::dd::Odd const& odd, std::vector<ValueType> const& explicitValues) : reachableStates(reachableStates), symbolicStates(symbolicStates), symbolicValues(symbolicValues), explicitStates(explicitStates), odd(odd), explicitValues(explicitValues) {
// Intentionally left empty.
}
@ -134,6 +135,7 @@ namespace storm {
// Then compute the new vector of explicit values and set the new data fields.
this->explicitValues = explicitStates.filterExplicitVector(this->odd, explicitValues);
this->odd = newOdd;
}
@ -164,5 +166,6 @@ namespace storm {
// Explicitly instantiate the class.
template class HybridQuantitativeCheckResult<storm::dd::DdType::CUDD>;
template class HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>;
}
}

2
src/solver/NativeLinearEquationSolver.cpp

@ -102,7 +102,7 @@ namespace storm {
// Increase iteration count so we can abort if convergence is too slow.
++iterationCount;
}
// If the last iteration did not write to the original x we have to swap the contents, because the
// output has to be written to the input parameter x.
if (currentX == copyX) {

10
src/storage/dd/cudd/InternalCuddBdd.cpp

@ -382,15 +382,7 @@ namespace storm {
}
if (currentLevel == maxLevel) {
// If the DD is not the zero leaf, then the then-offset is 1.
bool selected = false;
if (dd != Cudd_ReadLogicZero(manager.getManager())) {
selected = !complement;
}
if (selected) {
result[currentIndex++] = values[currentOffset];
}
result[currentIndex++] = values[currentOffset];
} else if (ddVariableIndices[currentLevel] < dd->index) {
// If we skipped a level, we need to enumerate the explicit entries for the case in which the bit is set
// and for the one in which it is not set.

12
src/storage/dd/sylvan/InternalSylvanBdd.cpp

@ -267,7 +267,7 @@ namespace storm {
bool thenComplemented = bdd_isnegated(thenDdNode) ^ complement;
toVectorRec(bdd_regular(elseDdNode), result, rowOdd.getElseSuccessor(), elseComplemented, currentRowLevel + 1, maxLevel, currentRowOffset, ddRowVariableIndices);
toVectorRec(bdd_regular(elseDdNode), result, rowOdd.getThenSuccessor(), thenComplemented, currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices);
toVectorRec(bdd_regular(thenDdNode), result, rowOdd.getThenSuccessor(), thenComplemented, currentRowLevel + 1, maxLevel, currentRowOffset + rowOdd.getElseOffset(), ddRowVariableIndices);
}
}
@ -354,15 +354,7 @@ namespace storm {
}
if (currentLevel == maxLevel) {
// If the DD is not the zero leaf, then the then-offset is 1.
bool selected = false;
if (dd != sylvan_false) {
selected = !complement;
}
if (selected) {
result[currentIndex++] = values[currentOffset];
}
result[currentIndex++] = values[currentOffset];
} else if (ddVariableIndices[currentLevel] < sylvan_var(dd)) {
// If we skipped a level, we need to enumerate the explicit entries for the case in which the bit is set
// and for the one in which it is not set.

307
test/functional/modelchecker/GmmxxHybridCtmcCslModelCheckerTest.cpp

@ -20,7 +20,7 @@
#include "src/settings/modules/NativeEquationSolverSettings.h"
TEST(GmmxxHybridCtmcCslModelCheckerTest, Cluster) {
TEST(GmmxxHybridCtmcCslModelCheckerTest, Cluster_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -117,7 +117,104 @@ TEST(GmmxxHybridCtmcCslModelCheckerTest, Cluster) {
EXPECT_NEAR(0.99999766034263426, quantitativeCheckResult8.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Embedded) {
TEST(GmmxxHybridCtmcCslModelCheckerTest, Cluster_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/cluster2.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("num_repairs");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=100 !\"minimum\"]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ F[100,100] !\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ F[100,2000] !\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ \"minimum\" U<=10 \"premium\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ \"minimum\" U[1,inf] !\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [C<=100]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"minimum\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult8 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.99999766034263426, quantitativeCheckResult8.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.99999766034263426, quantitativeCheckResult8.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Embedded_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -196,7 +293,86 @@ TEST(GmmxxHybridCtmcCslModelCheckerTest, Embedded) {
EXPECT_NEAR(0.934586179, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Polling) {
TEST(GmmxxHybridCtmcCslModelCheckerTest, Embedded_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/embedded2.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("up");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=10000 \"down\"]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"down\" U<=10000 \"fail_actuators\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"down\" U<=10000 \"fail_io\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"down\" U<=10000 \"fail_sensors\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [C<=10000]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"fail_sensors\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.934586179, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.934586179, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Polling_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -230,7 +406,42 @@ TEST(GmmxxHybridCtmcCslModelCheckerTest, Polling) {
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Polling_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/polling2.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model.
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=?[ F<=10 \"target\"]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"target\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Fms) {
@ -240,7 +451,7 @@ TEST(GmmxxHybridCtmcCslModelCheckerTest, Fms) {
// No properties to check at this point.
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Tandem) {
TEST(GmmxxHybridCtmcCslModelCheckerTest, Tandem_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -327,3 +538,91 @@ TEST(GmmxxHybridCtmcCslModelCheckerTest, Tandem) {
EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxHybridCtmcCslModelCheckerTest, Tandem_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/tandem5.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model with the customers reward structure.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("customers");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=10 \"network_full\" ]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=10 \"first_queue_full\" ]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [\"second_queue_full\" U<=1 !\"second_queue_full\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [I=10]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [C<=10]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [F \"first_queue_full\"&\"second_queue_full\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(262.85103498583413, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(262.85103498583413, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"first_queue_full\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
}

162
test/functional/modelchecker/GmmxxHybridDtmcPrctlModelCheckerTest.cpp

@ -18,7 +18,7 @@
#include "src/settings/modules/NativeEquationSolverSettings.h"
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Die) {
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Die_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/die.pm");
// A parser that we use for conveniently constructing the formulas.
@ -79,7 +79,68 @@ TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Die) {
EXPECT_NEAR(11.0/3.0, quantitativeResult4.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Crowds) {
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Die_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/die.pm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("coin_flips");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(13ul, model->getNumberOfStates());
EXPECT_EQ(20ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc);
std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("P=? [F \"one\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0/6.0, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0/6.0, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"two\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0/6.0, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0/6.0, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0/6.0, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0/6.0, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(11.0/3.0, quantitativeResult4.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(11.0/3.0, quantitativeResult4.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Crowds_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/crowds-5-5.pm");
// A parser that we use for conveniently constructing the formulas.
@ -123,7 +184,51 @@ TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Crowds) {
EXPECT_NEAR(0.32153724292835045, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, SynchronousLeader) {
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, Crowds_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/crowds-5-5.pm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program);
EXPECT_EQ(8607ul, model->getNumberOfStates());
EXPECT_EQ(15113ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc);
std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observe0Greater1\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.3328800375801578281, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.3328800375801578281, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observeIGreater1\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.1522194965, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.1522194965, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observeOnlyTrueSender\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.32153724292835045, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.32153724292835045, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, SynchronousLeader_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader-3-5.pm");
// A parser that we use for conveniently constructing the formulas.
@ -175,3 +280,54 @@ TEST(GmmxxHybridDtmcPrctlModelCheckerTest, SynchronousLeader) {
EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridDtmcPrctlModelCheckerTest, SynchronousLeader_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader-3-5.pm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("num_rounds");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(273ul, model->getNumberOfStates());
EXPECT_EQ(397ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc);
std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::GmmxxLinearEquationSolverFactory<double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("P=? [F \"elected\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F<=20 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.99999989760000074, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.99999989760000074, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}

181
test/functional/modelchecker/GmmxxHybridMdpPrctlModelCheckerTest.cpp

@ -20,7 +20,7 @@
#include "src/settings/modules/NativeEquationSolverSettings.h"
#include "src/settings/modules/GmmxxEquationSolverSettings.h"
TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice) {
TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
// A parser that we use for conveniently constructing the formulas.
@ -117,7 +117,104 @@ TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice) {
EXPECT_NEAR(7.3333294987678528, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
TEST(GmmxxHybridMdpPrctlModelCheckerTest, Dice_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("coinflips");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(169ul, model->getNumberOfStates());
EXPECT_EQ(436ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(storm::solver::EquationSolverTypeSelection::Gmmxx)));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"two\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"two\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult7 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(7.3333294987678528, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333294987678528, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult8 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(7.3333294987678528, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333294987678528, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
// A parser that we use for conveniently constructing the formulas.
@ -195,3 +292,83 @@ TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(GmmxxHybridMdpPrctlModelCheckerTest, AsynchronousLeader_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("rounds");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(3172ul, model->getNumberOfStates());
EXPECT_EQ(7144ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(storm::solver::EquationSolverTypeSelection::Gmmxx)));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"elected\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(4.2856896106114934, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856896106114934, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}

344
test/functional/modelchecker/NativeHybridCtmcCslModelCheckerTest.cpp

@ -19,7 +19,7 @@
#include "src/settings/modules/NativeEquationSolverSettings.h"
TEST(NativeHybridCtmcCslModelCheckerTest, Cluster) {
TEST(NativeHybridCtmcCslModelCheckerTest, Cluster_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -106,9 +106,114 @@ TEST(NativeHybridCtmcCslModelCheckerTest, Cluster) {
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"minimum\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult8 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.99979112284455396, quantitativeCheckResult8.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.99979112284455396, quantitativeCheckResult8.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Cluster_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/cluster2.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("num_repairs");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=100 !\"minimum\"]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ F[100,100] !\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ F[100,2000] !\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.001105335651670241, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ \"minimum\" U<=10 \"premium\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ \"minimum\" U[1,inf] !\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.9999999033633374, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [C<=100]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"minimum\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult8 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.99979112284455396, quantitativeCheckResult8.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.99979112284455396, quantitativeCheckResult8.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Embedded) {
TEST(NativeHybridCtmcCslModelCheckerTest, Embedded_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -177,9 +282,96 @@ TEST(NativeHybridCtmcCslModelCheckerTest, Embedded) {
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"fail_sensors\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.93458777106146362, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.93458777106146362, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Polling) {
TEST(NativeHybridCtmcCslModelCheckerTest, Embedded_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/embedded2.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("up");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=10000 \"down\"]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"down\" U<=10000 \"fail_actuators\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"down\" U<=10000 \"fail_io\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ !\"down\" U<=10000 \"fail_sensors\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [C<=10000]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"fail_sensors\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.93458777106146362, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.93458777106146362, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Polling_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -205,6 +397,50 @@ TEST(NativeHybridCtmcCslModelCheckerTest, Polling) {
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(1, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"target\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Polling_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/polling2.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model.
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=?[ F<=10 \"target\"]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"target\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.20079750055570736, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Fms) {
@ -214,7 +450,7 @@ TEST(NativeHybridCtmcCslModelCheckerTest, Fms) {
// No properties to check at this point.
}
TEST(NativeHybridCtmcCslModelCheckerTest, Tandem) {
TEST(NativeHybridCtmcCslModelCheckerTest, Tandem_Cudd) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
@ -292,4 +528,104 @@ TEST(NativeHybridCtmcCslModelCheckerTest, Tandem) {
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(262.78571505691389, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(262.78571505691389, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"first_queue_full\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::CUDD> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
// FIXME: because of divergence, these results are not correct.
// EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
// EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
}
TEST(NativeHybridCtmcCslModelCheckerTest, Tandem_Sylvan) {
// Set the PRISM compatibility mode temporarily. It is set to its old value once the returned object is destructed.
std::unique_ptr<storm::settings::SettingMemento> enablePrismCompatibility = storm::settings::mutableGeneralSettings().overridePrismCompatibilityMode(true);
// Parse the model description.
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/tandem5.sm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
std::shared_ptr<storm::logic::Formula> formula(nullptr);
// Build the model with the customers reward structure.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("customers");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType());
std::shared_ptr<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>> ctmc = model->as<storm::models::symbolic::Ctmc<storm::dd::DdType::Sylvan>>();
// Create model checker.
storm::modelchecker::HybridCtmcCslModelChecker<storm::dd::DdType::Sylvan, double> modelchecker(*ctmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
// Start checking properties.
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=10 \"network_full\" ]");
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult1 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [ F<=10 \"first_queue_full\" ]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult2 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [\"second_queue_full\" U<=1 !\"second_queue_full\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult3 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeCheckResult3.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(1, quantitativeCheckResult3.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [I=10]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult4 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(5.679243850315877, quantitativeCheckResult4.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [C<=10]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult5 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(55.44792186036232, quantitativeCheckResult5.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [F \"first_queue_full\"&\"second_queue_full\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isHybridQuantitativeCheckResult());
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult6 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(262.78571505691389, quantitativeCheckResult6.getMin(), storm::settings::generalSettings().getPrecision());
EXPECT_NEAR(262.78571505691389, quantitativeCheckResult6.getMax(), storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("LRA=? [\"first_queue_full\"]");
checkResult = modelchecker.check(*formula);
checkResult->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(ctmc->getReachableStates(), ctmc->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan> quantitativeCheckResult7 = checkResult->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
// FIXME: because of divergence, these results are not correct.
// EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMin(), storm::settings::generalSettings().getPrecision());
// EXPECT_NEAR(0.9100373532, quantitativeCheckResult7.getMax(), storm::settings::generalSettings().getPrecision());
}

162
test/functional/modelchecker/NativeHybridDtmcPrctlModelCheckerTest.cpp

@ -19,7 +19,7 @@
#include "src/settings/modules/NativeEquationSolverSettings.h"
TEST(NativeHybridDtmcPrctlModelCheckerTest, Die) {
TEST(NativeHybridDtmcPrctlModelCheckerTest, Die_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/die.pm");
// A parser that we use for conveniently constructing the formulas.
@ -80,7 +80,68 @@ TEST(NativeHybridDtmcPrctlModelCheckerTest, Die) {
EXPECT_NEAR(3.6666646003723145, quantitativeResult4.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(NativeHybridDtmcPrctlModelCheckerTest, Crowds) {
TEST(NativeHybridDtmcPrctlModelCheckerTest, Die_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/die.pm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("coin_flips");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(13ul, model->getNumberOfStates());
EXPECT_EQ(20ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc);
std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("P=? [F \"one\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0/6.0, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0/6.0, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"two\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0/6.0, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0/6.0, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0/6.0, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0/6.0, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(3.6666646003723145, quantitativeResult4.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(3.6666646003723145, quantitativeResult4.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(NativeHybridDtmcPrctlModelCheckerTest, Crowds_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/crowds-5-5.pm");
// A parser that we use for conveniently constructing the formulas.
@ -124,7 +185,51 @@ TEST(NativeHybridDtmcPrctlModelCheckerTest, Crowds) {
EXPECT_NEAR(0.32153900158185761, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(NativeHybridDtmcPrctlModelCheckerTest, SynchronousLeader) {
TEST(NativeHybridDtmcPrctlModelCheckerTest, Crowds_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/crowds-5-5.pm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program);
EXPECT_EQ(8607ul, model->getNumberOfStates());
EXPECT_EQ(15113ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc);
std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observe0Greater1\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.33288205191646525, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.33288205191646525, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observeIGreater1\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.15222066094730619, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.15222066094730619, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observeOnlyTrueSender\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.32153900158185761, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.32153900158185761, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(NativeHybridDtmcPrctlModelCheckerTest, SynchronousLeader_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader-3-5.pm");
// A parser that we use for conveniently constructing the formulas.
@ -176,3 +281,54 @@ TEST(NativeHybridDtmcPrctlModelCheckerTest, SynchronousLeader) {
EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}
TEST(NativeHybridDtmcPrctlModelCheckerTest, SynchronousLeader_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader-3-5.pm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("num_rounds");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(273ul, model->getNumberOfStates());
EXPECT_EQ(397ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Dtmc);
std::shared_ptr<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>> dtmc = model->as<storm::models::symbolic::Dtmc<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridDtmcPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*dtmc, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<double>>(new storm::utility::solver::NativeLinearEquationSolverFactory<double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("P=? [F \"elected\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0, quantitativeResult1.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0, quantitativeResult1.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F<=20 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.99999989760000074, quantitativeResult2.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.99999989760000074, quantitativeResult2.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("R=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMin(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
EXPECT_NEAR(1.0416666666666643, quantitativeResult3.getMax(), storm::settings::gmmxxEquationSolverSettings().getPrecision());
}

179
test/functional/modelchecker/NativeHybridMdpPrctlModelCheckerTest.cpp

@ -18,7 +18,7 @@
#include "src/settings/modules/NativeEquationSolverSettings.h"
TEST(NativeHybridMdpPrctlModelCheckerTest, Dice) {
TEST(NativeHybridMdpPrctlModelCheckerTest, Dice_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
// A parser that we use for conveniently constructing the formulas.
@ -114,7 +114,103 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, Dice) {
EXPECT_NEAR(7.3333294987678528, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
TEST(NativeHybridMdpPrctlModelCheckerTest, Dice_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("coinflips");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(169ul, model->getNumberOfStates());
EXPECT_EQ(436ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(storm::solver::EquationSolverTypeSelection::Native)));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"two\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"two\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult7 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(7.3333294987678528, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333294987678528, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult8 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(7.3333294987678528, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333294987678528, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
// A parser that we use for conveniently constructing the formulas.
@ -192,3 +288,82 @@ TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader) {
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(NativeHybridMdpPrctlModelCheckerTest, AsynchronousLeader_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("rounds");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::translateProgram(program, options);
EXPECT_EQ(3172ul, model->getNumberOfStates());
EXPECT_EQ(7144ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>>();
storm::modelchecker::HybridMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(storm::solver::EquationSolverTypeSelection::Native)));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"elected\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult5 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(4.2856896106114934, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856896106114934, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::HybridQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult6 = result->asHybridQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856896106114934, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}

20
test/functional/modelchecker/SymbolicDtmcPrctlModelCheckerTest.cpp

@ -135,8 +135,9 @@ TEST(SymbolicDtmcPrctlModelCheckerTest, Die_Sylvan) {
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(3.6666622161865234, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(3.6666622161865234, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
// FIXME: precision is not optimal.
EXPECT_NEAR(3.6666622161865234, quantitativeResult4.getMin(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(3.6666622161865234, quantitativeResult4.getMax(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(SymbolicDtmcPrctlModelCheckerTest, Crowds_Cudd) {
@ -205,8 +206,9 @@ TEST(SymbolicDtmcPrctlModelCheckerTest, Crowds_Sylvan) {
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.33288236360191303, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.33288236360191303, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
// FIXME: precision not optimal.
EXPECT_NEAR(0.33288236360191303, quantitativeResult1.getMin(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.33288236360191303, quantitativeResult1.getMax(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observeIGreater1\"]");
@ -214,8 +216,9 @@ TEST(SymbolicDtmcPrctlModelCheckerTest, Crowds_Sylvan) {
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.15222081144084315, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.15222081144084315, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
// FIXME: precision not optimal.
EXPECT_NEAR(0.15222081144084315, quantitativeResult2.getMin(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.15222081144084315, quantitativeResult2.getMax(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("P=? [F \"observeOnlyTrueSender\"]");
@ -223,8 +226,9 @@ TEST(SymbolicDtmcPrctlModelCheckerTest, Crowds_Sylvan) {
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.3215392962289586, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.3215392962289586, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
// FIXME: precision not optimal.
EXPECT_NEAR(0.3215392962289586, quantitativeResult3.getMin(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.3215392962289586, quantitativeResult3.getMax(), 10 * storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(SymbolicDtmcPrctlModelCheckerTest, SynchronousLeader_Cudd) {

Loading…
Cancel
Save