Browse Source

moved reward model template parameter from helper classes to the affected functions. this sadly excludes the SparseDtmcPrctlHelper for which clang then produces a segfault (bug report pending)

Former-commit-id: 8e9f0b29d4
main
dehnert 10 years ago
parent
commit
f51e8eeaea
  1. 10
      src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp
  2. 58
      src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp
  3. 8
      src/modelchecker/csl/helper/SparseCtmcCslHelper.h
  4. 36
      src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp
  5. 5
      src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h
  6. 2
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp

10
src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp

@ -37,7 +37,7 @@ namespace storm {
STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute time-bounded reachability probabilities in non-closed Markov automaton."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute time-bounded reachability probabilities in non-closed Markov automaton.");
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rightResult.getTruthValuesVector(), pathFormula.getIntervalBounds(), *minMaxLinearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeBoundedUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rightResult.getTruthValuesVector(), pathFormula.getIntervalBounds(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
} }
@ -48,7 +48,7 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula()); std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult& leftResult = leftResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult& rightResult = rightResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
} }
@ -58,7 +58,7 @@ namespace storm {
STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute reachability rewards in non-closed Markov automaton."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute reachability rewards in non-closed Markov automaton.");
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula()); std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeReachabilityRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeReachabilityRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
} }
@ -68,7 +68,7 @@ namespace storm {
STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute long-run average in non-closed Markov automaton."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute long-run average in non-closed Markov automaton.");
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula); std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeLongRunAverage(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverage(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
} }
@ -78,7 +78,7 @@ namespace storm {
STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute expected times in non-closed Markov automaton."); STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute expected times in non-closed Markov automaton.");
std::unique_ptr<CheckResult> subResultPointer = this->check(eventuallyFormula.getSubformula()); std::unique_ptr<CheckResult> subResultPointer = this->check(eventuallyFormula.getSubformula());
ExplicitQualitativeCheckResult& subResult = subResultPointer->asExplicitQualitativeCheckResult(); ExplicitQualitativeCheckResult& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeExpectedTimes(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeExpectedTimes(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
} }

58
src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp

@ -2,6 +2,8 @@
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h" #include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/settings/SettingsManager.h" #include "src/settings/SettingsManager.h"
#include "src/settings/modules/GeneralSettings.h" #include "src/settings/modules/GeneralSettings.h"
@ -17,12 +19,11 @@
#include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h" #include "src/exceptions/InvalidPropertyException.h"
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
uint_fast64_t numberOfStates = rateMatrix.getRowCount(); uint_fast64_t numberOfStates = rateMatrix.getRowCount();
@ -186,18 +187,18 @@ namespace storm {
return result; return result;
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(computeProbabilityMatrix(rateMatrix, exitRateVector), backwardTransitions, phiStates, psiStates, qualitative, linearEquationSolverFactory);
template <typename ValueType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlHelper<ValueType>::computeUntilProbabilities(computeProbabilityMatrix(rateMatrix, exitRateVector), backwardTransitions, phiStates, psiStates, qualitative, linearEquationSolverFactory);
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(computeProbabilityMatrix(rateMatrix, exitRateVector), nextStates, linearEquationSolverFactory);
template <typename ValueType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlHelper<ValueType>::computeNextProbabilities(computeProbabilityMatrix(rateMatrix, exitRateVector), nextStates, linearEquationSolverFactory);
} }
template <typename ValueType, typename RewardModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates) {
template <typename ValueType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType>::computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates) {
STORM_LOG_DEBUG("Computing uniformized matrix using uniformization rate " << uniformizationRate << "."); STORM_LOG_DEBUG("Computing uniformized matrix using uniformization rate " << uniformizationRate << ".");
STORM_LOG_DEBUG("Keeping " << maybeStates.getNumberOfSetBits() << " rows."); STORM_LOG_DEBUG("Keeping " << maybeStates.getNumberOfSetBits() << " rows.");
@ -223,9 +224,9 @@ namespace storm {
return uniformizedMatrix; return uniformizedMatrix;
} }
template <typename ValueType, typename RewardModelType>
template <typename ValueType>
template<bool computeCumulativeReward> template<bool computeCumulativeReward>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
ValueType lambda = timeBound * uniformizationRate; ValueType lambda = timeBound * uniformizationRate;
@ -306,8 +307,9 @@ namespace storm {
return result; return result;
} }
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
template <typename ValueType>
template <typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel(). // Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -332,8 +334,9 @@ namespace storm {
return result; return result;
} }
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
template <typename ValueType>
template <typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel(). // Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -363,8 +366,9 @@ namespace storm {
return computeTransientProbabilities<true>(uniformizedMatrix, nullptr, timeBound, uniformizationRate, totalRewardVector, linearEquationSolverFactory); return computeTransientProbabilities<true>(uniformizedMatrix, nullptr, timeBound, uniformizationRate, totalRewardVector, linearEquationSolverFactory);
} }
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
template <typename ValueType>
template <typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
storm::storage::SparseMatrix<ValueType> probabilityMatrix = computeProbabilityMatrix(rateMatrix, exitRateVector); storm::storage::SparseMatrix<ValueType> probabilityMatrix = computeProbabilityMatrix(rateMatrix, exitRateVector);
@ -394,8 +398,8 @@ namespace storm {
return storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeReachabilityRewards(probabilityMatrix, backwardTransitions, totalRewardVector, targetStates, qualitative, linearEquationSolverFactory); return storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeReachabilityRewards(probabilityMatrix, backwardTransitions, totalRewardVector, targetStates, qualitative, linearEquationSolverFactory);
} }
template <typename ValueType, typename RewardModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
template <typename ValueType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType>::computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
// Turn the rates into probabilities by scaling each row with the exit rate of the state. // Turn the rates into probabilities by scaling each row with the exit rate of the state.
storm::storage::SparseMatrix<ValueType> result(rateMatrix); storm::storage::SparseMatrix<ValueType> result(rateMatrix);
for (uint_fast64_t row = 0; row < result.getRowCount(); ++row) { for (uint_fast64_t row = 0; row < result.getRowCount(); ++row) {
@ -406,8 +410,8 @@ namespace storm {
return result; return result;
} }
template <typename ValueType, typename RewardModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
template <typename ValueType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType>::computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<ValueType> generatorMatrix(rateMatrix, true); storm::storage::SparseMatrix<ValueType> generatorMatrix(rateMatrix, true);
// Place the negative exit rate on the diagonal. // Place the negative exit rate on the diagonal.
@ -422,8 +426,8 @@ namespace storm {
return generatorMatrix; return generatorMatrix;
} }
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero. // If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numberOfStates = probabilityMatrix.getRowCount(); uint_fast64_t numberOfStates = probabilityMatrix.getRowCount();
if (psiStates.empty()) { if (psiStates.empty()) {
@ -647,6 +651,10 @@ namespace storm {
} }
template class SparseCtmcCslHelper<double>; template class SparseCtmcCslHelper<double>;
template std::vector<double> SparseCtmcCslHelper<double>::computeInstantaneousRewards(storm::storage::SparseMatrix<double> const& rateMatrix, std::vector<double> const& exitRateVector, storm::models::sparse::StandardRewardModel<double> const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<double> const& linearEquationSolverFactory);
template std::vector<double> SparseCtmcCslHelper<double>::computeCumulativeRewards(storm::storage::SparseMatrix<double> const& rateMatrix, std::vector<double> const& exitRateVector, storm::models::sparse::StandardRewardModel<double> const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<double> const& linearEquationSolverFactory);
template std::vector<double> SparseCtmcCslHelper<double>::computeReachabilityRewards(storm::storage::SparseMatrix<double> const& rateMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::models::sparse::StandardRewardModel<double> const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<double> const& linearEquationSolverFactory);
} }
} }
} }

8
src/modelchecker/csl/helper/SparseCtmcCslHelper.h

@ -1,17 +1,14 @@
#ifndef STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_ #ifndef STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_ #define STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/BitVector.h" #include "src/storage/BitVector.h"
#include "src/utility/solver.h" #include "src/utility/solver.h"
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
template <typename ValueType, typename RewardModelType = storm::models::sparse::StandardRewardModel<ValueType>>
template <typename ValueType>
class SparseCtmcCslHelper { class SparseCtmcCslHelper {
public: public:
static std::vector<ValueType> computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::vector<ValueType> computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
@ -20,10 +17,13 @@ namespace storm {
static std::vector<ValueType> computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::vector<ValueType> computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
template <typename RewardModelType>
static std::vector<ValueType> computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::vector<ValueType> computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
template <typename RewardModelType>
static std::vector<ValueType> computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::vector<ValueType> computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
template <typename RewardModelType>
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory); static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);

36
src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp

@ -2,6 +2,8 @@
#include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h" #include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h" #include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/storage/MaximalEndComponentDecomposition.h" #include "src/storage/MaximalEndComponentDecomposition.h"
@ -26,8 +28,8 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
template<typename ValueType, typename RewardModelType>
void SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeBoundedReachabilityProbabilities(bool min, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
void SparseMarkovAutomatonCslHelper<ValueType>::computeBoundedReachabilityProbabilities(bool min, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector<ValueType>& markovianNonGoalValues, std::vector<ValueType>& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Start by computing four sparse matrices: // Start by computing four sparse matrices:
// * a matrix aMarkovian with all (discretized) transitions from Markovian non-goal states to all Markovian non-goal states. // * a matrix aMarkovian with all (discretized) transitions from Markovian non-goal states to all Markovian non-goal states.
// * a matrix aMarkovianToProbabilistic with all (discretized) transitions from Markovian non-goal states to all probabilistic non-goal states. // * a matrix aMarkovianToProbabilistic with all (discretized) transitions from Markovian non-goal states to all probabilistic non-goal states.
@ -113,8 +115,8 @@ namespace storm {
solver->solveEquationSystem(min, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory); solver->solveEquationSystem(min, probabilisticNonGoalValues, bProbabilistic, &multiplicationResultScratchMemory, &aProbabilisticScratchMemory);
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeBoundedUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
// 'Unpack' the bounds to make them more easily accessible. // 'Unpack' the bounds to make them more easily accessible.
@ -176,19 +178,20 @@ namespace storm {
} }
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
return storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(minimize, transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, minMaxLinearEquationSolverFactory); return storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(minimize, transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, minMaxLinearEquationSolverFactory);
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
template <typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix.getRowCount(), transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true)); std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix.getRowCount(), transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true));
return computeExpectedRewards(minimize, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, totalRewardVector, minMaxLinearEquationSolverFactory); return computeExpectedRewards(minimize, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, totalRewardVector, minMaxLinearEquationSolverFactory);
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeLongRunAverage(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverage(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
// If there are no goal states, we avoid the computation and directly return zero. // If there are no goal states, we avoid the computation and directly return zero.
@ -342,16 +345,16 @@ namespace storm {
return result; return result;
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeExpectedTimes(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeExpectedTimes(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
std::vector<ValueType> rewardValues(numberOfStates, storm::utility::zero<ValueType>()); std::vector<ValueType> rewardValues(numberOfStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(rewardValues, markovianStates, storm::utility::one<ValueType>()); storm::utility::vector::setVectorValues(rewardValues, markovianStates, storm::utility::one<ValueType>());
return computeExpectedRewards(minimize, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, rewardValues, minMaxLinearEquationSolverFactory); return computeExpectedRewards(minimize, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, rewardValues, minMaxLinearEquationSolverFactory);
} }
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeExpectedRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
template <typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeExpectedRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, std::vector<ValueType> const& stateRewards, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
// First, we need to check which states have infinite expected time (by definition). // First, we need to check which states have infinite expected time (by definition).
@ -433,8 +436,8 @@ namespace storm {
return result; return result;
} }
template<typename ValueType, typename RewardModelType>
ValueType SparseMarkovAutomatonCslHelper<ValueType, RewardModelType>::computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec) {
template <typename ValueType>
ValueType SparseMarkovAutomatonCslHelper<ValueType>::computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec) {
std::unique_ptr<storm::utility::solver::LpSolverFactory> lpSolverFactory(new storm::utility::solver::LpSolverFactory()); std::unique_ptr<storm::utility::solver::LpSolverFactory> lpSolverFactory(new storm::utility::solver::LpSolverFactory());
std::unique_ptr<storm::solver::LpSolver> solver = lpSolverFactory->create("LRA for MEC"); std::unique_ptr<storm::solver::LpSolver> solver = lpSolverFactory->create("LRA for MEC");
solver->setModelSense(minimize ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize); solver->setModelSense(minimize ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize);
@ -495,6 +498,7 @@ namespace storm {
} }
template class SparseMarkovAutomatonCslHelper<double>; template class SparseMarkovAutomatonCslHelper<double>;
template std::vector<double> SparseMarkovAutomatonCslHelper<double>::computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::storage::SparseMatrix<double> const& backwardTransitions, std::vector<double> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel<double> const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<double> const& minMaxLinearEquationSolverFactory);
} }
} }

5
src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h

@ -1,8 +1,6 @@
#ifndef STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_ #ifndef STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_ #define STORM_MODELCHECKER_SPARSE_MARKOVAUTOMATON_CSL_MODELCHECKER_HELPER_H_
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/BitVector.h" #include "src/storage/BitVector.h"
#include "src/storage/MaximalEndComponent.h" #include "src/storage/MaximalEndComponent.h"
@ -12,13 +10,14 @@ namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
template <typename ValueType, typename RewardModelType = storm::models::sparse::StandardRewardModel<ValueType>>
template <typename ValueType>
class SparseMarkovAutomatonCslHelper { class SparseMarkovAutomatonCslHelper {
public: public:
static std::vector<ValueType> computeBoundedUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory); static std::vector<ValueType> computeBoundedUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair<double, double> const& boundsPair, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory); static std::vector<ValueType> computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
template <typename RewardModelType>
static std::vector<ValueType> computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory); static std::vector<ValueType> computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory); static std::vector<ValueType> computeLongRunAverage(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);

2
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp

@ -215,7 +215,7 @@ namespace storm {
template<typename ValueType, typename RewardModelType> template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseCtmcCslHelper<ValueType, RewardModelType>::computeLongRunAverage(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory);
return SparseCtmcCslHelper<ValueType>::computeLongRunAverage(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory);
} }
template class SparseDtmcPrctlHelper<double>; template class SparseDtmcPrctlHelper<double>;

Loading…
Cancel
Save