@ -24,6 +24,7 @@ namespace storm {
cc = storm : : utility : : ConstantsComparator < ValueType > ( storm : : utility : : convertNumber < ValueType > ( precision ) , false ) ;
useMdp = true ;
maxIterations = 1000 ;
cacheSubsimplices = false ;
}
template < typename ValueType , typename RewardModelType >
@ -81,6 +82,7 @@ namespace storm {
initPropString + = " =? [F \" goal \" ] " ;
std : : vector < storm : : jani : : Property > propVector = storm : : api : : parseProperties ( initPropString ) ;
std : : shared_ptr < storm : : logic : : Formula const > underlyingProperty = storm : : api : : extractFormulasFromProperties ( propVector ) . front ( ) ;
STORM_PRINT ( " Underlying MDP " < < std : : endl )
underlyingMdp . printModelInformationToStream ( std : : cout ) ;
std : : unique_ptr < storm : : modelchecker : : CheckResult > underlyingRes (
@ -90,6 +92,7 @@ namespace storm {
auto mdpResultMap = underlyingRes - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
auto underApproxModel = underlyingMdp . applyScheduler ( pomdpScheduler , false ) ;
STORM_PRINT ( " Random Positional Scheduler " < < std : : endl )
underApproxModel - > printModelInformationToStream ( std : : cout ) ;
std : : unique_ptr < storm : : modelchecker : : CheckResult > underapproxRes (
storm : : api : : verifyWithSparseEngine < ValueType > ( underApproxModel , storm : : api : : createTask < ValueType > ( underlyingProperty , false ) ) ) ;
@ -138,13 +141,15 @@ namespace storm {
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > initTemp = computeSubSimplexAndLambdas ( initialBelief . probabilities , gridResolution ) ;
std : : vector < std : : vector < ValueType > > initSubSimplex = initTemp . first ;
std : : vector < ValueType > initLambdas = initTemp . second ;
if ( cacheSubsimplices ) {
subSimplexCache [ 0 ] = initSubSimplex ;
lambdaCache [ 0 ] = initLambdas ;
bool initInserted = false ;
}
std : : vector < std : : map < uint64_t , ValueType > > initTransitionsInBelief ;
std : : map < uint64_t , ValueType > initTransitionInActionBelief ;
bool initInserted = false ;
for ( size_t j = 0 ; j < initLambdas . size ( ) ; + + j ) {
if ( ! cc . isEqual ( initLambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
uint64_t searchResult = getBeliefIdInVector ( beliefList , initialBelief . observation , initSubSimplex [ j ] ) ;
@ -183,13 +188,14 @@ namespace storm {
mdpTransitions . push_back ( initTransitionsInBelief ) ;
}
//beliefsToBeExpanded.push_back(initialBelief.id); TODO I'm curious what happens if we do this instead of first triangulating. Should do nothing special if belief is on grid, otherwise it gets interesting
//beliefsToBeExpanded.push_back(initialBelief.id); I'm curious what happens if we do this instead of first triangulating. Should do nothing special if belief is on grid, otherwise it gets interesting
std : : map < uint64_t , ValueType > weightedSumOverMap ;
std : : map < uint64_t , ValueType > weightedSumUnderMap ;
// Expand the beliefs to generate the grid on-the-fly to avoid unreachable grid points
while ( ! beliefsToBeExpanded . empty ( ) ) {
// TODO add direct generation of transition matrix
uint64_t currId = beliefsToBeExpanded . front ( ) ;
beliefsToBeExpanded . pop_front ( ) ;
bool isTarget = beliefIsTarget [ currId ] ;
@ -230,8 +236,7 @@ namespace storm {
//Triangulate here and put the possibly resulting belief in the grid
std : : vector < std : : vector < ValueType > > subSimplex ;
std : : vector < ValueType > lambdas ;
if ( subSimplexCache . count ( idNextBelief ) > 0 ) {
// TODO is this necessary here? Think later
if ( cacheSubsimplices & & subSimplexCache . count ( idNextBelief ) > 0 ) {
subSimplex = subSimplexCache [ idNextBelief ] ;
lambdas = lambdaCache [ idNextBelief ] ;
} else {
@ -239,9 +244,11 @@ namespace storm {
beliefList [ idNextBelief ] . probabilities , gridResolution ) ;
subSimplex = temp . first ;
lambdas = temp . second ;
if ( cacheSubsimplices ) {
subSimplexCache [ idNextBelief ] = subSimplex ;
lambdaCache [ idNextBelief ] = lambdas ;
}
}
for ( size_t j = 0 ; j < lambdas . size ( ) ; + + j ) {
if ( ! cc . isEqual ( lambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
@ -307,6 +314,8 @@ namespace storm {
STORM_PRINT ( " #Believes in List: " < < beliefList . size ( ) < < std : : endl )
STORM_PRINT ( " Belief space expansion took " < < expansionTimer < < std : : endl )
//auto overApprox = overApproximationValueIteration(pomdp, beliefList, beliefGrid, beliefIsTarget, observationProbabilities, nextBelieves, beliefActionRewards, subSimplexCache, lambdaCache,result, chosenActions, gridResolution, min, computeRewards);
storm : : models : : sparse : : StateLabeling mdpLabeling ( mdpTransitions . size ( ) ) ;
mdpLabeling . addLabel ( " init " ) ;
mdpLabeling . addLabel ( " target " ) ;
@ -334,29 +343,6 @@ namespace storm {
}
overApproxMdp . printModelInformationToStream ( std : : cout ) ;
/*
storm : : utility : : Stopwatch overApproxTimer ( true ) ;
auto overApprox = overApproximationValueIteration ( pomdp , beliefList , beliefGrid , beliefIsTarget , observationProbabilities , nextBelieves , beliefActionRewards ,
subSimplexCache , lambdaCache ,
result , chosenActions , gridResolution , min , computeRewards ) ;
overApproxTimer . stop ( ) ; */
auto underApprox = storm : : utility : : zero < ValueType > ( ) ;
auto overApprox = storm : : utility : : one < ValueType > ( ) ;
/*
storm : : utility : : Stopwatch underApproxTimer ( true ) ;
ValueType underApprox = computeUnderapproximationWithMDP ( pomdp , beliefList , beliefIsTarget , targetObservations , observationProbabilities , nextBelieves ,
result , chosenActions , gridResolution , initialBelief . id , min , computeRewards ) ;
underApproxTimer . stop ( ) ;
STORM_PRINT ( " Time Overapproximation: " < < overApproxTimer
< < std : : endl
< < " Time Underapproximation: " < < underApproxTimer
< < std : : endl ) ;
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Under-Approximation Result: " < < underApprox < < std : : endl ) ; */
auto model = std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( overApproxMdp ) ;
auto modelPtr = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > ( model ) ;
std : : vector < std : : string > parameterNames ;
@ -367,17 +353,26 @@ namespace storm {
propertyString + = " =? [F \" target \" ] " ;
std : : vector < storm : : jani : : Property > propertyVector = storm : : api : : parseProperties ( propertyString ) ;
std : : shared_ptr < storm : : logic : : Formula const > property = storm : : api : : extractFormulasFromProperties ( propertyVector ) . front ( ) ;
auto task = storm : : api : : createTask < ValueType > ( property , true ) ;
auto hint = storm : : modelchecker : : ExplicitModelCheckerHint < ValueType > ( ) ;
hint . setResultHint ( hintVector ) ;
auto hintPtr = std : : make_shared < storm : : modelchecker : : ExplicitModelCheckerHint < ValueType > > ( hint ) ;
task . setHint ( hintPtr ) ;
storm : : utility : : Stopwatch overApproxTimer ( true ) ;
std : : unique_ptr < storm : : modelchecker : : CheckResult > res ( storm : : api : : verifyWithSparseEngine < ValueType > ( model , task ) ) ;
overApproxTimer . stop ( ) ;
STORM_LOG_ASSERT ( res , " Result not exist. " ) ;
res - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( model - > getInitialStates ( ) ) ) ;
STORM_PRINT ( " OverApprox MDP: " < < ( res - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) . begin ( ) - > second ) < < std : : endl ) ;
auto overApprox = res - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) . begin ( ) - > second ;
/* storm::utility::Stopwatch underApproxTimer(true);
ValueType underApprox = computeUnderapproximationWithMDP ( pomdp , beliefList , beliefIsTarget , targetObservations , observationProbabilities , nextBelieves ,
result , chosenActions , gridResolution , initialBelief . id , min , computeRewards ) ;
underApproxTimer . stop ( ) ; */
STORM_PRINT ( " Time Overapproximation: " < < overApproxTimer < < std : : endl )
auto underApprox = storm : : utility : : zero < ValueType > ( ) ;
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Under-Approximation Result: " < < underApprox < < std : : endl ) ;
return std : : make_unique < POMDPCheckResult < ValueType > > ( POMDPCheckResult < ValueType > { overApprox , underApprox } ) ;
}
@ -425,7 +420,7 @@ namespace storm {
// cache the values to not always re-calculate
std : : vector < std : : vector < ValueType > > subSimplex ;
std : : vector < ValueType > lambdas ;
if ( subSimplexCache . count ( nextBelief . id ) > 0 ) {
if ( cacheSubsimplices & & subSimplexCache . count ( nextBelief . id ) > 0 ) {
subSimplex = subSimplexCache [ nextBelief . id ] ;
lambdas = lambdaCache [ nextBelief . id ] ;
} else {
@ -433,9 +428,11 @@ namespace storm {
gridResolution ) ;
subSimplex = temp . first ;
lambdas = temp . second ;
if ( cacheSubsimplices ) {
subSimplexCache [ nextBelief . id ] = subSimplex ;
lambdaCache [ nextBelief . id ] = lambdas ;
}
}
auto sum = storm : : utility : : zero < ValueType > ( ) ;
for ( size_t j = 0 ; j < lambdas . size ( ) ; + + j ) {
if ( ! cc . isEqual ( lambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
@ -477,11 +474,21 @@ namespace storm {
STORM_PRINT ( " Overapproximation took " < < iteration < < " iterations " < < std : : endl ) ;
std : : vector < ValueType > initialLambda ;
std : : vector < std : : vector < ValueType > > initialSubsimplex ;
if ( cacheSubsimplices ) {
initialLambda = lambdaCache [ 0 ] ;
initialSubsimplex = subSimplexCache [ 0 ] ;
} else {
auto temp = computeSubSimplexAndLambdas ( beliefList [ 0 ] . probabilities , gridResolution ) ;
initialSubsimplex = temp . first ;
initialLambda = temp . second ;
}
auto overApprox = storm : : utility : : zero < ValueType > ( ) ;
for ( size_t j = 0 ; j < lambdaCache [ 0 ] . size ( ) ; + + j ) {
if ( lambdaCache [ 0 ] [ j ] ! = storm : : utility : : zero < ValueType > ( ) ) {
overApprox + = lambdaCache [ 0 ] [ j ] * result_backup [ getBeliefIdInVector ( beliefGrid , beliefList [ 0 ] . observation , subSimplexCache [ 0 ] [ j ] ) ] ;
for ( size_t j = 0 ; j < initia lL ambda. size ( ) ; + + j ) {
if ( initia lL ambda[ j ] ! = storm : : utility : : zero < ValueType > ( ) ) {
overApprox + = initia lL ambda[ j ] * result_backup [ getBeliefIdInVector ( beliefGrid , beliefList [ 0 ] . observation , initialSubsimplex [ j ] ) ] ;
}
}
return overApprox ;
@ -541,8 +548,10 @@ namespace storm {
std : : map < uint64_t , std : : vector < ValueType > > lambdaCache ;
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > temp = computeSubSimplexAndLambdas ( initialBelief . probabilities , gridResolution ) ;
if ( cacheSubsimplices ) {
subSimplexCache [ 0 ] = temp . first ;
lambdaCache [ 0 ] = temp . second ;
}
storm : : utility : : Stopwatch nextBeliefGeneration ( true ) ;
for ( size_t i = 0 ; i < beliefGrid . size ( ) ; + + i ) {
@ -553,6 +562,7 @@ namespace storm {
} else {
result . emplace ( std : : make_pair ( currentBelief . id , storm : : utility : : zero < ValueType > ( ) ) ) ;
//TODO put this in extra function
// As we need to grab some parameters which are the same for all states with the same observation, we simply select some state as the representative
uint64_t representativeState = pomdp . getStatesWithObservation ( currentBelief . observation ) . front ( ) ;
uint64_t numChoices = pomdp . getNumberOfChoices ( representativeState ) ;