|
|
@ -242,12 +242,13 @@ public: |
|
|
|
* checker. If the qualitative flag is set, exact probabilities might not be computed. |
|
|
|
*/ |
|
|
|
virtual std::vector<Type>* checkUntil(const storm::property::prctl::Until<Type>& formula, bool qualitative) const { |
|
|
|
return this->checkUntil(formula, qualitative, nullptr); |
|
|
|
return this->checkUntil(this->minimumOperatorStack.top(), formula, qualitative, nullptr); |
|
|
|
} |
|
|
|
|
|
|
|
/*! |
|
|
|
* Check the given formula that is an until formula. |
|
|
|
* |
|
|
|
* @param minimize If set, the probability is minimized and maximized otherwise. |
|
|
|
* @param formula The formula to check. |
|
|
|
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the |
|
|
|
* results are only compared against the bounds 0 and 1. If set to true, this will most likely results that are only |
|
|
@ -259,7 +260,7 @@ public: |
|
|
|
* @return The probabilities for the given formula to hold on every state of the model associated with this model |
|
|
|
* checker. If the qualitative flag is set, exact probabilities might not be computed. |
|
|
|
*/ |
|
|
|
std::vector<Type>* checkUntil(const storm::property::prctl::Until<Type>& formula, bool qualitative, std::vector<uint_fast64_t>* scheduler) const { |
|
|
|
std::vector<Type>* checkUntil(bool minimize, const storm::property::prctl::Until<Type>& formula, bool qualitative, std::vector<uint_fast64_t>* scheduler) const { |
|
|
|
// First, we need to compute the states that satisfy the sub-formulas of the until-formula. |
|
|
|
storm::storage::BitVector* leftStates = formula.getLeft().check(*this); |
|
|
|
storm::storage::BitVector* rightStates = formula.getRight().check(*this); |
|
|
@ -267,7 +268,7 @@ public: |
|
|
|
// Then, we need to identify the states which have to be taken out of the matrix, i.e. |
|
|
|
// all states that have probability 0 and 1 of satisfying the until-formula. |
|
|
|
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01; |
|
|
|
if (this->minimumOperatorStack.top()) { |
|
|
|
if (minimize) { |
|
|
|
statesWithProbability01 = storm::utility::graph::performProb01Min(this->getModel(), *leftStates, *rightStates); |
|
|
|
} else { |
|
|
|
statesWithProbability01 = storm::utility::graph::performProb01Max(this->getModel(), *leftStates, *rightStates); |
|
|
@ -316,7 +317,7 @@ public: |
|
|
|
std::vector<Type> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, this->getModel().getNondeterministicChoiceIndices(), statesWithProbability1, submatrix.getRowCount()); |
|
|
|
|
|
|
|
// Solve the corresponding system of equations. |
|
|
|
this->solveEquationSystem(submatrix, x, b, subNondeterministicChoiceIndices); |
|
|
|
this->solveEquationSystem(minimize, submatrix, x, b, subNondeterministicChoiceIndices); |
|
|
|
|
|
|
|
// Set values of resulting vector according to result. |
|
|
|
storm::utility::vector::setVectorValues<Type>(*result, maybeStates, x); |
|
|
@ -411,12 +412,13 @@ public: |
|
|
|
* checker. If the qualitative flag is set, exact values might not be computed. |
|
|
|
*/ |
|
|
|
virtual std::vector<Type>* checkReachabilityReward(const storm::property::prctl::ReachabilityReward<Type>& formula, bool qualitative) const { |
|
|
|
return this->checkReachabilityReward(formula, qualitative, nullptr); |
|
|
|
return this->checkReachabilityReward(this->minimumOperatorStack.top(), formula, qualitative, nullptr); |
|
|
|
} |
|
|
|
|
|
|
|
/*! |
|
|
|
* Checks the given formula that is a reachability reward formula. |
|
|
|
* |
|
|
|
* @param minimize If set, the reward is to be minimized and maximized otherwise. |
|
|
|
* @param formula The formula to check. |
|
|
|
* @param qualitative A flag indicating whether the formula only needs to be evaluated qualitatively, i.e. if the |
|
|
|
* results are only compared against the bound 0. If set to true, this will most likely results that are only |
|
|
@ -428,7 +430,7 @@ public: |
|
|
|
* @return The reward values for the given formula for every state of the model associated with this model |
|
|
|
* checker. If the qualitative flag is set, exact values might not be computed. |
|
|
|
*/ |
|
|
|
std::vector<Type>* checkReachabilityReward(const storm::property::prctl::ReachabilityReward<Type>& formula, bool qualitative, std::vector<uint_fast64_t>* scheduler) const { |
|
|
|
std::vector<Type>* checkReachabilityReward(bool minimize, const storm::property::prctl::ReachabilityReward<Type>& formula, bool qualitative, std::vector<uint_fast64_t>* scheduler) const { |
|
|
|
// Only compute the result if the model has at least one reward model. |
|
|
|
if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { |
|
|
|
LOG4CPLUS_ERROR(logger, "Missing reward model for formula. Skipping formula"); |
|
|
@ -441,7 +443,7 @@ public: |
|
|
|
// Determine which states have a reward of infinity by definition. |
|
|
|
storm::storage::BitVector infinityStates; |
|
|
|
storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true); |
|
|
|
if (this->minimumOperatorStack.top()) { |
|
|
|
if (minimize) { |
|
|
|
infinityStates = std::move(storm::utility::graph::performProb1A(this->getModel(), this->getModel().getBackwardTransitions(), trueStates, *targetStates)); |
|
|
|
} else { |
|
|
|
infinityStates = std::move(storm::utility::graph::performProb1E(this->getModel(), this->getModel().getBackwardTransitions(), trueStates, *targetStates)); |
|
|
@ -504,7 +506,7 @@ public: |
|
|
|
} |
|
|
|
|
|
|
|
// Solve the corresponding system of equations. |
|
|
|
this->solveEquationSystem(submatrix, x, b, subNondeterministicChoiceIndices, scheduler); |
|
|
|
this->solveEquationSystem(minimize, submatrix, x, b, subNondeterministicChoiceIndices, scheduler); |
|
|
|
|
|
|
|
// Set values of resulting vector according to result. |
|
|
|
storm::utility::vector::setVectorValues<Type>(*result, maybeStates, x); |
|
|
@ -523,13 +525,14 @@ protected: |
|
|
|
/*! |
|
|
|
* Computes the vector of choices that need to be made to minimize/maximize the model checking result for each state. |
|
|
|
* |
|
|
|
* @param minimize If set, all choices are resolved such that the solution value becomes minimal and maximal otherwise. |
|
|
|
* @param nondeterministicResult The model checking result for nondeterministic choices of all states. |
|
|
|
* @param takenChoices The output vector that is to store the taken choices. |
|
|
|
* @param nondeterministicChoiceIndices The assignment of states to their nondeterministic choices in the matrix. |
|
|
|
*/ |
|
|
|
void computeTakenChoices(std::vector<Type> const& nondeterministicResult, std::vector<uint_fast64_t>& takenChoices, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) const { |
|
|
|
void computeTakenChoices(bool minimize, std::vector<Type> const& nondeterministicResult, std::vector<uint_fast64_t>& takenChoices, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) const { |
|
|
|
std::vector<Type> temporaryResult(nondeterministicChoiceIndices.size() - 1); |
|
|
|
if (this->minimumOperatorStack.top()) { |
|
|
|
if (minimize) { |
|
|
|
storm::utility::vector::reduceVectorMin(nondeterministicResult, temporaryResult, nondeterministicChoiceIndices, &takenChoices); |
|
|
|
} else { |
|
|
|
storm::utility::vector::reduceVectorMax(nondeterministicResult, temporaryResult, nondeterministicChoiceIndices, &takenChoices); |
|
|
@ -582,6 +585,7 @@ private: |
|
|
|
/*! |
|
|
|
* Solves the equation system A*x = b given by the parameters. |
|
|
|
* |
|
|
|
* @param minimize If set, all choices are resolved such that the solution value becomes minimal and maximal otherwise. |
|
|
|
* @param A The matrix specifying the coefficients of the linear equations. |
|
|
|
* @param x The solution vector x. The initial values of x represent a guess of the real values to the solver, but |
|
|
|
* may be ignored. |
|
|
@ -592,7 +596,7 @@ private: |
|
|
|
* as there are states in the MDP. |
|
|
|
* @returns The solution vector x of the system of linear equations as the content of the parameter x. |
|
|
|
*/ |
|
|
|
virtual void solveEquationSystem(storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<Type> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, std::vector<uint_fast64_t>* takenChoices = nullptr) const { |
|
|
|
virtual void solveEquationSystem(bool minimize, storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<Type> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, std::vector<uint_fast64_t>* takenChoices = nullptr) const { |
|
|
|
// Get the settings object to customize solving. |
|
|
|
storm::settings::Settings* s = storm::settings::instance(); |
|
|
|
|
|
|
@ -618,7 +622,7 @@ private: |
|
|
|
|
|
|
|
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost |
|
|
|
// element of the min/max operator stack. |
|
|
|
if (this->minimumOperatorStack.top()) { |
|
|
|
if (minimize) { |
|
|
|
storm::utility::vector::reduceVectorMin(multiplyResult, *newX, nondeterministicChoiceIndices); |
|
|
|
} else { |
|
|
|
storm::utility::vector::reduceVectorMax(multiplyResult, *newX, nondeterministicChoiceIndices); |
|
|
@ -636,7 +640,7 @@ private: |
|
|
|
|
|
|
|
// If we were requested to record the taken choices, we have to construct the vector now. |
|
|
|
if (takenChoices != nullptr) { |
|
|
|
this->computeTakenChoices(multiplyResult, *takenChoices, nondeterministicChoiceIndices); |
|
|
|
this->computeTakenChoices(minimize, multiplyResult, *takenChoices, nondeterministicChoiceIndices); |
|
|
|
} |
|
|
|
|
|
|
|
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result |
|
|
|