Browse Source

Fix TODOs

tempestpy_adaptions
Jip Spel 5 years ago
parent
commit
ed3fa3f82b
  1. 110
      src/storm-pars-cli/storm-pars.cpp
  2. 2
      src/storm-pars/analysis/AssumptionChecker.cpp
  3. 5
      src/storm-pars/analysis/MonotonicityChecker.cpp
  4. 29
      src/storm-pars/analysis/OrderExtender.cpp
  5. 30
      src/storm-pars/api/region.h

110
src/storm-pars-cli/storm-pars.cpp

@ -668,66 +668,72 @@ namespace storm {
if (model && monSettings.isSccEliminationSet()) {
storm::utility::Stopwatch eliminationWatch(true);
// TODO: check for correct Model type
STORM_PRINT("Applying scc elimination" << std::endl);
auto sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
auto matrix = sparseModel->getTransitionMatrix();
auto backwardsTransitionMatrix = matrix.transpose();
storm::storage::StronglyConnectedComponentDecompositionOptions const options;
auto decomposition = storm::storage::StronglyConnectedComponentDecomposition<ValueType>(matrix, options);
storm::storage::BitVector selectedStates(matrix.getRowCount());
storm::storage::BitVector selfLoopStates(matrix.getRowCount());
for (auto i = 0; i < decomposition.size(); ++i) {
auto scc = decomposition.getBlock(i);
if (scc.size() > 1) {
auto nrInitial = 0;
auto statesScc = scc.getStates();
std::vector<uint_fast64_t> entryStates;
for (auto state : statesScc) {
auto row = backwardsTransitionMatrix.getRow(state);
bool found = false;
for (auto backState : row) {
if (!scc.containsState(backState.getColumn())) {
found = true;
if (model->isOfType(storm::models::ModelType::Dtmc)) {
STORM_PRINT("Applying scc elimination" << std::endl);
auto sparseModel = model->as<storm::models::sparse::Model<ValueType>>();
auto matrix = sparseModel->getTransitionMatrix();
auto backwardsTransitionMatrix = matrix.transpose();
storm::storage::StronglyConnectedComponentDecompositionOptions const options;
auto decomposition = storm::storage::StronglyConnectedComponentDecomposition<ValueType>(matrix, options);
storm::storage::BitVector selectedStates(matrix.getRowCount());
storm::storage::BitVector selfLoopStates(matrix.getRowCount());
for (auto i = 0; i < decomposition.size(); ++i) {
auto scc = decomposition.getBlock(i);
if (scc.size() > 1) {
auto nrInitial = 0;
auto statesScc = scc.getStates();
std::vector<uint_fast64_t> entryStates;
for (auto state : statesScc) {
auto row = backwardsTransitionMatrix.getRow(state);
bool found = false;
for (auto backState : row) {
if (!scc.containsState(backState.getColumn())) {
found = true;
}
}
if (found) {
entryStates.push_back(state);
selfLoopStates.set(state);
} else {
selectedStates.set(state);
}
}
if (found) {
entryStates.push_back(state);
selfLoopStates.set(state);
} else {
selectedStates.set(state);
if (entryStates.size() != 1) {
STORM_LOG_THROW(entryStates.size() > 1, storm::exceptions::NotImplementedException,
"state elimination not implemented for scc with more than 1 entry points");
}
}
}
if (entryStates.size() != 1) {
STORM_LOG_THROW(entryStates.size() > 1, storm::exceptions::NotImplementedException,
"state elimination not implemented for scc with more than 1 entry points");
}
storm::storage::FlexibleSparseMatrix<ValueType> flexibleMatrix(matrix);
storm::storage::FlexibleSparseMatrix<ValueType> flexibleBackwardTransitions(backwardsTransitionMatrix, true);
auto actionRewards = std::vector<ValueType>(matrix.getRowCount(), storm::utility::zero<ValueType>());
storm::solver::stateelimination::NondeterministicModelStateEliminator<ValueType> stateEliminator(flexibleMatrix, flexibleBackwardTransitions, actionRewards);
for(auto state : selectedStates) {
stateEliminator.eliminateState(state, true);
}
for (auto state : selfLoopStates) {
auto row = flexibleMatrix.getRow(state);
stateEliminator.eliminateLoop(state);
}
selectedStates.complement();
auto keptRows = matrix.getRowFilter(selectedStates);
storm::storage::SparseMatrix<ValueType> newTransitionMatrix = flexibleMatrix.createSparseMatrix(keptRows, selectedStates);
// TODO: note that rewards get lost
model = std::make_shared<storm::models::sparse::Dtmc<ValueType>>(std::move(newTransitionMatrix), sparseModel->getStateLabeling().getSubLabeling(selectedStates));
eliminationWatch.stop();
STORM_PRINT(std::endl << "Time for scc elimination: " << eliminationWatch << "." << std::endl << std::endl);
model->printModelInformationToStream(std::cout);
} else if (model->isOfType(storm::models::ModelType::Mdp)) {
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Unable to perform SCC elimination for monotonicity analysis on MDP: Not mplemented");
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Unable to perform monotonicity analysis on the provided model type.");
}
storm::storage::FlexibleSparseMatrix<ValueType> flexibleMatrix(matrix);
storm::storage::FlexibleSparseMatrix<ValueType> flexibleBackwardTransitions(backwardsTransitionMatrix, true);
auto actionRewards = std::vector<ValueType>(matrix.getRowCount(), storm::utility::zero<ValueType>());
storm::solver::stateelimination::NondeterministicModelStateEliminator<ValueType> stateEliminator(flexibleMatrix, flexibleBackwardTransitions, actionRewards);
for(auto state : selectedStates) {
stateEliminator.eliminateState(state, true);
}
for (auto state : selfLoopStates) {
auto row = flexibleMatrix.getRow(state);
stateEliminator.eliminateLoop(state);
}
selectedStates.complement();
auto keptRows = matrix.getRowFilter(selectedStates);
storm::storage::SparseMatrix<ValueType> newTransitionMatrix = flexibleMatrix.createSparseMatrix(keptRows, selectedStates);
// TODO: rewards get lost
model = std::make_shared<storm::models::sparse::Dtmc<ValueType>>(std::move(newTransitionMatrix), sparseModel->getStateLabeling().getSubLabeling(selectedStates));
eliminationWatch.stop();
STORM_PRINT(std::endl << "Time for scc elimination: " << eliminationWatch << "." << std::endl << std::endl);
model->printModelInformationToStream(std::cout);
}
std::vector<storm::storage::ParameterRegion<ValueType>> regions = parseRegions<ValueType>(model);

2
src/storm-pars/analysis/AssumptionChecker.cpp

@ -32,9 +32,7 @@ namespace storm {
for (auto i = 0; i < numberOfSamples; ++i) {
auto valuation = utility::parametric::Valuation<ValueType>();
// TODO: samplen over de region
for (auto var: variables) {
auto lb = region.getLowerBoundary(var.name());
auto ub = region.getUpperBoundary(var.name());
// Creates samples between lb and ub, that is: lb, lb + (ub-lb)/(#samples -1), lb + 2* (ub-lb)/(#samples -1), ..., ub

5
src/storm-pars/analysis/MonotonicityChecker.cpp

@ -194,13 +194,8 @@ namespace storm {
std::vector<double> minValues = minRes.getValueVector();
std::vector<double> maxValues = maxRes.getValueVector();
// TODO: zijn de value vectors nu precies omgedraaid?
// Create initial order
std::tuple<storm::analysis::Order*, uint_fast64_t, uint_fast64_t> criticalTuple = extender->toOrder(formulas, minValues, maxValues);
// std::tuple<storm::analysis::Order*, uint_fast64_t, uint_fast64_t> criticalTuple = extender->toOrder(formulas);
// Continue based on not (yet) sorted states
std::map<storm::analysis::Order*, std::vector<std::shared_ptr<storm::expressions::BinaryRelationExpression>>> result;

29
src/storm-pars/analysis/OrderExtender.cpp

@ -38,10 +38,8 @@ namespace storm {
uint_fast64_t numberOfStates = this->model->getNumberOfStates();
// Build stateMap
// TODO: is dit wel nodig
for (uint_fast64_t i = 0; i < numberOfStates; ++i) {
stateMap[i] = new storm::storage::BitVector(numberOfStates, false);
auto row = matrix.getRow(i);
for (auto rowItr = row.begin(); rowItr != row.end(); ++rowItr) {
// ignore self-loops when there are more transitions
@ -129,33 +127,6 @@ namespace storm {
template <typename ValueType>
std::tuple<Order*, uint_fast64_t, uint_fast64_t> OrderExtender<ValueType>::toOrder(std::vector<std::shared_ptr<storm::logic::Formula const>> formulas, std::vector<double> minValues, std::vector<double> maxValues) {
uint_fast64_t numberOfStates = this->model->getNumberOfStates();
//
// // Compare min/max for all states
// STORM_LOG_THROW((++formulas.begin()) == formulas.end(), storm::exceptions::NotSupportedException, "Only one formula allowed for monotonicity analysis");
// STORM_LOG_THROW((*(formulas[0])).isProbabilityOperatorFormula()
// && ((*(formulas[0])).asProbabilityOperatorFormula().getSubformula().isUntilFormula()
// || (*(formulas[0])).asProbabilityOperatorFormula().getSubformula().isEventuallyFormula()), storm::exceptions::NotSupportedException, "Expecting until or eventually formula");
//
// // TODO: dit moet anders kunnen
// storm::modelchecker::SparsePropositionalModelChecker<storm::models::sparse::Model<ValueType>> propositionalChecker(*model);
// storm::storage::BitVector phiStates;
// storm::storage::BitVector psiStates;
// if ((*(formulas[0])).asProbabilityOperatorFormula().getSubformula().isUntilFormula()) {
// phiStates = propositionalChecker.check((*(formulas[0])).asProbabilityOperatorFormula().getSubformula().asUntilFormula().getLeftSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
// psiStates = propositionalChecker.check((*(formulas[0])).asProbabilityOperatorFormula().getSubformula().asUntilFormula().getRightSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
// } else {
// phiStates = storm::storage::BitVector(numberOfStates, true);
// psiStates = propositionalChecker.check((*(formulas[0])).asProbabilityOperatorFormula().getSubformula().asEventuallyFormula().getSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
// }
//
// // Get the maybeStates
// std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(this->model->getBackwardTransitions(), phiStates, psiStates);
// storm::storage::BitVector topStates = statesWithProbability01.second;
// storm::storage::BitVector bottomStates = statesWithProbability01.first;
//
// STORM_LOG_THROW(topStates.begin() != topStates.end(), storm::exceptions::NotImplementedException, "Formula yields to no 1 states");
// STORM_LOG_THROW(bottomStates.begin() != bottomStates.end(), storm::exceptions::NotImplementedException, "Formula yields to no zero states");
//
uint_fast64_t bottom = numberOfStates;
uint_fast64_t top = numberOfStates;
std::vector<uint_fast64_t> statesSorted = storm::utility::graph::getTopologicalSort(matrix);

30
src/storm-pars/api/region.h

@ -110,36 +110,6 @@ namespace storm {
return checker;
}
// TODO: make more generic
template <typename ParametricType, typename ConstantType>
std::shared_ptr<storm::modelchecker::SparseDtmcParameterLiftingModelChecker<storm::models::sparse::Dtmc<ParametricType>, ConstantType>> initializeParameterLiftingDtmcModelChecker(Environment const& env, std::shared_ptr<storm::models::sparse::Model<ParametricType>> const& model, storm::modelchecker::CheckTask<storm::logic::Formula, ParametricType> const& task, bool generateSplitEstimates = false, bool allowModelSimplification = true) {
STORM_LOG_WARN_COND(storm::utility::parameterlifting::validateParameterLiftingSound(*model, task.getFormula()), "Could not validate whether parameter lifting is applicable. Please validate manually...");
std::shared_ptr<storm::models::sparse::Model<ParametricType>> consideredModel = model;
// Treat continuous time models
if (consideredModel->isOfType(storm::models::ModelType::Ctmc) || consideredModel->isOfType(storm::models::ModelType::MarkovAutomaton)) {
STORM_LOG_WARN("Parameter lifting not supported for continuous time models. Transforming continuous model to discrete model...");
std::vector<std::shared_ptr<storm::logic::Formula const>> taskFormulaAsVector { task.getFormula().asSharedPointer() };
consideredModel = storm::api::transformContinuousToDiscreteTimeSparseModel(consideredModel, taskFormulaAsVector).first;
STORM_LOG_THROW(consideredModel->isOfType(storm::models::ModelType::Dtmc) || consideredModel->isOfType(storm::models::ModelType::Mdp), storm::exceptions::UnexpectedException, "Transformation to discrete time model has failed.");
}
// Obtain the region model checker
std::shared_ptr<storm::modelchecker::SparseDtmcParameterLiftingModelChecker<storm::models::sparse::Dtmc<ParametricType>, ConstantType>> checker;
if (consideredModel->isOfType(storm::models::ModelType::Dtmc)) {
checker = std::make_shared<storm::modelchecker::SparseDtmcParameterLiftingModelChecker<storm::models::sparse::Dtmc<ParametricType>, ConstantType>>();
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Unable to perform parameterLifting on the provided model type.");
}
checker->specify(env, consideredModel, task, generateSplitEstimates, allowModelSimplification);
return checker;
}
template <typename ParametricType, typename ImpreciseType, typename PreciseType>
std::shared_ptr<storm::modelchecker::RegionModelChecker<ParametricType>> initializeValidatingRegionModelChecker(Environment const& env, std::shared_ptr<storm::models::sparse::Model<ParametricType>> const& model, storm::modelchecker::CheckTask<storm::logic::Formula, ParametricType> const& task, bool generateSplitEstimates = false, bool allowModelSimplification = true) {

|||||||
100:0
Loading…
Cancel
Save