Browse Source

infinite horizon helper now store information

about shielding tasks and whether to compute all choice values
tempestpy_adaptions
Stefan Pranger 3 years ago
parent
commit
e406b00c02
  1. 50
      src/storm/modelchecker/helper/SingleValueModelCheckerHelper.cpp
  2. 45
      src/storm/modelchecker/helper/SingleValueModelCheckerHelper.h
  3. 45
      src/storm/modelchecker/helper/infinitehorizon/SparseInfiniteHorizonHelper.h
  4. 88
      src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.cpp
  5. 43
      src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h
  6. 9
      src/storm/modelchecker/helper/utility/SetInformationFromCheckTask.h
  7. 12
      src/storm/modelchecker/rpatl/helper/internal/GameViHelper.cpp
  8. 11
      src/storm/modelchecker/rpatl/helper/internal/GameViHelper.h

50
src/storm/modelchecker/helper/SingleValueModelCheckerHelper.cpp

@ -4,85 +4,95 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::SingleValueModelCheckerHelper() : _produceScheduler(false) { SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::SingleValueModelCheckerHelper() : _produceScheduler(false) {
// Intentionally left empty // Intentionally left empty
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setOptimizationDirection(storm::solver::OptimizationDirection const& direction) { void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setOptimizationDirection(storm::solver::OptimizationDirection const& direction) {
_optimizationDirection = direction; _optimizationDirection = direction;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::clearOptimizationDirection() { void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::clearOptimizationDirection() {
_optimizationDirection = boost::none; _optimizationDirection = boost::none;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isOptimizationDirectionSet() const { bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isOptimizationDirectionSet() const {
return _optimizationDirection.is_initialized(); return _optimizationDirection.is_initialized();
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
storm::solver::OptimizationDirection const& SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getOptimizationDirection() const { storm::solver::OptimizationDirection const& SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getOptimizationDirection() const {
STORM_LOG_ASSERT(isOptimizationDirectionSet(), "Requested optimization direction but none was set."); STORM_LOG_ASSERT(isOptimizationDirectionSet(), "Requested optimization direction but none was set.");
return _optimizationDirection.get(); return _optimizationDirection.get();
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::minimize() const { bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::minimize() const {
return storm::solver::minimize(getOptimizationDirection()); return storm::solver::minimize(getOptimizationDirection());
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::maximize() const { bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::maximize() const {
return storm::solver::maximize(getOptimizationDirection()); return storm::solver::maximize(getOptimizationDirection());
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
boost::optional<storm::solver::OptimizationDirection> SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getOptionalOptimizationDirection() const { boost::optional<storm::solver::OptimizationDirection> SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getOptionalOptimizationDirection() const {
return _optimizationDirection; return _optimizationDirection;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setValueThreshold(storm::logic::ComparisonType const& comparisonType, ValueType const& threshold) { void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setValueThreshold(storm::logic::ComparisonType const& comparisonType, ValueType const& threshold) {
_valueThreshold = std::make_pair(comparisonType, threshold); _valueThreshold = std::make_pair(comparisonType, threshold);
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::clearValueThreshold() { void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::clearValueThreshold() {
_valueThreshold = boost::none; _valueThreshold = boost::none;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isValueThresholdSet() const { bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isValueThresholdSet() const {
return _valueThreshold.is_initialized(); return _valueThreshold.is_initialized();
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
storm::logic::ComparisonType const& SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getValueThresholdComparisonType() const { storm::logic::ComparisonType const& SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getValueThresholdComparisonType() const {
STORM_LOG_ASSERT(isValueThresholdSet(), "Value Threshold comparison type was requested but not set before."); STORM_LOG_ASSERT(isValueThresholdSet(), "Value Threshold comparison type was requested but not set before.");
return _valueThreshold->first; return _valueThreshold->first;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
ValueType const& SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getValueThresholdValue() const { ValueType const& SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::getValueThresholdValue() const {
STORM_LOG_ASSERT(isValueThresholdSet(), "Value Threshold comparison type was requested but not set before."); STORM_LOG_ASSERT(isValueThresholdSet(), "Value Threshold comparison type was requested but not set before.");
return _valueThreshold->second; return _valueThreshold->second;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setProduceScheduler(bool value) { void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setProduceScheduler(bool value) {
_produceScheduler = value; _produceScheduler = value;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isProduceSchedulerSet() const { bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isProduceSchedulerSet() const {
return _produceScheduler; return _produceScheduler;
} }
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setProduceChoiceValues(bool value) {
_produceChoiceValues = value;
}
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isProduceChoiceValuesSet() const {
return _produceChoiceValues;
}
template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation> template <typename ValueType, storm::models::ModelRepresentation ModelRepresentation>
void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setQualitative(bool value) { void SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::setQualitative(bool value) {
_isQualitativeSet = value; _isQualitativeSet = value;
@ -92,17 +102,17 @@ namespace storm {
bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isQualitativeSet() const { bool SingleValueModelCheckerHelper<ValueType, ModelRepresentation>::isQualitativeSet() const {
return _isQualitativeSet; return _isQualitativeSet;
} }
template class SingleValueModelCheckerHelper<double, storm::models::ModelRepresentation::Sparse>; template class SingleValueModelCheckerHelper<double, storm::models::ModelRepresentation::Sparse>;
template class SingleValueModelCheckerHelper<storm::RationalNumber, storm::models::ModelRepresentation::Sparse>; template class SingleValueModelCheckerHelper<storm::RationalNumber, storm::models::ModelRepresentation::Sparse>;
template class SingleValueModelCheckerHelper<storm::RationalFunction, storm::models::ModelRepresentation::Sparse>; template class SingleValueModelCheckerHelper<storm::RationalFunction, storm::models::ModelRepresentation::Sparse>;
template class SingleValueModelCheckerHelper<double, storm::models::ModelRepresentation::DdSylvan>; template class SingleValueModelCheckerHelper<double, storm::models::ModelRepresentation::DdSylvan>;
template class SingleValueModelCheckerHelper<storm::RationalNumber, storm::models::ModelRepresentation::DdSylvan>; template class SingleValueModelCheckerHelper<storm::RationalNumber, storm::models::ModelRepresentation::DdSylvan>;
template class SingleValueModelCheckerHelper<storm::RationalFunction, storm::models::ModelRepresentation::DdSylvan>; template class SingleValueModelCheckerHelper<storm::RationalFunction, storm::models::ModelRepresentation::DdSylvan>;
template class SingleValueModelCheckerHelper<double, storm::models::ModelRepresentation::DdCudd>; template class SingleValueModelCheckerHelper<double, storm::models::ModelRepresentation::DdCudd>;
} }
} }
}
}

45
src/storm/modelchecker/helper/SingleValueModelCheckerHelper.h

@ -8,7 +8,7 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
/*! /*!
* Helper for model checking queries where we are interested in (optimizing) a single value per state. * Helper for model checking queries where we are interested in (optimizing) a single value per state.
* @tparam ValueType The type of a value * @tparam ValueType The type of a value
@ -19,47 +19,47 @@ namespace storm {
public: public:
SingleValueModelCheckerHelper(); SingleValueModelCheckerHelper();
/*! /*!
* Sets the optimization direction, i.e., whether we want to minimize or maximize the value for each state * Sets the optimization direction, i.e., whether we want to minimize or maximize the value for each state
* Has no effect for models without nondeterminism. * Has no effect for models without nondeterminism.
* Has to be set if there is nondeterminism in the model. * Has to be set if there is nondeterminism in the model.
*/ */
void setOptimizationDirection(storm::solver::OptimizationDirection const& direction); void setOptimizationDirection(storm::solver::OptimizationDirection const& direction);
/*! /*!
* Clears the optimization direction if it was set before. * Clears the optimization direction if it was set before.
*/ */
void clearOptimizationDirection(); void clearOptimizationDirection();
/*! /*!
* @return true if there is an optimization direction set * @return true if there is an optimization direction set
*/ */
bool isOptimizationDirectionSet() const; bool isOptimizationDirectionSet() const;
/*! /*!
* @pre an optimization direction has to be set before calling this. * @pre an optimization direction has to be set before calling this.
* @return the optimization direction. * @return the optimization direction.
*/ */
storm::solver::OptimizationDirection const& getOptimizationDirection() const; storm::solver::OptimizationDirection const& getOptimizationDirection() const;
/*! /*!
* @pre an optimization direction has to be set before calling this. * @pre an optimization direction has to be set before calling this.
* @return true iff the optimization goal is to minimize the value for each state * @return true iff the optimization goal is to minimize the value for each state
*/ */
bool minimize() const; bool minimize() const;
/*! /*!
* @pre an optimization direction has to be set before calling this. * @pre an optimization direction has to be set before calling this.
* @return true iff the optimization goal is to maximize the value for each state * @return true iff the optimization goal is to maximize the value for each state
*/ */
bool maximize() const; bool maximize() const;
/*! /*!
* @return The optimization direction (if it was set) * @return The optimization direction (if it was set)
*/ */
boost::optional<storm::solver::OptimizationDirection> getOptionalOptimizationDirection() const; boost::optional<storm::solver::OptimizationDirection> getOptionalOptimizationDirection() const;
/*! /*!
* Sets a goal threshold for the value at each state. If such a threshold is set, it is assumed that we are only interested * Sets a goal threshold for the value at each state. If such a threshold is set, it is assumed that we are only interested
* in the satisfaction of the threshold. Setting this allows the helper to compute values only up to the precision * in the satisfaction of the threshold. Setting this allows the helper to compute values only up to the precision
@ -68,39 +68,49 @@ namespace storm {
* @param thresholdValue The value used on the right hand side of the comparison relation. * @param thresholdValue The value used on the right hand side of the comparison relation.
*/ */
void setValueThreshold(storm::logic::ComparisonType const& comparisonType, ValueType const& thresholdValue); void setValueThreshold(storm::logic::ComparisonType const& comparisonType, ValueType const& thresholdValue);
/*! /*!
* Clears the valueThreshold if it was set before. * Clears the valueThreshold if it was set before.
*/ */
void clearValueThreshold(); void clearValueThreshold();
/*! /*!
* @return true, if a value threshold has been set. * @return true, if a value threshold has been set.
*/ */
bool isValueThresholdSet() const; bool isValueThresholdSet() const;
/*! /*!
* @pre A value threshold has to be set before calling this. * @pre A value threshold has to be set before calling this.
* @return The relation used when comparing computed values (left hand side) with the specified threshold value (right hand side). * @return The relation used when comparing computed values (left hand side) with the specified threshold value (right hand side).
*/ */
storm::logic::ComparisonType const& getValueThresholdComparisonType() const; storm::logic::ComparisonType const& getValueThresholdComparisonType() const;
/*! /*!
* @pre A value threshold has to be set before calling this. * @pre A value threshold has to be set before calling this.
* @return The value used on the right hand side of the comparison relation. * @return The value used on the right hand side of the comparison relation.
*/ */
ValueType const& getValueThresholdValue() const; ValueType const& getValueThresholdValue() const;
/*! /*!
* Sets whether an optimal scheduler shall be constructed during the computation * Sets whether an optimal scheduler shall be constructed during the computation
*/ */
void setProduceScheduler(bool value); void setProduceScheduler(bool value);
/*! /*!
* @return whether an optimal scheduler shall be constructed during the computation * @return whether an optimal scheduler shall be constructed during the computation
*/ */
bool isProduceSchedulerSet() const; bool isProduceSchedulerSet() const;
/*!
* Sets whether all choice values shall be computed
*/
void setProduceChoiceValues(bool value);
/*!
* @return whether all choice values shall be computed
*/
bool isProduceChoiceValuesSet() const;
/*! /*!
* Sets whether the property needs to be checked qualitatively * Sets whether the property needs to be checked qualitatively
*/ */
@ -110,13 +120,14 @@ namespace storm {
* @return whether the property needs to be checked qualitatively * @return whether the property needs to be checked qualitatively
*/ */
bool isQualitativeSet() const; bool isQualitativeSet() const;
private: private:
boost::optional<storm::solver::OptimizationDirection> _optimizationDirection; boost::optional<storm::solver::OptimizationDirection> _optimizationDirection;
boost::optional<std::pair<storm::logic::ComparisonType, ValueType>> _valueThreshold; boost::optional<std::pair<storm::logic::ComparisonType, ValueType>> _valueThreshold;
bool _produceScheduler; bool _produceScheduler;
bool _produceChoiceValues;
bool _isQualitativeSet; bool _isQualitativeSet;
}; };
} }
} }
}
}

45
src/storm/modelchecker/helper/infinitehorizon/SparseInfiniteHorizonHelper.h

@ -8,16 +8,16 @@
namespace storm { namespace storm {
class Environment; class Environment;
namespace models { namespace models {
namespace sparse { namespace sparse {
template <typename VT> class StandardRewardModel; template <typename VT> class StandardRewardModel;
} }
} }
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
/*! /*!
* Helper class for model checking queries that depend on the long run behavior of the (nondeterministic) system. * Helper class for model checking queries that depend on the long run behavior of the (nondeterministic) system.
* @tparam ValueType the type a value can have * @tparam ValueType the type a value can have
@ -27,22 +27,22 @@ namespace storm {
class SparseInfiniteHorizonHelper : public SingleValueModelCheckerHelper<ValueType, storm::models::ModelRepresentation::Sparse> { class SparseInfiniteHorizonHelper : public SingleValueModelCheckerHelper<ValueType, storm::models::ModelRepresentation::Sparse> {
public: public:
/*! /*!
* The type of a component in which the system resides in the long run (BSCC for deterministic models, MEC for nondeterministic models) * The type of a component in which the system resides in the long run (BSCC for deterministic models, MEC for nondeterministic models)
*/ */
using LongRunComponentType = typename std::conditional<Nondeterministic, storm::storage::MaximalEndComponent, storm::storage::StronglyConnectedComponent>::type; using LongRunComponentType = typename std::conditional<Nondeterministic, storm::storage::MaximalEndComponent, storm::storage::StronglyConnectedComponent>::type;
/*! /*!
* Function mapping from indices to values * Function mapping from indices to values
*/ */
typedef std::function<ValueType(uint64_t)> ValueGetter; typedef std::function<ValueType(uint64_t)> ValueGetter;
/*! /*!
* Initializes the helper for a discrete time (i.e. DTMC, MDP) * Initializes the helper for a discrete time (i.e. DTMC, MDP)
*/ */
SparseInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix); SparseInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix);
/*! /*!
* Initializes the helper for continuous time (i.e. MA) * Initializes the helper for continuous time (i.e. MA)
*/ */
@ -52,33 +52,33 @@ namespace storm {
* Initializes the helper for continuous time (i.e. CTMC) * Initializes the helper for continuous time (i.e. CTMC)
*/ */
SparseInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates); SparseInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& exitRates);
/*! /*!
* Provides backward transitions that can be used during the computation. * Provides backward transitions that can be used during the computation.
* Providing them is optional. If they are not provided, they will be computed internally * Providing them is optional. If they are not provided, they will be computed internally
* Be aware that this class does not take ownership, i.e. the caller has to make sure that the reference to the backwardstransitions remains valid. * Be aware that this class does not take ownership, i.e. the caller has to make sure that the reference to the backwardstransitions remains valid.
*/ */
void provideBackwardTransitions(storm::storage::SparseMatrix<ValueType> const& backwardsTransitions); void provideBackwardTransitions(storm::storage::SparseMatrix<ValueType> const& backwardsTransitions);
/*! /*!
* Provides the decomposition into long run components (BSCCs/MECs) that can be used during the computation. * Provides the decomposition into long run components (BSCCs/MECs) that can be used during the computation.
* Providing the decomposition is optional. If it is not provided, they will be computed internally. * Providing the decomposition is optional. If it is not provided, they will be computed internally.
* Be aware that this class does not take ownership, i.e. the caller has to make sure that the reference to the decomposition remains valid. * Be aware that this class does not take ownership, i.e. the caller has to make sure that the reference to the decomposition remains valid.
*/ */
void provideLongRunComponentDecomposition(storm::storage::Decomposition<LongRunComponentType> const& decomposition); void provideLongRunComponentDecomposition(storm::storage::Decomposition<LongRunComponentType> const& decomposition);
/*! /*!
* Computes the long run average probabilities, i.e., the fraction of the time we are in a psiState * Computes the long run average probabilities, i.e., the fraction of the time we are in a psiState
* @return a value for each state * @return a value for each state
*/ */
std::vector<ValueType> computeLongRunAverageProbabilities(Environment const& env, storm::storage::BitVector const& psiStates); std::vector<ValueType> computeLongRunAverageProbabilities(Environment const& env, storm::storage::BitVector const& psiStates);
/*! /*!
* Computes the long run average rewards, i.e., the average reward collected per time unit * Computes the long run average rewards, i.e., the average reward collected per time unit
* @return a value for each state * @return a value for each state
*/ */
std::vector<ValueType> computeLongRunAverageRewards(Environment const& env, storm::models::sparse::StandardRewardModel<ValueType> const& rewardModel); std::vector<ValueType> computeLongRunAverageRewards(Environment const& env, storm::models::sparse::StandardRewardModel<ValueType> const& rewardModel);
/*! /*!
* Computes the long run average value given the provided state and action-based rewards. * Computes the long run average value given the provided state and action-based rewards.
* @param stateValues a vector containing a value for every state * @param stateValues a vector containing a value for every state
@ -86,7 +86,7 @@ namespace storm {
* @return a value for each state * @return a value for each state
*/ */
std::vector<ValueType> computeLongRunAverageValues(Environment const& env, std::vector<ValueType> const* stateValues = nullptr, std::vector<ValueType> const* actionValues = nullptr); std::vector<ValueType> computeLongRunAverageValues(Environment const& env, std::vector<ValueType> const* stateValues = nullptr, std::vector<ValueType> const* actionValues = nullptr);
/*! /*!
* Computes the long run average value given the provided state and action based rewards * Computes the long run average value given the provided state and action based rewards
* @param stateValuesGetter a function returning a value for a given state index * @param stateValuesGetter a function returning a value for a given state index
@ -102,39 +102,40 @@ namespace storm {
* @post if scheduler production is enabled and Nondeterministic is true, getProducedOptimalChoices() contains choices for the states of the given component which yield the returned LRA value. Choices for states outside of the component are not affected. * @post if scheduler production is enabled and Nondeterministic is true, getProducedOptimalChoices() contains choices for the states of the given component which yield the returned LRA value. Choices for states outside of the component are not affected.
*/ */
virtual ValueType computeLraForComponent(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, LongRunComponentType const& component) = 0; virtual ValueType computeLraForComponent(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, LongRunComponentType const& component) = 0;
protected: protected:
/*! /*!
* @return true iff this is a computation on a continuous time model (i.e. CTMC, MA) * @return true iff this is a computation on a continuous time model (i.e. CTMC, MA)
*/ */
bool isContinuousTime() const; bool isContinuousTime() const;
/*! /*!
* @post _longRunComponentDecomposition points to a decomposition of the long run components (MECs, BSCCs) * @post _longRunComponentDecomposition points to a decomposition of the long run components (MECs, BSCCs)
*/ */
virtual void createDecomposition() = 0; virtual void createDecomposition() = 0;
/*! /*!
* @pre if scheduler production is enabled and Nondeterministic is true, a choice for each state within a component must be set such that the choices yield optimal values w.r.t. the individual components. * @pre if scheduler production is enabled and Nondeterministic is true, a choice for each state within a component must be set such that the choices yield optimal values w.r.t. the individual components.
* @return Lra values for each state * @return Lra values for each state
* @post if scheduler production is enabled and Nondeterministic is true, getProducedOptimalChoices() contains choices for all input model states which yield the returned LRA values. * @post if scheduler production is enabled and Nondeterministic is true, getProducedOptimalChoices() contains choices for all input model states which yield the returned LRA values.
*/ */
virtual std::vector<ValueType> buildAndSolveSsp(Environment const& env, std::vector<ValueType> const& mecLraValues) = 0; virtual std::vector<ValueType> buildAndSolveSsp(Environment const& env, std::vector<ValueType> const& mecLraValues) = 0;
storm::storage::SparseMatrix<ValueType> const& _transitionMatrix; storm::storage::SparseMatrix<ValueType> const& _transitionMatrix;
storm::storage::BitVector const* _markovianStates; storm::storage::BitVector const* _markovianStates;
std::vector<ValueType> const* _exitRates; std::vector<ValueType> const* _exitRates;
storm::storage::SparseMatrix<ValueType> const* _backwardTransitions; storm::storage::SparseMatrix<ValueType> const* _backwardTransitions;
storm::storage::Decomposition<LongRunComponentType> const* _longRunComponentDecomposition; storm::storage::Decomposition<LongRunComponentType> const* _longRunComponentDecomposition;
std::unique_ptr<storm::storage::SparseMatrix<ValueType>> _computedBackwardTransitions; std::unique_ptr<storm::storage::SparseMatrix<ValueType>> _computedBackwardTransitions;
std::unique_ptr<storm::storage::Decomposition<LongRunComponentType>> _computedLongRunComponentDecomposition; std::unique_ptr<storm::storage::Decomposition<LongRunComponentType>> _computedLongRunComponentDecomposition;
boost::optional<std::vector<uint64_t>> _producedOptimalChoices; boost::optional<std::vector<uint64_t>> _producedOptimalChoices;
boost::optional<std::vector<ValueType>> _choiceValues;
}; };
} }
} }
}
}

88
src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.cpp

@ -22,31 +22,31 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
template <typename ValueType> template <typename ValueType>
SparseNondeterministicInfiniteHorizonHelper<ValueType>::SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix) : SparseInfiniteHorizonHelper<ValueType, true>(transitionMatrix) { SparseNondeterministicInfiniteHorizonHelper<ValueType>::SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix) : SparseInfiniteHorizonHelper<ValueType, true>(transitionMatrix) {
// Intentionally left empty. // Intentionally left empty.
} }
template <typename ValueType> template <typename ValueType>
SparseNondeterministicInfiniteHorizonHelper<ValueType>::SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates) : SparseInfiniteHorizonHelper<ValueType, true>(transitionMatrix, markovianStates, exitRates) { SparseNondeterministicInfiniteHorizonHelper<ValueType>::SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates) : SparseInfiniteHorizonHelper<ValueType, true>(transitionMatrix, markovianStates, exitRates) {
// Intentionally left empty. // Intentionally left empty.
} }
template <typename ValueType> template <typename ValueType>
std::vector<uint64_t> const& SparseNondeterministicInfiniteHorizonHelper<ValueType>::getProducedOptimalChoices() const { std::vector<uint64_t> const& SparseNondeterministicInfiniteHorizonHelper<ValueType>::getProducedOptimalChoices() const {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested."); STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?"); STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_producedOptimalChoices.get(); return this->_producedOptimalChoices.get();
} }
template <typename ValueType> template <typename ValueType>
std::vector<uint64_t>& SparseNondeterministicInfiniteHorizonHelper<ValueType>::getProducedOptimalChoices() { std::vector<uint64_t>& SparseNondeterministicInfiniteHorizonHelper<ValueType>::getProducedOptimalChoices() {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested."); STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?"); STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_producedOptimalChoices.get(); return this->_producedOptimalChoices.get();
} }
template <typename ValueType> template <typename ValueType>
storm::storage::Scheduler<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::extractScheduler() const { storm::storage::Scheduler<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::extractScheduler() const {
auto const& optimalChoices = getProducedOptimalChoices(); auto const& optimalChoices = getProducedOptimalChoices();
@ -56,7 +56,14 @@ namespace storm {
} }
return scheduler; return scheduler;
} }
template <typename ValueType>
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::getChoiceValues() const {
STORM_LOG_ASSERT(this->isProduceChoiceValuesSet(), "Trying to get the computed choice values although this was not requested.");
STORM_LOG_ASSERT(this->_choiceValues.is_initialized(), "Trying to get the computed choice values but none were available. Was there a computation call before?");
return this->_choiceValues.get();
}
template <typename ValueType> template <typename ValueType>
void SparseNondeterministicInfiniteHorizonHelper<ValueType>::createDecomposition() { void SparseNondeterministicInfiniteHorizonHelper<ValueType>::createDecomposition() {
if (this->_longRunComponentDecomposition == nullptr) { if (this->_longRunComponentDecomposition == nullptr) {
@ -73,7 +80,7 @@ namespace storm {
template <typename ValueType> template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForComponent(Environment const& env, ValueGetter const& stateRewardsGetter, ValueGetter const& actionRewardsGetter, storm::storage::MaximalEndComponent const& component) { ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForComponent(Environment const& env, ValueGetter const& stateRewardsGetter, ValueGetter const& actionRewardsGetter, storm::storage::MaximalEndComponent const& component) {
// For models with potential nondeterminisim, we compute the LRA for a maximal end component (MEC) // For models with potential nondeterminisim, we compute the LRA for a maximal end component (MEC)
// Allocate memory for the nondeterministic choices. // Allocate memory for the nondeterministic choices.
if (this->isProduceSchedulerSet()) { if (this->isProduceSchedulerSet()) {
if (!this->_producedOptimalChoices.is_initialized()) { if (!this->_producedOptimalChoices.is_initialized()) {
@ -81,12 +88,19 @@ namespace storm {
} }
this->_producedOptimalChoices->resize(this->_transitionMatrix.getRowGroupCount()); this->_producedOptimalChoices->resize(this->_transitionMatrix.getRowGroupCount());
} }
// Allocate memory for the choice values.
if (this->isProduceSchedulerSet()) {
if (!this->_choiceValues.is_initialized()) {
this->_choiceValues.emplace();
}
this->_choiceValues->resize(this->_transitionMatrix.getRowCount());
}
auto trivialResult = this->computeLraForTrivialMec(env, stateRewardsGetter, actionRewardsGetter, component); auto trivialResult = this->computeLraForTrivialMec(env, stateRewardsGetter, actionRewardsGetter, component);
if (trivialResult.first) { if (trivialResult.first) {
return trivialResult.second; return trivialResult.second;
} }
// Solve nontrivial MEC with the method specified in the settings // Solve nontrivial MEC with the method specified in the settings
storm::solver::LraMethod method = env.solver().lra().getNondetLraMethod(); storm::solver::LraMethod method = env.solver().lra().getNondetLraMethod();
if ((storm::NumberTraits<ValueType>::IsExact || env.solver().isForceExact()) && env.solver().lra().isNondetLraMethodSetFromDefault() && method != storm::solver::LraMethod::LinearProgramming) { if ((storm::NumberTraits<ValueType>::IsExact || env.solver().isForceExact()) && env.solver().lra().isNondetLraMethodSetFromDefault() && method != storm::solver::LraMethod::LinearProgramming) {
@ -105,10 +119,10 @@ namespace storm {
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Unsupported technique."); STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Unsupported technique.");
} }
} }
template <typename ValueType> template <typename ValueType>
std::pair<bool, ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForTrivialMec(Environment const& env, ValueGetter const& stateRewardsGetter, ValueGetter const& actionRewardsGetter, storm::storage::MaximalEndComponent const& component) { std::pair<bool, ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForTrivialMec(Environment const& env, ValueGetter const& stateRewardsGetter, ValueGetter const& actionRewardsGetter, storm::storage::MaximalEndComponent const& component) {
// If the component only consists of a single state, we compute the LRA value directly // If the component only consists of a single state, we compute the LRA value directly
if (component.size() == 1) { if (component.size() == 1) {
auto const& element = *component.begin(); auto const& element = *component.begin();
@ -145,8 +159,8 @@ namespace storm {
} }
return {false, storm::utility::zero<ValueType>()}; return {false, storm::utility::zero<ValueType>()};
} }
template <typename ValueType> template <typename ValueType>
ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMecVi(Environment const& env, ValueGetter const& stateRewardsGetter, ValueGetter const& actionRewardsGetter, storm::storage::MaximalEndComponent const& mec) { ValueType SparseNondeterministicInfiniteHorizonHelper<ValueType>::computeLraForMecVi(Environment const& env, ValueGetter const& stateRewardsGetter, ValueGetter const& actionRewardsGetter, storm::storage::MaximalEndComponent const& mec) {
@ -156,7 +170,11 @@ namespace storm {
if (this->isProduceSchedulerSet()) { if (this->isProduceSchedulerSet()) {
optimalChoices = &this->_producedOptimalChoices.get(); optimalChoices = &this->_producedOptimalChoices.get();
} }
std::vector<ValueType>* choiceValues = nullptr;
if (this->isProduceChoiceValuesSet()) {
choiceValues = &this->_choiceValues.get();
}
// Now create a helper and perform the algorithm // Now create a helper and perform the algorithm
if (this->isContinuousTime()) { if (this->isContinuousTime()) {
// We assume a Markov Automaton (with deterministic timed states and nondeterministic instant states) // We assume a Markov Automaton (with deterministic timed states and nondeterministic instant states)
@ -187,12 +205,12 @@ namespace storm {
} }
storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", storm::utility::one<ValueType>()); storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", storm::utility::one<ValueType>());
solver->update(); solver->update();
// Add constraints. // Add constraints.
for (auto const& stateChoicesPair : mec) { for (auto const& stateChoicesPair : mec) {
uint_fast64_t state = stateChoicesPair.first; uint_fast64_t state = stateChoicesPair.first;
bool stateIsMarkovian = this->_markovianStates && this->_markovianStates->get(state); bool stateIsMarkovian = this->_markovianStates && this->_markovianStates->get(state);
// Now create a suitable constraint for each choice // Now create a suitable constraint for each choice
// x_s {≤, ≥} -k/rate(s) + sum_s' P(s,act,s') * x_s' + (value(s)/rate(s) + value(s,act)) // x_s {≤, ≥} -k/rate(s) + sum_s' P(s,act,s') * x_s' + (value(s)/rate(s) + value(s,act))
for (auto choice : stateChoicesPair.second) { for (auto choice : stateChoicesPair.second) {
@ -231,12 +249,12 @@ namespace storm {
solver->addConstraint("s" + std::to_string(state) + "," + std::to_string(choice), constraint); solver->addConstraint("s" + std::to_string(state) + "," + std::to_string(choice), constraint);
} }
} }
solver->optimize(); solver->optimize();
STORM_LOG_THROW(!this->isProduceSchedulerSet(), storm::exceptions::NotImplementedException, "Scheduler extraction is not yet implemented for LP based LRA method."); STORM_LOG_THROW(!this->isProduceSchedulerSet(), storm::exceptions::NotImplementedException, "Scheduler extraction is not yet implemented for LP based LRA method.");
return solver->getContinuousValue(k); return solver->getContinuousValue(k);
} }
/*! /*!
* Auxiliary function that adds the entries of the Ssp Matrix for a single choice (i.e., row) * Auxiliary function that adds the entries of the Ssp Matrix for a single choice (i.e., row)
* Transitions that lead to a Component state will be redirected to a new auxiliary state (there is one aux. state for each component). * Transitions that lead to a Component state will be redirected to a new auxiliary state (there is one aux. state for each component).
@ -244,10 +262,10 @@ namespace storm {
*/ */
template <typename ValueType> template <typename ValueType>
void addSspMatrixChoice(uint64_t const& inputMatrixChoice, storm::storage::SparseMatrix<ValueType> const& inputTransitionMatrix, std::vector<uint64_t> const& inputToSspStateMap, uint64_t const& numberOfNonComponentStates, uint64_t const& currentSspChoice, storm::storage::SparseMatrixBuilder<ValueType>& sspMatrixBuilder) { void addSspMatrixChoice(uint64_t const& inputMatrixChoice, storm::storage::SparseMatrix<ValueType> const& inputTransitionMatrix, std::vector<uint64_t> const& inputToSspStateMap, uint64_t const& numberOfNonComponentStates, uint64_t const& currentSspChoice, storm::storage::SparseMatrixBuilder<ValueType>& sspMatrixBuilder) {
// As there could be multiple transitions to the same MEC, we accumulate them in this map before adding them to the matrix builder. // As there could be multiple transitions to the same MEC, we accumulate them in this map before adding them to the matrix builder.
std::map<uint64_t, ValueType> auxiliaryStateToProbabilityMap; std::map<uint64_t, ValueType> auxiliaryStateToProbabilityMap;
for (auto const& transition : inputTransitionMatrix.getRow(inputMatrixChoice)) { for (auto const& transition : inputTransitionMatrix.getRow(inputMatrixChoice)) {
if (!storm::utility::isZero(transition.getValue())) { if (!storm::utility::isZero(transition.getValue())) {
auto const& sspTransitionTarget = inputToSspStateMap[transition.getColumn()]; auto const& sspTransitionTarget = inputToSspStateMap[transition.getColumn()];
@ -268,18 +286,18 @@ namespace storm {
} }
} }
} }
// Now insert all (cumulative) probability values that target a component. // Now insert all (cumulative) probability values that target a component.
for (auto const& componentToProbEntry : auxiliaryStateToProbabilityMap) { for (auto const& componentToProbEntry : auxiliaryStateToProbabilityMap) {
sspMatrixBuilder.addNextValue(currentSspChoice, componentToProbEntry.first, componentToProbEntry.second); sspMatrixBuilder.addNextValue(currentSspChoice, componentToProbEntry.first, componentToProbEntry.second);
} }
} }
template <typename ValueType> template <typename ValueType>
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> SparseNondeterministicInfiniteHorizonHelper<ValueType>::buildSspMatrixVector(std::vector<ValueType> const& mecLraValues, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>>* sspComponentExitChoicesToOriginalMap) { std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> SparseNondeterministicInfiniteHorizonHelper<ValueType>::buildSspMatrixVector(std::vector<ValueType> const& mecLraValues, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>>* sspComponentExitChoicesToOriginalMap) {
auto const& choiceIndices = this->_transitionMatrix.getRowGroupIndices(); auto const& choiceIndices = this->_transitionMatrix.getRowGroupIndices();
std::vector<ValueType> rhs; std::vector<ValueType> rhs;
uint64_t numberOfSspStates = numberOfNonComponentStates + this->_longRunComponentDecomposition->size(); uint64_t numberOfSspStates = numberOfNonComponentStates + this->_longRunComponentDecomposition->size();
storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, numberOfSspStates , 0, true, true, numberOfSspStates); storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, numberOfSspStates , 0, true, true, numberOfSspStates);
@ -323,7 +341,7 @@ namespace storm {
} }
return std::make_pair(sspMatrixBuilder.build(currentSspChoice, numberOfSspStates, numberOfSspStates), std::move(rhs)); return std::make_pair(sspMatrixBuilder.build(currentSspChoice, numberOfSspStates, numberOfSspStates), std::move(rhs));
} }
template <typename ValueType> template <typename ValueType>
void SparseNondeterministicInfiniteHorizonHelper<ValueType>::constructOptimalChoices(std::vector<uint64_t> const& sspChoices, storm::storage::SparseMatrix<ValueType> const& sspMatrix, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>> const& sspComponentExitChoicesToOriginalMap) { void SparseNondeterministicInfiniteHorizonHelper<ValueType>::constructOptimalChoices(std::vector<uint64_t> const& sspChoices, storm::storage::SparseMatrix<ValueType> const& sspMatrix, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>> const& sspComponentExitChoicesToOriginalMap) {
// We first take care of non-mec states // We first take care of non-mec states
@ -398,11 +416,11 @@ namespace storm {
template <typename ValueType> template <typename ValueType>
std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::buildAndSolveSsp(Environment const& env, std::vector<ValueType> const& componentLraValues) { std::vector<ValueType> SparseNondeterministicInfiniteHorizonHelper<ValueType>::buildAndSolveSsp(Environment const& env, std::vector<ValueType> const& componentLraValues) {
STORM_LOG_ASSERT(this->_longRunComponentDecomposition != nullptr, "Decomposition not computed, yet."); STORM_LOG_ASSERT(this->_longRunComponentDecomposition != nullptr, "Decomposition not computed, yet.");
// For fast transition rewriting, we build a mapping from the input state indices to the state indices of a new transition matrix // For fast transition rewriting, we build a mapping from the input state indices to the state indices of a new transition matrix
// which redirects all transitions leading to a former component state to a new auxiliary state. // which redirects all transitions leading to a former component state to a new auxiliary state.
// There will be one auxiliary state for each component. These states will be appended to the end of the matrix. // There will be one auxiliary state for each component. These states will be appended to the end of the matrix.
// First gather the states that are part of a component // First gather the states that are part of a component
// and create a mapping from states that lie in a component to the corresponding component index. // and create a mapping from states that lie in a component to the corresponding component index.
storm::storage::BitVector statesInComponents(this->_transitionMatrix.getRowGroupCount()); storm::storage::BitVector statesInComponents(this->_transitionMatrix.getRowGroupCount());
@ -427,14 +445,14 @@ namespace storm {
for (auto mecState : statesInComponents) { for (auto mecState : statesInComponents) {
inputToSspStateMap[mecState] += numberOfNonComponentStates; inputToSspStateMap[mecState] += numberOfNonComponentStates;
} }
// For scheduler extraction, we will need to create a mapping between choices at the auxiliary states and the // For scheduler extraction, we will need to create a mapping between choices at the auxiliary states and the
// corresponding choices in the original model. // corresponding choices in the original model.
std::vector<std::pair<uint_fast64_t, uint_fast64_t>> sspComponentExitChoicesToOriginalMap; std::vector<std::pair<uint_fast64_t, uint_fast64_t>> sspComponentExitChoicesToOriginalMap;
// The next step is to create the SSP matrix and the right-hand side of the SSP. // The next step is to create the SSP matrix and the right-hand side of the SSP.
auto sspMatrixVector = buildSspMatrixVector(componentLraValues, inputToSspStateMap, statesNotInComponent, numberOfNonComponentStates, this->isProduceSchedulerSet() ? &sspComponentExitChoicesToOriginalMap : nullptr); auto sspMatrixVector = buildSspMatrixVector(componentLraValues, inputToSspStateMap, statesNotInComponent, numberOfNonComponentStates, this->isProduceSchedulerSet() ? &sspComponentExitChoicesToOriginalMap : nullptr);
// Set-up a solver // Set-up a solver
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxLinearEquationSolverFactory; storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxLinearEquationSolverFactory;
storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements(env, true, true, this->getOptimizationDirection(), false, this->isProduceSchedulerSet()); storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements(env, true, true, this->getOptimizationDirection(), false, this->isProduceSchedulerSet());
@ -448,7 +466,7 @@ namespace storm {
solver->setLowerBound(*lowerUpperBounds.first); solver->setLowerBound(*lowerUpperBounds.first);
solver->setUpperBound(*lowerUpperBounds.second); solver->setUpperBound(*lowerUpperBounds.second);
solver->setRequirementsChecked(); solver->setRequirementsChecked();
// Solve the equation system // Solve the equation system
std::vector<ValueType> x(sspMatrixVector.first.getRowGroupCount()); std::vector<ValueType> x(sspMatrixVector.first.getRowGroupCount());
solver->solveEquations(env, this->getOptimizationDirection(), x, sspMatrixVector.second); solver->solveEquations(env, this->getOptimizationDirection(), x, sspMatrixVector.second);
@ -460,7 +478,7 @@ namespace storm {
} else { } else {
STORM_LOG_ERROR_COND(!this->isProduceSchedulerSet(), "Requested to produce a scheduler, but no scheduler was generated."); STORM_LOG_ERROR_COND(!this->isProduceSchedulerSet(), "Requested to produce a scheduler, but no scheduler was generated.");
} }
// Prepare result vector. // Prepare result vector.
// For efficiency reasons, we re-use the memory of our rhs for this! // For efficiency reasons, we re-use the memory of our rhs for this!
std::vector<ValueType> result = std::move(sspMatrixVector.second); std::vector<ValueType> result = std::move(sspMatrixVector.second);
@ -469,10 +487,10 @@ namespace storm {
storm::utility::vector::selectVectorValues(result, inputToSspStateMap, x); storm::utility::vector::selectVectorValues(result, inputToSspStateMap, x);
return result; return result;
} }
template class SparseNondeterministicInfiniteHorizonHelper<double>; template class SparseNondeterministicInfiniteHorizonHelper<double>;
template class SparseNondeterministicInfiniteHorizonHelper<storm::RationalNumber>; template class SparseNondeterministicInfiniteHorizonHelper<storm::RationalNumber>;
} }
} }
}
}

43
src/storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h

@ -3,14 +3,14 @@
namespace storm { namespace storm {
namespace storage { namespace storage {
template <typename VT> class Scheduler; template <typename VT> class Scheduler;
} }
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
/*! /*!
* Helper class for model checking queries that depend on the long run behavior of the (nondeterministic) system. * Helper class for model checking queries that depend on the long run behavior of the (nondeterministic) system.
* @tparam ValueType the type a value can have * @tparam ValueType the type a value can have
@ -23,35 +23,40 @@ namespace storm {
* Function mapping from indices to values * Function mapping from indices to values
*/ */
typedef typename SparseInfiniteHorizonHelper<ValueType, true>::ValueGetter ValueGetter; typedef typename SparseInfiniteHorizonHelper<ValueType, true>::ValueGetter ValueGetter;
/*! /*!
* Initializes the helper for a discrete time model (i.e. MDP) * Initializes the helper for a discrete time model (i.e. MDP)
*/ */
SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix); SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix);
/*! /*!
* Initializes the helper for a continuous time model (i.e. MA) * Initializes the helper for a continuous time model (i.e. MA)
*/ */
SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates); SparseNondeterministicInfiniteHorizonHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovianStates, std::vector<ValueType> const& exitRates);
/*! /*!
* @pre before calling this, a computation call should have been performed during which scheduler production was enabled. * @pre before calling this, a computation call should have been performed during which scheduler production was enabled.
* @return the produced scheduler of the most recent call. * @return the produced scheduler of the most recent call.
*/ */
std::vector<uint64_t> const& getProducedOptimalChoices() const; std::vector<uint64_t> const& getProducedOptimalChoices() const;
/*! /*!
* @pre before calling this, a computation call should have been performed during which scheduler production was enabled. * @pre before calling this, a computation call should have been performed during which scheduler production was enabled.
* @return the produced scheduler of the most recent call. * @return the produced scheduler of the most recent call.
*/ */
std::vector<uint64_t>& getProducedOptimalChoices(); std::vector<uint64_t>& getProducedOptimalChoices();
/*! /*!
* @pre before calling this, a computation call should have been performed during which scheduler production was enabled. * @pre before calling this, a computation call should have been performed during which scheduler production was enabled.
* @return a new scheduler containing optimal choices for each state that yield the long run average values of the most recent call. * @return a new scheduler containing optimal choices for each state that yield the long run average values of the most recent call.
*/ */
storm::storage::Scheduler<ValueType> extractScheduler() const; storm::storage::Scheduler<ValueType> extractScheduler() const;
/*!
* @return the computed choice values for the states.
*/
std::vector<ValueType> getChoiceValues() const;
/*! /*!
* @param stateValuesGetter a function returning a value for a given state index * @param stateValuesGetter a function returning a value for a given state index
* @param actionValuesGetter a function returning a value for a given (global) choice index * @param actionValuesGetter a function returning a value for a given (global) choice index
@ -59,43 +64,43 @@ namespace storm {
* @post if scheduler production is enabled and Nondeterministic is true, getProducedOptimalChoices() contains choices for the states of the given component which yield the returned LRA value. Choices for states outside of the component are not affected. * @post if scheduler production is enabled and Nondeterministic is true, getProducedOptimalChoices() contains choices for the states of the given component which yield the returned LRA value. Choices for states outside of the component are not affected.
*/ */
virtual ValueType computeLraForComponent(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& component) override; virtual ValueType computeLraForComponent(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& component) override;
protected: protected:
virtual void createDecomposition() override; virtual void createDecomposition() override;
std::pair<bool, ValueType> computeLraForTrivialMec(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec); std::pair<bool, ValueType> computeLraForTrivialMec(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec);
/*! /*!
* As computeLraForMec but uses value iteration as a solution method (independent of what is set in env) * As computeLraForMec but uses value iteration as a solution method (independent of what is set in env)
*/ */
ValueType computeLraForMecVi(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec); ValueType computeLraForMecVi(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec);
/*! /*!
* As computeLraForMec but uses linear programming as a solution method (independent of what is set in env) * As computeLraForMec but uses linear programming as a solution method (independent of what is set in env)
* @see Guck et al.: Modelling and Analysis of Markov Reward Automata (ATVA'14), https://doi.org/10.1007/978-3-319-11936-6_13 * @see Guck et al.: Modelling and Analysis of Markov Reward Automata (ATVA'14), https://doi.org/10.1007/978-3-319-11936-6_13
*/ */
ValueType computeLraForMecLp(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec); ValueType computeLraForMecLp(Environment const& env, ValueGetter const& stateValuesGetter, ValueGetter const& actionValuesGetter, storm::storage::MaximalEndComponent const& mec);
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> buildSspMatrixVector(std::vector<ValueType> const& mecLraValues, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>>* sspComponentExitChoicesToOriginalMap); std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> buildSspMatrixVector(std::vector<ValueType> const& mecLraValues, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>>* sspComponentExitChoicesToOriginalMap);
/*! /*!
* @pre a choice for each state within a component must be set such that the choices yield optimal values w.r.t. the individual components. * @pre a choice for each state within a component must be set such that the choices yield optimal values w.r.t. the individual components.
* Translates optimal choices for MECS and SSP to the original model. * Translates optimal choices for MECS and SSP to the original model.
* @post getProducedOptimalChoices() contains choices for all input model states which yield the returned LRA values. * @post getProducedOptimalChoices() contains choices for all input model states which yield the returned LRA values.
*/ */
void constructOptimalChoices(std::vector<uint64_t> const& sspChoices, storm::storage::SparseMatrix<ValueType> const& sspMatrix, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>> const& sspComponentExitChoicesToOriginalMap); void constructOptimalChoices(std::vector<uint64_t> const& sspChoices, storm::storage::SparseMatrix<ValueType> const& sspMatrix, std::vector<uint64_t> const& inputToSspStateMap, storm::storage::BitVector const& statesNotInComponent, uint64_t numberOfNonComponentStates, std::vector<std::pair<uint64_t, uint64_t>> const& sspComponentExitChoicesToOriginalMap);
/*! /*!
* @pre if scheduler production is enabled a choice for each state within a component must be set such that the choices yield optimal values w.r.t. the individual components. * @pre if scheduler production is enabled a choice for each state within a component must be set such that the choices yield optimal values w.r.t. the individual components.
* @return Lra values for each state * @return Lra values for each state
* @post if scheduler production is enabled getProducedOptimalChoices() contains choices for all input model states which yield the returned LRA values. * @post if scheduler production is enabled getProducedOptimalChoices() contains choices for all input model states which yield the returned LRA values.
*/ */
virtual std::vector<ValueType> buildAndSolveSsp(Environment const& env, std::vector<ValueType> const& mecLraValues) override; virtual std::vector<ValueType> buildAndSolveSsp(Environment const& env, std::vector<ValueType> const& mecLraValues) override;
}; };
} }
} }
}
}

9
src/storm/modelchecker/helper/utility/SetInformationFromCheckTask.h

@ -5,7 +5,7 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace helper { namespace helper {
/*! /*!
* Forwards relevant information stored in the given CheckTask to the given helper * Forwards relevant information stored in the given CheckTask to the given helper
*/ */
@ -26,10 +26,13 @@ namespace storm {
// Scheduler Production // Scheduler Production
helper.setProduceScheduler(checkTask.isProduceSchedulersSet()); helper.setProduceScheduler(checkTask.isProduceSchedulersSet());
// Shield Synthesis
helper.setProduceChoiceValues(checkTask.isShieldingTask());
// Qualitative flag // Qualitative flag
helper.setQualitative(checkTask.isQualitativeSet()); helper.setQualitative(checkTask.isQualitativeSet());
} }
/*! /*!
* Forwards relevant information stored in the given CheckTask to the given helper * Forwards relevant information stored in the given CheckTask to the given helper
*/ */
@ -50,4 +53,4 @@ namespace storm {
} }
} }
} }
}
}

12
src/storm/modelchecker/rpatl/helper/internal/GameViHelper.cpp

@ -50,7 +50,7 @@ namespace storm {
_multiplier->multiply(env, xNew(), &_b, constrainedChoiceValues); _multiplier->multiply(env, xNew(), &_b, constrainedChoiceValues);
auto rowGroupIndices = this->_transitionMatrix.getRowGroupIndices(); auto rowGroupIndices = this->_transitionMatrix.getRowGroupIndices();
rowGroupIndices.erase(rowGroupIndices.begin()); rowGroupIndices.erase(rowGroupIndices.begin());
_multiplier->reduce(env, dir, constrainedChoiceValues, rowGroupIndices, xNew());
_multiplier->reduce(env, dir, rowGroupIndices, constrainedChoiceValues, xNew(), nullptr, &_statesOfCoalition);
break; break;
} }
performIterationStep(env, dir); performIterationStep(env, dir);
@ -125,6 +125,16 @@ namespace storm {
return _produceScheduler; return _produceScheduler;
} }
template <typename ValueType>
void GameViHelper<ValueType>::setShieldingTask(bool value) {
_shieldingTask = value;
}
template <typename ValueType>
bool GameViHelper<ValueType>::isShieldingTask() const {
return _shieldingTask;
}
template <typename ValueType> template <typename ValueType>
void GameViHelper<ValueType>::updateTransitionMatrix(storm::storage::SparseMatrix<ValueType> newTransitionMatrix) { void GameViHelper<ValueType>::updateTransitionMatrix(storm::storage::SparseMatrix<ValueType> newTransitionMatrix) {
_transitionMatrix = newTransitionMatrix; _transitionMatrix = newTransitionMatrix;

11
src/storm/modelchecker/rpatl/helper/internal/GameViHelper.h

@ -38,6 +38,16 @@ namespace storm {
*/ */
bool isProduceSchedulerSet() const; bool isProduceSchedulerSet() const;
/*!
* Sets whether an optimal scheduler shall be constructed during the computation
*/
void setShieldingTask(bool value);
/*!
* @return whether an optimal scheduler shall be constructed during the computation
*/
bool isShieldingTask() const;
/*! /*!
* Changes the transitionMatrix to the given one. * Changes the transitionMatrix to the given one.
*/ */
@ -93,6 +103,7 @@ namespace storm {
std::unique_ptr<storm::solver::Multiplier<ValueType>> _multiplier; std::unique_ptr<storm::solver::Multiplier<ValueType>> _multiplier;
bool _produceScheduler = false; bool _produceScheduler = false;
bool _shieldingTask = false;
boost::optional<std::vector<uint64_t>> _producedOptimalChoices; boost::optional<std::vector<uint64_t>> _producedOptimalChoices;
}; };
} }

Loading…
Cancel
Save