Browse Source

Added missing test inputs.

Former-commit-id: 537971f365
tempestpy_adaptions
dehnert 11 years ago
parent
commit
dc8921037e
  1. 60
      test/functional/parser/prism/coin2.nm
  2. 69
      test/functional/parser/prism/crowds5_5.pm
  3. 130
      test/functional/parser/prism/csma2_2.nm
  4. 24
      test/functional/parser/prism/die.pm
  5. 170
      test/functional/parser/prism/firewire.nm
  6. 96
      test/functional/parser/prism/leader3.nm
  7. 85
      test/functional/parser/prism/leader3_5.pm
  8. 40
      test/functional/parser/prism/two_dice.nm
  9. 219
      test/functional/parser/prism/wlan0_collide.nm

60
test/functional/parser/prism/coin2.nm

@ -0,0 +1,60 @@
// COIN FLIPPING PROTOCOL FOR POLYNOMIAL RANDOMIZED CONSENSUS [AH90]
// gxn/dxp 20/11/00
mdp
// constants
const int N=2;
const int K;
const int range = 2*(K+1)*N;
const int counter_init = (K+1)*N;
const int left = N;
const int right = 2*(K+1)*N - N;
// shared coin
global counter : [0..range] init counter_init;
module process1
// program counter
pc1 : [0..3];
// 0 - flip
// 1 - write
// 2 - check
// 3 - finished
// local coin
coin1 : [0..1];
// flip coin
[] (pc1=0) -> 0.5 : (coin1'=0) & (pc1'=1) + 0.5 : (coin1'=1) & (pc1'=1);
// write tails -1 (reset coin to add regularity)
[] (pc1=1) & (coin1=0) & (counter>0) -> 1 : (counter'=counter-1) & (pc1'=2) & (coin1'=0);
// write heads +1 (reset coin to add regularity)
[] (pc1=1) & (coin1=1) & (counter<range) -> 1 : (counter'=counter+1) & (pc1'=2) & (coin1'=0);
// check
// decide tails
[] (pc1=2) & (counter<=left) -> 1 : (pc1'=3) & (coin1'=0);
// decide heads
[] (pc1=2) & (counter>=right) -> 1 : (pc1'=3) & (coin1'=1);
// flip again
[] (pc1=2) & (counter>left) & (counter<right) -> 1 : (pc1'=0);
// loop (all loop together when done)
[done] (pc1=3) -> 1 : (pc1'=3);
endmodule
// construct remaining processes through renaming
module process2 = process1[pc1=pc2,coin1=coin2] endmodule
// labels
label "finished" = pc1=3 & pc2=3 ;
label "all_coins_equal_0" = coin1=0 & coin2=0 ;
label "all_coins_equal_1" = coin1=1 & coin2=1 ;
label "agree" = coin1=coin2 ;
// rewards
rewards "steps"
true : 1;
endrewards

69
test/functional/parser/prism/crowds5_5.pm

@ -0,0 +1,69 @@
dtmc
// probability of forwarding
const double PF = 0.8;
const double notPF = .2; // must be 1-PF
// probability that a crowd member is bad
const double badC = .167;
// probability that a crowd member is good
const double goodC = 0.833;
// Total number of protocol runs to analyze
const int TotalRuns = 5;
// size of the crowd
const int CrowdSize = 5;
module crowds
// protocol phase
phase: [0..4] init 0;
// crowd member good (or bad)
good: bool init false;
// number of protocol runs
runCount: [0..TotalRuns] init 0;
// observe_i is the number of times the attacker observed crowd member i
observe0: [0..TotalRuns] init 0;
observe1: [0..TotalRuns] init 0;
observe2: [0..TotalRuns] init 0;
observe3: [0..TotalRuns] init 0;
observe4: [0..TotalRuns] init 0;
// the last seen crowd member
lastSeen: [0..CrowdSize - 1] init 0;
// get the protocol started
[] phase=0 & runCount<TotalRuns -> 1: (phase'=1) & (runCount'=runCount+1) & (lastSeen'=0);
// decide whether crowd member is good or bad according to given probabilities
[] phase=1 -> goodC : (phase'=2) & (good'=true) + badC : (phase'=2) & (good'=false);
// if the current member is a good member, update the last seen index (chosen uniformly)
[] phase=2 & good -> 1/5 : (lastSeen'=0) & (phase'=3) + 1/5 : (lastSeen'=1) & (phase'=3) + 1/5 : (lastSeen'=2) & (phase'=3) + 1/5 : (lastSeen'=3) & (phase'=3) + 1/5 : (lastSeen'=4) & (phase'=3);
// if the current member is a bad member, record the most recently seen index
[] phase=2 & !good & lastSeen=0 & observe0 < TotalRuns -> 1: (observe0'=observe0+1) & (phase'=4);
[] phase=2 & !good & lastSeen=1 & observe1 < TotalRuns -> 1: (observe1'=observe1+1) & (phase'=4);
[] phase=2 & !good & lastSeen=2 & observe2 < TotalRuns -> 1: (observe2'=observe2+1) & (phase'=4);
[] phase=2 & !good & lastSeen=3 & observe3 < TotalRuns -> 1: (observe3'=observe3+1) & (phase'=4);
[] phase=2 & !good & lastSeen=4 & observe4 < TotalRuns -> 1: (observe4'=observe4+1) & (phase'=4);
// good crowd members forward with probability PF and deliver otherwise
[] phase=3 -> PF : (phase'=1) + notPF : (phase'=4);
// deliver the message and start over
[] phase=4 -> 1: (phase'=0);
endmodule
label "observe0Greater1" = observe0>1;
label "observe1Greater1" = observe1>1;
label "observe2Greater1" = observe2>1;
label "observe3Greater1" = observe3>1;
label "observe4Greater1" = observe4>1;
label "observeIGreater1" = observe1>1|observe2>1|observe3>1|observe4>1;
label "observeOnlyTrueSender" = observe0>1&observe1<=1 & observe2<=1 & observe3<=1 & observe4<=1;

130
test/functional/parser/prism/csma2_2.nm

@ -0,0 +1,130 @@
// CSMA/CD protocol - probabilistic version of kronos model (3 stations)
// gxn/dxp 04/12/01
mdp
// note made changes since cannot have strict inequalities
// in digital clocks approach and suppose a station only sends one message
// simplified parameters scaled
const int sigma=1; // time for messages to propagate along the bus
const int lambda=30; // time to send a message
// actual parameters
const int N = 2; // number of processes
const int K = 2; // exponential backoff limit
const int slot = 2*sigma; // length of slot
// const int M = floor(pow(2, K))-1 ; // max number of slots to wait
const int M = 3 ; // max number of slots to wait
//const int lambda=782;
//const int sigma=26;
// formula min_backoff_after_success = min(s1=4?cd1:K+1,s2=4?cd2:K+1);
// formula min_collisions = min(cd1,cd2);
// formula max_collisions = max(cd1,cd2);
//----------------------------------------------------------------------------------------------------------------------------
// the bus
module bus
b : [0..2];
// b=0 - idle
// b=1 - active
// b=2 - collision
// clocks of bus
y1 : [0..sigma+1]; // time since first send (used find time until channel sensed busy)
y2 : [0..sigma+1]; // time since second send (used to find time until collision detected)
// a sender sends (ok - no other message being sent)
[send1] (b=0) -> (b'=1);
[send2] (b=0) -> (b'=1);
// a sender sends (bus busy - collision)
[send1] (b=1|b=2) & (y1<sigma) -> (b'=2);
[send2] (b=1|b=2) & (y1<sigma) -> (b'=2);
// finish sending
[end1] (b=1) -> (b'=0) & (y1'=0);
[end2] (b=1) -> (b'=0) & (y1'=0);
// bus busy
[busy1] (b=1|b=2) & (y1>=sigma) -> (b'=b);
[busy2] (b=1|b=2) & (y1>=sigma) -> (b'=b);
// collision detected
[cd] (b=2) & (y2<=sigma) -> (b'=0) & (y1'=0) & (y2'=0);
// time passage
[time] (b=0) -> (y1'=0); // value of y1/y2 does not matter in state 0
[time] (b=1) -> (y1'=min(y1+1,sigma+1)); // no invariant in state 1
[time] (b=2) & (y2<sigma) -> (y1'=min(y1+1,sigma+1)) & (y2'=min(y2+1,sigma+1)); // invariant in state 2 (time until collision detected)
endmodule
//----------------------------------------------------------------------------------------------------------------------------
// model of first sender
module station1
// LOCAL STATE
s1 : [0..5];
// s1=0 - initial state
// s1=1 - transmit
// s1=2 - collision (set backoff)
// s1=3 - wait (bus busy)
// s1=4 - successfully sent
// LOCAL CLOCK
x1 : [0..max(lambda,slot)];
// BACKOFF COUNTER (number of slots to wait)
bc1 : [0..M];
// COLLISION COUNTER
cd1 : [0..K];
// start sending
[send1] (s1=0) -> (s1'=1) & (x1'=0); // start sending
[busy1] (s1=0) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // detects channel is busy so go into backoff
// transmitting
[time] (s1=1) & (x1<lambda) -> (x1'=min(x1+1,lambda)); // let time pass
[end1] (s1=1) & (x1=lambda) -> (s1'=4) & (x1'=0); // finished
[cd] (s1=1) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // collision detected (increment backoff counter)
[cd] !(s1=1) -> (s1'=s1); // add loop for collision detection when not important
// set backoff (no time can pass in this state)
// probability depends on which transmission this is (cd1)
[] s1=2 & cd1=1 -> 1/2 : (s1'=3) & (bc1'=0) + 1/2 : (s1'=3) & (bc1'=1) ;
[] s1=2 & cd1=2 -> 1/4 : (s1'=3) & (bc1'=0) + 1/4 : (s1'=3) & (bc1'=1) + 1/4 : (s1'=3) & (bc1'=2) + 1/4 : (s1'=3) & (bc1'=3) ;
// wait until backoff counter reaches 0 then send again
[time] (s1=3) & (x1<slot) -> (x1'=x1+1); // let time pass (in slot)
[time] (s1=3) & (x1=slot) & (bc1>0) -> (x1'=1) & (bc1'=bc1-1); // let time pass (move slots)
[send1] (s1=3) & (x1=slot) & (bc1=0) -> (s1'=1) & (x1'=0); // finished backoff (bus appears free)
[busy1] (s1=3) & (x1=slot) & (bc1=0) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // finished backoff (bus busy)
// once finished nothing matters
[time] (s1>=4) -> (x1'=0);
endmodule
//----------------------------------------------------------------------------------------------------------------------------
// construct further stations through renaming
module station2=station1[s1=s2,x1=x2,cd1=cd2,bc1=bc2,send1=send2,busy1=busy2,end1=end2] endmodule
//----------------------------------------------------------------------------------------------------------------------------
// reward structure for expected time
rewards "time"
[time] true : 1;
endrewards
//----------------------------------------------------------------------------------------------------------------------------
// labels/formulae
label "all_delivered" = s1=4&s2=4;
label "one_delivered" = s1=4|s2=4;
label "collision_max_backoff" = (cd1=K & s1=1 & b=2)|(cd2=K & s2=1 & b=2);

24
test/functional/parser/prism/die.pm

@ -0,0 +1,24 @@
// Knuth's model of a fair die using only fair coins
dtmc
module die
// local state
s : [0..7] init 0;
// value of the dice
d : [0..6] init 0;
[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
[] s=1 -> 0.5 : (s'=3) + 0.5 : (s'=4);
[] s=2 -> 0.5 : (s'=5) + 0.5 : (s'=6);
[] s=3 -> 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
[] s=4 -> 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
[] s=5 -> 0.5 : (s'=7) & (d'=4) + 0.5 : (s'=7) & (d'=5);
[] s=6 -> 0.5 : (s'=2) + 0.5 : (s'=7) & (d'=6);
[] s=7 -> 1: (s'=7);
endmodule
rewards "coin_flips"
[] s<7 : 1;
endrewards

170
test/functional/parser/prism/firewire.nm

@ -0,0 +1,170 @@
// firewire protocol with integer semantics
// dxp/gxn 14/06/01
// CLOCKS
// x1 (x2) clock for node1 (node2)
// y1 and y2 (z1 and z2) clocks for wire12 (wire21)
mdp
// maximum and minimum delays
// fast
const int rc_fast_max = 85;
const int rc_fast_min = 76;
// slow
const int rc_slow_max = 167;
const int rc_slow_min = 159;
// delay caused by the wire length
const int delay;
// probability of choosing fast
const double fast;
const double slow=1-fast;
module wire12
// local state
w12 : [0..9];
// 0 - empty
// 1 - rec_req
// 2 - rec_req_ack
// 3 - rec_ack
// 4 - rec_ack_idle
// 5 - rec_idle
// 6 - rec_idle_req
// 7 - rec_ack_req
// 8 - rec_req_idle
// 9 - rec_idle_ack
// clock for wire12
y1 : [0..delay+1];
y2 : [0..delay+1];
// empty
// do not need y1 and y2 to increase as always reset when this state is left
// similarly can reset y1 and y2 when we re-enter this state
[snd_req12] w12=0 -> (w12'=1) & (y1'=0) & (y2'=0);
[snd_ack12] w12=0 -> (w12'=3) & (y1'=0) & (y2'=0);
[snd_idle12] w12=0 -> (w12'=5) & (y1'=0) & (y2'=0);
[time] w12=0 -> (w12'=w12);
// rec_req
[snd_req12] w12=1 -> (w12'=1);
[rec_req12] w12=1 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_ack12] w12=1 -> (w12'=2) & (y2'=0);
[snd_idle12] w12=1 -> (w12'=8) & (y2'=0);
[time] w12=1 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_req_ack
[snd_ack12] w12=2 -> (w12'=2);
[rec_req12] w12=2 -> (w12'=3);
[time] w12=2 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack
[snd_ack12] w12=3 -> (w12'=3);
[rec_ack12] w12=3 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_idle12] w12=3 -> (w12'=4) & (y2'=0);
[snd_req12] w12=3 -> (w12'=7) & (y2'=0);
[time] w12=3 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack_idle
[snd_idle12] w12=4 -> (w12'=4);
[rec_ack12] w12=4 -> (w12'=5);
[time] w12=4 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle
[snd_idle12] w12=5 -> (w12'=5);
[rec_idle12] w12=5 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_req12] w12=5 -> (w12'=6) & (y2'=0);
[snd_ack12] w12=5 -> (w12'=9) & (y2'=0);
[time] w12=5 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle_req
[snd_req12] w12=6 -> (w12'=6);
[rec_idle12] w12=6 -> (w12'=1);
[time] w12=6 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack_req
[snd_req12] w12=7 -> (w12'=7);
[rec_ack12] w12=7 -> (w12'=1);
[time] w12=7 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_req_idle
[snd_idle12] w12=8 -> (w12'=8);
[rec_req12] w12=8 -> (w12'=5);
[time] w12=8 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle_ack
[snd_ack12] w12=9 -> (w12'=9);
[rec_idle12] w12=9 -> (w12'=3);
[time] w12=9 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
endmodule
module node1
// clock for node1
x1 : [0..168];
// local state
s1 : [0..8];
// 0 - root contention
// 1 - rec_idle
// 2 - rec_req_fast
// 3 - rec_req_slow
// 4 - rec_idle_fast
// 5 - rec_idle_slow
// 6 - snd_req
// 7- almost_root
// 8 - almost_child
// added resets to x1 when not considered again until after rest
// removed root and child (using almost root and almost child)
// root contention immediate state)
[snd_idle12] s1=0 -> fast : (s1'=2) & (x1'=0) + slow : (s1'=3) & (x1'=0);
[rec_idle21] s1=0 -> (s1'=1);
// rec_idle immediate state)
[snd_idle12] s1=1 -> fast : (s1'=4) & (x1'=0) + slow : (s1'=5) & (x1'=0);
[rec_req21] s1=1 -> (s1'=0);
// rec_req_fast
[rec_idle21] s1=2 -> (s1'=4);
[snd_ack12] s1=2 & x1>=rc_fast_min -> (s1'=7) & (x1'=0);
[time] s1=2 & x1<rc_fast_max -> (x1'=min(x1+1,168));
// rec_req_slow
[rec_idle21] s1=3 -> (s1'=5);
[snd_ack12] s1=3 & x1>=rc_slow_min -> (s1'=7) & (x1'=0);
[time] s1=3 & x1<rc_slow_max -> (x1'=min(x1+1,168));
// rec_idle_fast
[rec_req21] s1=4 -> (s1'=2);
[snd_req12] s1=4 & x1>=rc_fast_min -> (s1'=6) & (x1'=0);
[time] s1=4 & x1<rc_fast_max -> (x1'=min(x1+1,168));
// rec_idle_slow
[rec_req21] s1=5 -> (s1'=3);
[snd_req12] s1=5 & x1>=rc_slow_min -> (s1'=6) & (x1'=0);
[time] s1=5 & x1<rc_slow_max -> (x1'=min(x1+1,168));
// snd_req
// do not use x1 until reset (in state 0 or in state 1) so do not need to increase x1
// also can set x1 to 0 upon entering this state
[rec_req21] s1=6 -> (s1'=0);
[rec_ack21] s1=6 -> (s1'=8);
[time] s1=6 -> (s1'=s1);
// almost root (immediate)
// loop in final states to remove deadlock
[] s1=7 & s2=8 -> (s1'=s1);
[] s1=8 & s2=7 -> (s1'=s1);
[time] s1=7 -> (s1'=s1);
[time] s1=8 -> (s1'=s1);
endmodule
// construct remaining automata through renaming
module wire21=wire12[w12=w21, y1=z1, y2=z2,
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21,
rec_req12=rec_req21, rec_idle12=rec_idle21, rec_ack12=rec_ack21]
endmodule
module node2=node1[s1=s2, s2=s1, x1=x2,
rec_req21=rec_req12, rec_idle21=rec_idle12, rec_ack21=rec_ack12,
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21]
endmodule
// reward structures
// time
rewards "time"
[time] true : 1;
endrewards
// time nodes sending
rewards "time_sending"
[time] (w12>0 | w21>0) : 1;
endrewards
label "elected" = ((s1=8) & (s2=7)) | ((s1=7) & (s2=8));

96
test/functional/parser/prism/leader3.nm

@ -0,0 +1,96 @@
// asynchronous leader election
// 4 processes
// gxn/dxp 29/01/01
mdp
const int N = 3; // number of processes
//----------------------------------------------------------------------------------------------------------------------------
module process1
// COUNTER
c1 : [0..3-1];
// STATES
s1 : [0..4];
// 0 make choice
// 1 have not received neighbours choice
// 2 active
// 3 inactive
// 4 leader
// PREFERENCE
p1 : [0..1];
// VARIABLES FOR SENDING AND RECEIVING
receive1 : [0..2];
// not received anything
// received choice
// received counter
sent1 : [0..2];
// not send anything
// sent choice
// sent counter
// pick value
[] (s1=0) -> 0.5 : (s1'=1) & (p1'=0) + 0.5 : (s1'=1) & (p1'=1);
// send preference
[p12] (s1=1) & (sent1=0) -> (sent1'=1);
// receive preference
// stay active
[p31] (s1=1) & (receive1=0) & !( (p1=0) & (p3=1) ) -> (s1'=2) & (receive1'=1);
// become inactive
[p31] (s1=1) & (receive1=0) & (p1=0) & (p3=1) -> (s1'=3) & (receive1'=1);
// send preference (can now reset preference)
[p12] (s1=2) & (sent1=0) -> (sent1'=1) & (p1'=0);
// send counter (already sent preference)
// not received counter yet
[c12] (s1=2) & (sent1=1) & (receive1=1) -> (sent1'=2);
// received counter (pick again)
[c12] (s1=2) & (sent1=1) & (receive1=2) -> (s1'=0) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0);
// receive counter and not sent yet (note in this case do not pass it on as will send own counter)
[c31] (s1=2) & (receive1=1) & (sent1<2) -> (receive1'=2);
// receive counter and sent counter
// only active process (decide)
[c31] (s1=2) & (receive1=1) & (sent1=2) & (c3=N-1) -> (s1'=4) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0);
// other active process (pick again)
[c31] (s1=2) & (receive1=1) & (sent1=2) & (c3<N-1) -> (s1'=0) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0);
// send preference (must have received preference) and can now reset
[p12] (s1=3) & (receive1>0) & (sent1=0) -> (sent1'=1) & (p1'=0);
// send counter (must have received counter first) and can now reset
[c12] (s1=3) & (receive1=2) & (sent1=1) -> (s1'=3) & (p1'=0) & (c1'=0) & (sent1'=0) & (receive1'=0);
// receive preference
[p31] (s1=3) & (receive1=0) -> (p1'=p3) & (receive1'=1);
// receive counter
[c31] (s1=3) & (receive1=1) & (c3<N-1) -> (c1'=c3+1) & (receive1'=2);
// done
[done] (s1=4) -> (s1'=s1);
// add loop for processes who are inactive
[done] (s1=3) -> (s1'=s1);
endmodule
//----------------------------------------------------------------------------------------------------------------------------
// construct further stations through renaming
module process2=process1[s1=s2,p1=p2,c1=c2,sent1=sent2,receive1=receive2,p12=p23,p31=p12,c12=c23,c31=c12,p3=p1,c3=c1] endmodule
module process3=process1[s1=s3,p1=p3,c1=c3,sent1=sent3,receive1=receive3,p12=p31,p31=p23,c12=c31,c31=c23,p3=p2,c3=c2] endmodule
//----------------------------------------------------------------------------------------------------------------------------
// reward - expected number of rounds (equals the number of times a process receives a counter)
rewards "name"
[c12] true : 1;
endrewards
//----------------------------------------------------------------------------------------------------------------------------
formula leaders = (s1=4?1:0)+(s2=4?1:0)+(s3=4?1:0);
label "elected" = s1=4|s2=4|s3=4;

85
test/functional/parser/prism/leader3_5.pm

@ -0,0 +1,85 @@
// synchronous leader election protocol (itai & Rodeh)
// dxp/gxn 25/01/01
dtmc
// CONSTANTS
const int N = 3; // number of processes
const int K = 5; // range of probabilistic choice
// counter module used to count the number of processes that have been read
// and to know when a process has decided
module counter
// counter (c=i means process j reading process (i-1)+j next)
c : [1..N-1];
// reading
[read] c<N-1 -> 1:(c'=c+1);
// finished reading
[read] c=N-1 -> 1:(c'=c);
//decide
[done] u1|u2|u3 -> 1:(c'=c);
// pick again reset counter
[retry] !(u1|u2|u3) -> 1:(c'=1);
// loop (when finished to avoid deadlocks)
[loop] s1=3 -> 1:(c'=c);
endmodule
// processes form a ring and suppose:
// process 1 reads process 2
// process 2 reads process 3
// process 3 reads process 1
module process1
// local state
s1 : [0..3];
// s1=0 make random choice
// s1=1 reading
// s1=2 deciding
// s1=3 finished
// has a unique id so far (initially true)
u1 : bool;
// value to be sent to next process in the ring (initially sets this to its own value)
v1 : [0..K-1];
// random choice
p1 : [0..K-1];
// pick value
[pick] s1=0 -> 1/K : (s1'=1) & (p1'=0) & (v1'=0) & (u1'=true)
+ 1/K : (s1'=1) & (p1'=1) & (v1'=1) & (u1'=true)
+ 1/K : (s1'=1) & (p1'=2) & (v1'=2) & (u1'=true)
+ 1/K : (s1'=1) & (p1'=3) & (v1'=3) & (u1'=true)
+ 1/K : (s1'=1) & (p1'=4) & (v1'=4) & (u1'=true);
// read
[read] s1=1 & u1 & c<N-1 -> 1:(u1'=(p1!=v2)) & (v1'=v2);
[read] s1=1 & !u1 & c<N-1 -> 1:(u1'=false) & (v1'=v2) & (p1'=0);
// read and move to decide
[read] s1=1 & u1 & c=N-1 -> 1:(s1'=2) & (u1'=(p1!=v2)) & (v1'=0) & (p1'=0);
[read] s1=1 & !u1 & c=N-1 -> 1:(s1'=2) & (u1'=false) & (v1'=0);
// deciding
// done
[done] s1=2 -> 1:(s1'=3) & (u1'=false) & (v1'=0) & (p1'=0);
//retry
[retry] s1=2 -> 1:(s1'=0) & (u1'=false) & (v1'=0) & (p1'=0);
// loop (when finished to avoid deadlocks)
[loop] s1=3 -> 1:(s1'=3);
endmodule
// construct remaining processes through renaming
module process2 = process1 [ s1=s2,p1=p2,v1=v2,u1=u2,v2=v3 ] endmodule
module process3 = process1 [ s1=s3,p1=p3,v1=v3,u1=u3,v2=v1 ] endmodule
// expected number of rounds
rewards "num_rounds"
[pick] true : 1;
endrewards
// labels
label "elected" = s1=3&s2=3&s3=3;

40
test/functional/parser/prism/two_dice.nm

@ -0,0 +1,40 @@
// sum of two dice as the asynchronous parallel composition of
// two copies of Knuth's model of a fair die using only fair coins
mdp
module die1
// local state
s1 : [0..7] init 0;
// value of the dice
d1 : [0..6] init 0;
[] s1=0 -> 0.5 : (s1'=1) + 0.5 : (s1'=2);
[] s1=1 -> 0.5 : (s1'=3) + 0.5 : (s1'=4);
[] s1=2 -> 0.5 : (s1'=5) + 0.5 : (s1'=6);
[] s1=3 -> 0.5 : (s1'=1) + 0.5 : (s1'=7) & (d1'=1);
[] s1=4 -> 0.5 : (s1'=7) & (d1'=2) + 0.5 : (s1'=7) & (d1'=3);
[] s1=5 -> 0.5 : (s1'=7) & (d1'=4) + 0.5 : (s1'=7) & (d1'=5);
[] s1=6 -> 0.5 : (s1'=2) + 0.5 : (s1'=7) & (d1'=6);
[] s1=7 & s2=7 -> 1: (s1'=7);
endmodule
module die2 = die1 [ s1=s2, s2=s1, d1=d2 ] endmodule
rewards "coinflips"
[] s1<7 | s2<7 : 1;
endrewards
label "done" = s1=7 & s2=7;
label "two" = s1=7 & s2=7 & d1+d2=2;
label "three" = s1=7 & s2=7 & d1+d2=3;
label "four" = s1=7 & s2=7 & d1+d2=4;
label "five" = s1=7 & s2=7 & d1+d2=5;
label "six" = s1=7 & s2=7 & d1+d2=6;
label "seven" = s1=7 & s2=7 & d1+d2=7;
label "eight" = s1=7 & s2=7 & d1+d2=8;
label "nine" = s1=7 & s2=7 & d1+d2=9;
label "ten" = s1=7 & s2=7 & d1+d2=10;
label "eleven" = s1=7 & s2=7 & d1+d2=11;
label "twelve" = s1=7 & s2=7 & d1+d2=12;

219
test/functional/parser/prism/wlan0_collide.nm

@ -0,0 +1,219 @@
// WLAN PROTOCOL (two stations)
// discrete time model
// gxn/jzs 20/02/02
mdp
// COLLISIONS
const int COL; // maximum number of collisions
// TIMING CONSTRAINTS
// we have used the FHSS parameters
// then scaled by the value of ASLOTTIME
const int ASLOTTIME = 1;
const int DIFS = 3; // due to scaling can be either 2 or 3 which is modelled by a non-deterministic choice
const int VULN = 1; // due to scaling can be either 0 or 1 which is modelled by a non-deterministic choice
const int TRANS_TIME_MAX; // scaling up
const int TRANS_TIME_MIN = 4; // scaling down
const int ACK_TO = 6;
const int ACK = 4; // due to scaling can be either 3 or 4 which is modelled by a non-deterministic choice
const int SIFS = 1; // due to scaling can be either 0 or 1 which is modelled by a non-deterministic choice
// maximum constant used in timing constraints + 1
const int TIME_MAX = max(ACK_TO,TRANS_TIME_MAX)+1;
// CONTENTION WINDOW
// CWMIN =15 & CWMAX =16
// this means that MAX_BACKOFF IS 2
const int MAX_BACKOFF = 0;
//-----------------------------------------------------------------//
// THE MEDIUM/CHANNEL
// FORMULAE FOR THE CHANNEL
// channel is busy
formula busy = c1>0 | c2>0;
// channel is free
formula free = c1=0 & c2=0;
module medium
// number of collisions
col : [0..COL];
// medium status
c1 : [0..2];
c2 : [0..2];
// ci corresponds to messages associated with station i
// 0 nothing being sent
// 1 being sent correctly
// 2 being sent garbled
// begin sending message and nothing else currently being sent
[send1] c1=0 & c2=0 -> (c1'=1);
[send2] c2=0 & c1=0 -> (c2'=1);
// begin sending message and something is already being sent
// in this case both messages become garbled
[send1] c1=0 & c2>0 -> (c1'=2) & (c2'=2) & (col'=min(col+1,COL));
[send2] c2=0 & c1>0 -> (c1'=2) & (c2'=2) & (col'=min(col+1,COL));
// finish sending message
[finish1] c1>0 -> (c1'=0);
[finish2] c2>0 -> (c2'=0);
endmodule
//-----------------------------------------------------------------//
// STATION 1
module station1
// clock for station 1
x1 : [0..TIME_MAX];
// local state
s1 : [1..12];
// 1 sense
// 2 wait until free before setting backoff
// 3 wait for DIFS then set slot
// 4 set backoff
// 5 backoff
// 6 wait until free in backoff
// 7 wait for DIFS then resume backoff
// 8 vulnerable
// 9 transmit
// 11 wait for SIFS and then ACK
// 10 wait for ACT_TO
// 12 done
// BACKOFF
// separate into slots
slot1 : [0..1];
backoff1 : [0..15];
// BACKOFF COUNTER
bc1 : [0..1];
// SENSE
// let time pass
[time] s1=1 & x1<DIFS & free -> (x1'=min(x1+1,TIME_MAX));
// ready to transmit
[] s1=1 & (x1=DIFS | x1=DIFS-1) -> (s1'=8) & (x1'=0);
// found channel busy so wait until free
[] s1=1 & busy -> (s1'=2) & (x1'=0);
// WAIT UNTIL FREE BEFORE SETTING BACKOFF
// let time pass (no need for the clock x1 to change)
[time] s1=2 & busy -> (s1'=2);
// find that channel is free so check its free for DIFS before setting backoff
[] s1=2 & free -> (s1'=3);
// WAIT FOR DIFS THEN SET BACKOFF
// let time pass
[time] s1=3 & x1<DIFS & free -> (x1'=min(x1+1,TIME_MAX));
// found channel busy so wait until free
[] s1=3 & busy -> (s1'=2) & (x1'=0);
// start backoff first uniformly choose slot
// backoff counter 0
[] s1=3 & (x1=DIFS | x1=DIFS-1) & bc1=0 -> (s1'=4) & (x1'=0) & (slot1'=0) & (bc1'=min(bc1+1,MAX_BACKOFF));
// SET BACKOFF (no time can pass)
// chosen slot now set backoff
[] s1=4 -> 1/16 : (s1'=5) & (backoff1'=0 )
+ 1/16 : (s1'=5) & (backoff1'=1 )
+ 1/16 : (s1'=5) & (backoff1'=2 )
+ 1/16 : (s1'=5) & (backoff1'=3 )
+ 1/16 : (s1'=5) & (backoff1'=4 )
+ 1/16 : (s1'=5) & (backoff1'=5 )
+ 1/16 : (s1'=5) & (backoff1'=6 )
+ 1/16 : (s1'=5) & (backoff1'=7 )
+ 1/16 : (s1'=5) & (backoff1'=8 )
+ 1/16 : (s1'=5) & (backoff1'=9 )
+ 1/16 : (s1'=5) & (backoff1'=10)
+ 1/16 : (s1'=5) & (backoff1'=11)
+ 1/16 : (s1'=5) & (backoff1'=12)
+ 1/16 : (s1'=5) & (backoff1'=13)
+ 1/16 : (s1'=5) & (backoff1'=14)
+ 1/16 : (s1'=5) & (backoff1'=15);
// BACKOFF
// let time pass
[time] s1=5 & x1<ASLOTTIME & free -> (x1'=min(x1+1,TIME_MAX));
// decrement backoff
[] s1=5 & x1=ASLOTTIME & backoff1>0 -> (s1'=5) & (x1'=0) & (backoff1'=backoff1-1);
[] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1>0 -> (s1'=5) & (x1'=0) & (backoff1'=15) & (slot1'=slot1-1);
// finish backoff
[] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1=0 -> (s1'=8) & (x1'=0);
// found channel busy
[] s1=5 & busy -> (s1'=6) & (x1'=0);
// WAIT UNTIL FREE IN BACKOFF
// let time pass (no need for the clock x1 to change)
[time] s1=6 & busy -> (s1'=6);
// find that channel is free
[] s1=6 & free -> (s1'=7);
// WAIT FOR DIFS THEN RESUME BACKOFF
// let time pass
[time] s1=7 & x1<DIFS & free -> (x1'=min(x1+1,TIME_MAX));
// resume backoff (start again from previous backoff)
[] s1=7 & (x1=DIFS | x1=DIFS-1) -> (s1'=5) & (x1'=0);
// found channel busy
[] s1=7 & busy -> (s1'=6) & (x1'=0);
// VULNERABLE
// let time pass
[time] s1=8 & x1<VULN -> (x1'=min(x1+1,TIME_MAX));
// move to transmit
[send1] s1=8 & (x1=VULN | x1=VULN-1) -> (s1'=9) & (x1'=0);
// TRANSMIT
// let time pass
[time] s1=9 & x1<TRANS_TIME_MAX -> (x1'=min(x1+1,TIME_MAX));
// finish transmission successful
[finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=1 -> (s1'=10) & (x1'=0);
// finish transmission garbled
[finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=2 -> (s1'=11) & (x1'=0);
// WAIT FOR SIFS THEN WAIT FOR ACK
// WAIT FOR SIFS i.e. c1=0
// check channel and busy: go into backoff
[] s1=10 & c1=0 & x1=0 & busy -> (s1'=2);
// check channel and free: let time pass
[time] s1=10 & c1=0 & x1=0 & free -> (x1'=min(x1+1,TIME_MAX));
// let time pass
// following guard is always false as SIFS=1
// [time] s1=10 & c1=0 & x1>0 & x1<SIFS -> (x1'=min(x1+1,TIME_MAX));
// ack is sent after SIFS (since SIFS-1=0 add condition that channel is free)
[send1] s1=10 & c1=0 & (x1=SIFS | (x1=SIFS-1 & free)) -> (s1'=10) & (x1'=0);
// WAIT FOR ACK i.e. c1=1
// let time pass
[time] s1=10 & c1=1 & x1<ACK -> (x1'=min(x1+1,TIME_MAX));
// get acknowledgement so packet sent correctly and move to done
[finish1] s1=10 & c1=1 & (x1=ACK | x1=ACK-1) -> (s1'=12) & (x1'=0) & (bc1'=0);
// WAIT FOR ACK_TO
// check channel and busy: go into backoff
[] s1=11 & x1=0 & busy -> (s1'=2);
// check channel and free: let time pass
[time] s1=11 & x1=0 & free -> (x1'=min(x1+1,TIME_MAX));
// let time pass
[time] s1=11 & x1>0 & x1<ACK_TO -> (x1'=min(x1+1,TIME_MAX));
// no acknowledgement (go to backoff waiting DIFS first)
[] s1=11 & x1=ACK_TO -> (s1'=3) & (x1'=0);
// DONE
[time] s1=12 -> (s1'=12);
endmodule
// ---------------------------------------------------------------------------- //
// STATION 2 (rename STATION 1)
module
station2=station1[x1=x2,
s1=s2,
s2=s1,
c1=c2,
c2=c1,
slot1=slot2,
backoff1=backoff2,
bc1=bc2,
send1=send2,
finish1=finish2]
endmodule
// ---------------------------------------------------------------------------- //
label "twoCollisions" = col=2;
label "fourCollisions" = col=4;
label "sixCollisions" = col=6;
Loading…
Cancel
Save