@ -1206,7 +1206,7 @@ namespace storm {
}
template < typename ValueType >
std : : vector < ValueType > SparseMdpPrctlHelper < ValueType > : : computeLongRunAverageProbabilities ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : SparseMatrix < ValueType > const & backwardTransitions , storm : : storage : : BitVector const & psiStates ) {
MDPSparseModelCheckingHelperReturnType < ValueType > SparseMdpPrctlHelper < ValueType > : : computeLongRunAverageProbabilities ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : SparseMatrix < ValueType > const & backwardTransitions , storm : : storage : : BitVector const & psiStates , bool produceScheduler ) {
// If there are no goal states, we avoid the computation and directly return zero.
if ( psiStates . empty ( ) ) {
@ -1223,15 +1223,20 @@ namespace storm {
std : : vector < ValueType > stateRewards ( psiStates . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
storm : : utility : : vector : : setVectorValues ( stateRewards , psiStates , storm : : utility : : one < ValueType > ( ) ) ;
storm : : models : : sparse : : StandardRewardModel < ValueType > rewardModel ( std : : move ( stateRewards ) ) ;
return computeLongRunAverageRewards ( env , std : : move ( goal ) , transitionMatrix , backwardTransitions , rewardModel ) ;
return computeLongRunAverageRewards ( env , std : : move ( goal ) , transitionMatrix , backwardTransitions , rewardModel , produceScheduler ) ;
}
template < typename ValueType >
template < typename RewardModelType >
std : : vector < ValueType > SparseMdpPrctlHelper < ValueType > : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : SparseMatrix < ValueType > const & backwardTransitions , RewardModelType const & rewardModel ) {
MDPSparseModelCheckingHelperReturnType < ValueType > SparseMdpPrctlHelper < ValueType > : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , storm : : storage : : SparseMatrix < ValueType > const & backwardTransitions , RewardModelType const & rewardModel , bool produceScheduler ) {
uint64_t numberOfStates = transitionMatrix . getRowGroupCount ( ) ;
std : : unique_ptr < storm : : storage : : Scheduler < ValueType > > scheduler ;
if ( produceScheduler ) {
scheduler = std : : make_unique < storm : : storage : : Scheduler < ValueType > > ( numberOfStates ) ;
}
// Start by decomposing the MDP into its MECs.
storm : : storage : : MaximalEndComponentDecomposition < ValueType > mecDecomposition ( transitionMatrix , backwardTransitions ) ;
@ -1253,7 +1258,7 @@ namespace storm {
for ( uint_fast64_t currentMecIndex = 0 ; currentMecIndex < mecDecomposition . size ( ) ; + + currentMecIndex ) {
storm : : storage : : MaximalEndComponent const & mec = mecDecomposition [ currentMecIndex ] ;
lraValuesForEndComponents [ currentMecIndex ] = computeLraForMaximalEndComponent ( underlyingSolverEnvironment , goal . direction ( ) , transitionMatrix , rewardModel , mec ) ;
lraValuesForEndComponents [ currentMecIndex ] = computeLraForMaximalEndComponent ( underlyingSolverEnvironment , goal . direction ( ) , transitionMatrix , rewardModel , mec , scheduler ) ;
// Gather information for later use.
for ( auto const & stateChoicesPair : mec ) {
@ -1312,6 +1317,8 @@ namespace storm {
}
}
std : : vector < std : : pair < uint_fast64_t , uint_fast64_t > > sspMecChoicesToOriginalMap ; // for scheduler extraction
// Now we are ready to construct the choices for the auxiliary states.
for ( uint_fast64_t mecIndex = 0 ; mecIndex < mecDecomposition . size ( ) ; + + mecIndex ) {
storm : : storage : : MaximalEndComponent const & mec = mecDecomposition [ mecIndex ] ;
@ -1345,6 +1352,9 @@ namespace storm {
}
}
if ( produceScheduler ) {
sspMecChoicesToOriginalMap . emplace_back ( state , choice - nondeterministicChoiceIndices [ state ] ) ;
}
+ + currentChoice ;
}
}
@ -1353,6 +1363,10 @@ namespace storm {
// For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC.
+ + currentChoice ;
b . push_back ( lraValuesForEndComponents [ mecIndex ] ) ;
if ( produceScheduler ) {
// Insert some invalid values
sspMecChoicesToOriginalMap . emplace_back ( std : : numeric_limits < uint_fast64_t > : : max ( ) , std : : numeric_limits < uint_fast64_t > : : max ( ) ) ;
}
}
// Finalize the matrix and solve the corresponding system of equations.
@ -1360,7 +1374,7 @@ namespace storm {
// Check for requirements of the solver.
storm : : solver : : GeneralMinMaxLinearEquationSolverFactory < ValueType > minMaxLinearEquationSolverFactory ;
storm : : solver : : MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory . getRequirements ( underlyingSolverEnvironment , true , true , goal . direction ( ) ) ;
storm : : solver : : MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory . getRequirements ( underlyingSolverEnvironment , true , true , goal . direction ( ) , false , produceScheduler ) ;
requirements . clearBounds ( ) ;
STORM_LOG_THROW ( ! requirements . hasEnabledCriticalRequirement ( ) , storm : : exceptions : : UncheckedRequirementException , " Solver requirements " + requirements . getEnabledRequirementsAsString ( ) + " not checked. " ) ;
@ -1372,6 +1386,7 @@ namespace storm {
solver - > setUpperBound ( * std : : max_element ( lraValuesForEndComponents . begin ( ) , lraValuesForEndComponents . end ( ) ) ) ;
solver - > setHasUniqueSolution ( ) ;
solver - > setHasNoEndComponents ( ) ;
solver - > setTrackScheduler ( produceScheduler ) ;
solver - > setRequirementsChecked ( ) ;
solver - > solveEquations ( underlyingSolverEnvironment , sspResult , b ) ;
@ -1386,25 +1401,74 @@ namespace storm {
result [ state ] = sspResult [ firstAuxiliaryStateIndex + stateToMecIndexMap [ state ] ] ;
}
return result ;
if ( produceScheduler & & solver - > hasScheduler ( ) ) {
// Translate result for ssp matrix to original model
auto const & sspChoices = solver - > getSchedulerChoices ( ) ;
uint64_t sspState = 0 ;
for ( auto state : statesNotContainedInAnyMec ) {
scheduler - > setChoice ( sspChoices [ sspState ] , state ) ;
+ + sspState ;
}
// The other sspStates correspond to MECS in the original system.
uint_fast64_t rowOffset = sspMatrix . getRowGroupIndices ( ) [ sspState ] ;
for ( uint_fast64_t mecIndex = 0 ; mecIndex < mecDecomposition . size ( ) ; + + mecIndex ) {
// Obtain the state and choice of the original model to which the selected choice corresponds.
auto const & originalStateChoice = sspMecChoicesToOriginalMap [ sspMatrix . getRowGroupIndices ( ) [ sspState ] + sspChoices [ sspState ] - rowOffset ] ;
// Check if the best choice is to stay in this MEC
if ( originalStateChoice . first = = std : : numeric_limits < uint_fast64_t > : : max ( ) ) {
STORM_LOG_ASSERT ( sspMatrix . getRow ( sspState , sspChoices [ sspState ] ) . getNumberOfEntries ( ) = = 0 , " Expected empty row at choice that stays in MEC. " ) ;
// In this case, no further operations are necessary. The scheduler has already been set to the optimal choices during the call of computeLraForMaximalEndComponent.
} else {
// The best choice is to leave this MEC via the selected state and choice.
scheduler - > setChoice ( originalStateChoice . second , originalStateChoice . first ) ;
// The remaining states in this MEC need to reach this state with probability 1.
storm : : storage : : BitVector exitStateAsBitVector ( transitionMatrix . getRowGroupCount ( ) , false ) ;
exitStateAsBitVector . set ( originalStateChoice . first , true ) ;
storm : : storage : : BitVector otherStatesAsBitVector ( transitionMatrix . getRowGroupCount ( ) , false ) ;
for ( auto const & stateChoices : mecDecomposition [ mecIndex ] ) {
if ( stateChoices . first ! = originalStateChoice . first ) {
otherStatesAsBitVector . set ( stateChoices . first , true ) ;
}
}
storm : : utility : : graph : : computeSchedulerProb1E ( otherStatesAsBitVector , transitionMatrix , backwardTransitions , otherStatesAsBitVector , exitStateAsBitVector , * scheduler ) ;
}
+ + sspState ;
}
assert ( sspState = = sspMatrix . getRowGroupCount ( ) ) ;
} else {
STORM_LOG_ERROR_COND ( ! produceScheduler , " Requested to produce a scheduler, but no scheduler was generated. " ) ;
}
return MDPSparseModelCheckingHelperReturnType < ValueType > ( std : : move ( result ) , std : : move ( scheduler ) ) ;
}
template < typename ValueType >
template < typename RewardModelType >
ValueType SparseMdpPrctlHelper < ValueType > : : computeLraForMaximalEndComponent ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , RewardModelType const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) {
ValueType SparseMdpPrctlHelper < ValueType > : : computeLraForMaximalEndComponent ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , RewardModelType const & rewardModel , storm : : storage : : MaximalEndComponent const & mec , std : : unique_ptr < storm : : storage : : Scheduler < ValueType > > & scheduler ) {
// If the mec only consists of a single state, we compute the LRA value directly
if ( + + mec . begin ( ) = = mec . end ( ) ) {
uint64_t state = mec . begin ( ) - > first ;
auto choiceIt = mec . begin ( ) - > second . begin ( ) ;
ValueType result = rewardModel . getTotalStateActionReward ( state , * choiceIt , transitionMatrix ) ;
uint_fast64_t bestChoice = * choiceIt ;
for ( + + choiceIt ; choiceIt ! = mec . begin ( ) - > second . end ( ) ; + + choiceIt ) {
ValueType choiceValue = rewardModel . getTotalStateActionReward ( state , * choiceIt , transitionMatrix ) ;
if ( storm : : solver : : minimize ( dir ) ) {
result = std : : min ( result , rewardModel . getTotalStateActionReward ( state , * choiceIt , transitionMatrix ) ) ;
if ( result > choiceValue ) {
result = std : : move ( choiceValue ) ;
bestChoice = * choiceIt ;
}
} else {
result = std : : max ( result , rewardModel . getTotalStateActionReward ( state , * choiceIt , transitionMatrix ) ) ;
if ( result < choiceValue ) {
result = std : : move ( choiceValue ) ;
bestChoice = * choiceIt ;
}
}
}
if ( scheduler ) {
scheduler - > setChoice ( bestChoice - transitionMatrix . getRowGroupIndices ( ) [ state ] , state ) ;
}
return result ;
}
@ -1417,10 +1481,11 @@ namespace storm {
STORM_LOG_INFO ( " Selecting 'VI' as the solution technique for long-run properties to guarantee sound results. If you want to override this, please explicitly specify a different LRA method. " ) ;
method = storm : : solver : : LraMethod : : ValueIteration ;
}
STORM_LOG_ERROR_COND ( scheduler = = nullptr | | method = = storm : : solver : : LraMethod : : ValueIteration , " Scheduler generation not supported for the chosen LRA method. Try value-iteration. " ) ;
if ( method = = storm : : solver : : LraMethod : : LinearProgramming ) {
return computeLraForMaximalEndComponentLP ( env , dir , transitionMatrix , rewardModel , mec ) ;
} else if ( method = = storm : : solver : : LraMethod : : ValueIteration ) {
return computeLraForMaximalEndComponentVI ( env , dir , transitionMatrix , rewardModel , mec ) ;
return computeLraForMaximalEndComponentVI ( env , dir , transitionMatrix , rewardModel , mec , scheduler ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidSettingsException , " Unsupported technique. " ) ;
}
@ -1428,7 +1493,7 @@ namespace storm {
template < typename ValueType >
template < typename RewardModelType >
ValueType SparseMdpPrctlHelper < ValueType > : : computeLraForMaximalEndComponentVI ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , RewardModelType const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) {
ValueType SparseMdpPrctlHelper < ValueType > : : computeLraForMaximalEndComponentVI ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix , RewardModelType const & rewardModel , storm : : storage : : MaximalEndComponent const & mec , std : : unique_ptr < storm : : storage : : Scheduler < ValueType > > & scheduler ) {
// Initialize data about the mec
storm : : storage : : BitVector mecStates ( transitionMatrix . getRowGroupCount ( ) , false ) ;
@ -1520,6 +1585,22 @@ namespace storm {
break ;
}
}
if ( scheduler ) {
std : : vector < uint_fast64_t > localMecChoices ( mecTransitions . getRowGroupCount ( ) , 0 ) ;
multiplier - > multiplyAndReduce ( env , dir , x , & choiceRewards , x , & localMecChoices ) ;
auto localMecChoiceIt = localMecChoices . begin ( ) ;
for ( auto const & mecState : mecStates ) {
// Get the choice index of the selected mec choice with respect to the global transition matrix.
uint_fast64_t globalChoice = mecChoices . getNextSetIndex ( transitionMatrix . getRowGroupIndices ( ) [ mecState ] ) ;
for ( uint_fast64_t i = 0 ; i < * localMecChoiceIt ; + + i ) {
globalChoice = mecChoices . getNextSetIndex ( globalChoice + 1 ) ;
}
STORM_LOG_ASSERT ( globalChoice < transitionMatrix . getRowGroupIndices ( ) [ mecState + 1 ] , " Invalid global choice for mec state. " ) ;
scheduler - > setChoice ( globalChoice - transitionMatrix . getRowGroupIndices ( ) [ mecState ] , mecState ) ;
+ + localMecChoiceIt ;
}
}
return ( maxDiff + minDiff ) / ( storm : : utility : : convertNumber < ValueType > ( 2.0 ) * scalingFactor ) ;
}
@ -1717,9 +1798,9 @@ namespace storm {
template std : : vector < double > SparseMdpPrctlHelper < double > : : computeCumulativeRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , uint_fast64_t stepBound ) ;
template MDPSparseModelCheckingHelperReturnType < double > SparseMdpPrctlHelper < double > : : computeReachabilityRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : storage : : SparseMatrix < double > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , storm : : storage : : BitVector const & targetStates , bool qualitative , bool produceScheduler , ModelCheckerHint const & hint ) ;
template MDPSparseModelCheckingHelperReturnType < double > SparseMdpPrctlHelper < double > : : computeTotalRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : storage : : SparseMatrix < double > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , bool qualitative , bool produceScheduler , ModelCheckerHint const & hint ) ;
template std : : vector < double > SparseMdpPrctlHelper < double > : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : storage : : SparseMatrix < double > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel ) ;
template double SparseMdpPrctlHelper < double > : : computeLraForMaximalEndComponent ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) ;
template double SparseMdpPrctlHelper < double > : : computeLraForMaximalEndComponentVI ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) ;
template MDPSparseModelCheckingHelperReturnType < double > SparseMdpPrctlHelper < double > : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : storage : : SparseMatrix < double > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , bool produceScheduler ) ;
template double SparseMdpPrctlHelper < double > : : computeLraForMaximalEndComponent ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec , std : : unique_ptr < storm : : storage : : Scheduler < double > > & scheduler ) ;
template double SparseMdpPrctlHelper < double > : : computeLraForMaximalEndComponentVI ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec , std : : unique_ptr < storm : : storage : : Scheduler < double > > & scheduler ) ;
template double SparseMdpPrctlHelper < double > : : computeLraForMaximalEndComponentLP ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < double > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) ;
# ifdef STORM_HAVE_CARL
@ -1728,9 +1809,9 @@ namespace storm {
template std : : vector < storm : : RationalNumber > SparseMdpPrctlHelper < storm : : RationalNumber > : : computeCumulativeRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , uint_fast64_t stepBound ) ;
template MDPSparseModelCheckingHelperReturnType < storm : : RationalNumber > SparseMdpPrctlHelper < storm : : RationalNumber > : : computeReachabilityRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , storm : : storage : : BitVector const & targetStates , bool qualitative , bool produceScheduler , ModelCheckerHint const & hint ) ;
template MDPSparseModelCheckingHelperReturnType < storm : : RationalNumber > SparseMdpPrctlHelper < storm : : RationalNumber > : : computeTotalRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , bool qualitative , bool produceScheduler , ModelCheckerHint const & hint ) ;
template std : : vector < storm : : RationalNumber > SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel ) ;
template storm : : RationalNumber SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLraForMaximalEndComponent ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) ;
template storm : : RationalNumber SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLraForMaximalEndComponentVI ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) ;
template MDPSparseModelCheckingHelperReturnType < storm : : RationalNumber > SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & backwardTransitions , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , bool produceScheduler ) ;
template storm : : RationalNumber SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLraForMaximalEndComponent ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec , std : : unique_ptr < storm : : storage : : Scheduler < storm : : RationalNumber > > & scheduler ) ;
template storm : : RationalNumber SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLraForMaximalEndComponentVI ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec , std : : unique_ptr < storm : : storage : : Scheduler < storm : : RationalNumber > > & scheduler ) ;
template storm : : RationalNumber SparseMdpPrctlHelper < storm : : RationalNumber > : : computeLraForMaximalEndComponentLP ( Environment const & env , OptimizationDirection dir , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & transitionMatrix , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , storm : : storage : : MaximalEndComponent const & mec ) ;
# endif
}