Browse Source

started some refactoring / code simplifications

Former-commit-id: 6ae4b5c0bb
main
TimQu 8 years ago
parent
commit
d0c3d0f67c
  1. 72
      src/modelchecker/multiobjective/pcaa/PCAAObjective.h
  2. 420
      src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessor.cpp
  3. 76
      src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessor.h
  4. 90
      src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessorReturnType.h
  5. 2
      src/transformer/StateDuplicator.h

72
src/modelchecker/multiobjective/pcaa/PCAAObjective.h

@ -0,0 +1,72 @@
#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_PCAAOBJECTIVE_H_
#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_PCAAOBJECTIVE_H_
#include <iomanip>
#include <boost/optional.hpp>
#include "src/logic/Formulas.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <typename ValueType>
struct PCAAObjective {
// the original input formula
std::shared_ptr<storm::logic::Formula const> originalFormula;
// the name of the considered reward model in the preprocessedModel
std::string rewardModelName;
// true if all rewards for this objective are positive, false if all rewards are negative.
bool rewardsArePositive;
// transformation from the values of the preprocessed model to the ones for the actual input model, i.e.,
// x is achievable in the preprocessed model iff factor*x + offset is achievable in the original model
ValueType toOriginalValueTransformationFactor;
ValueType toOriginalValueTransformationOffset;
// The probability/reward threshold for the preprocessed model (if originalFormula specifies one).
// This is always a lower bound.
boost::optional<ValueType> threshold;
// True iff the specified threshold is strict, i.e., >
bool thresholdIsStrict = false;
// The time bound(s) for the formula (if given by the originalFormula)
boost::optional<ValueType> lowerTimeBound;
boost::optional<ValueType> upperTimeBound;
bool rewardFinitenessChecked;
void printToStream(std::ostream& out) const {
out << std::setw(30) << originalFormula->toString();
out << " \t(toOrigVal:" << std::setw(3) << toOriginalValueTransformationFactor << "*x +" << std::setw(3) << toOriginalValueTransformationOffset << ", \t";
out << "intern threshold:";
if(threshold){
out << (thresholdIsStrict ? " >" : ">=");
out << std::setw(5) << (*threshold) << ",";
} else {
out << " none,";
}
out << " \t";
out << "intern reward model: " << std::setw(10) << rewardModelName;
out << (rewardsArePositive ? " (positive)" : " (negative)") << ", \t";
out << "time bounds:";
if(lowerTimeBound) {
if(upperTimeBound) {
out << "[" << *lowerTimeBound << ", " << *upperTimeBound << "]";
} else {
out << ">=" << std::setw(5) << *lowerTimeBound;
}
} else if (upperTimeBound) {
out << "<=" << std::setw(5) << *upperTimeBound;
} else {
out << " none";
}
out << ")" << std::endl;
}
};
}
}
}
#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_OBJECTIVE_H_ */

420
src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessor.cpp

@ -0,0 +1,420 @@
#include "src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessor.h"
#include "src/models/sparse/Mdp.h"
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/storage/MaximalEndComponentDecomposition.h"
#include "src/transformer/StateDuplicator.h"
#include "src/transformer/SubsystemBuilder.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/UnexpectedException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template<typename SparseModelType>
typename SparsePCAAPreprocessor<SparseModelType>::ReturnType SparsePCAAPreprocessor<SparseModelType>::preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel) {
ReturnType result(originalFormula, originalModel, SparseModelType(originalModel));
result.newToOldStateIndexMapping = storm::utility::vector::buildVectorForRange(0, originalModel.getNumberOfStates());
//Invoke preprocessing on the individual objectives
for(auto const& subFormula : originalFormula.getSubformulas()){
STORM_LOG_DEBUG("Preprocessing objective " << *subFormula<< ".");
result.objectives.emplace_back();
PCAAObjective<ValueType>& currentObjective = result.objectives.back();
currentObjective.originalFormula = subFormula;
if(currentObjective.originalFormula->isOperatorFormula()) {
preprocessFormula(currentObjective.originalFormula->asOperatorFormula(), result, currentObjective);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *subFormula << " of " << originalFormula << " because it is not supported");
}
}
// Set the query type. In case of a quantitative query, also set the index of the objective to be optimized.
// Note: If there are only zero (or one) objectives left, we should not consider a pareto query!
storm::storage::BitVector objectivesWithoutThreshold(result.objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < result.objectives.size(); ++objIndex) {
objectivesWithoutThreshold.set(objIndex, !result.objectives[objIndex].threshold);
}
uint_fast64_t numOfObjectivesWithoutThreshold = objectivesWithoutThreshold.getNumberOfSetBits();
if(numOfObjectivesWithoutThreshold == 0) {
result.queryType = ReturnType::QueryType::Achievability;
} else if (numOfObjectivesWithoutThreshold == 1) {
result.queryType = ReturnType::QueryType::Quantitative;
result.indexOfOptimizingObjective = objectivesWithoutThreshold.getNextSetIndex(0);
} else if (numOfObjectivesWithoutThreshold == result.objectives.size()) {
result.queryType = ReturnType::QueryType::Pareto;
} else {
STORM_LOG_THROW(false, storm::exceptions::UnexpectedException, "The number of objectives without threshold is not valid. It should be either 0 (achievability query), 1 (quantitative query), or " << result.objectives.size() << " (Pareto Query). Got " << numOfObjectivesWithoutThreshold << " instead.");
}
//We can remove the original reward models to save some memory
std::set<std::string> origRewardModels = originalFormula.getReferencedRewardModels();
for (auto const& rewModel : origRewardModels){
result.preprocessedModel.removeRewardModel(rewModel);
}
ensureRewardFiniteness(result);
return result;
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::updatePreprocessedModel(ReturnType& result, SparseModelType& newPreprocessedModel, std::vector<uint_fast64_t>& newToOldStateIndexMapping) {
result.preprocessedModel = std::move(newPreprocessedModel);
// the given newToOldStateIndexMapping reffers to the indices of the former preprocessedModel as 'old indices'
for(auto & preprocessedModelStateIndex : newToOldStateIndexMapping){
preprocessedModelStateIndex = result.newToOldStateIndexMapping[preprocessedModelStateIndex];
}
result.newToOldStateIndexMapping = std::move(newToOldStateIndexMapping);
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::OperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
// Get a unique name for the new reward model.
currentObjective.rewardModelName = "objective" + std::to_string(result.objectives.size());
while(result.preprocessedModel.hasRewardModel(currentObjective.rewardModelName)){
currentObjective.rewardModelName = "_" + currentObjective.rewardModelName;
}
currentObjective.toOriginalValueTransformationFactor = storm::utility::one<ValueType>();
currentObjective.toOriginalValueTransformationOffset = storm::utility::zero<ValueType>();
currentObjective.rewardsArePositive = true;
bool formulaMinimizes = false;
if(formula.hasBound()) {
currentObjective.threshold = storm::utility::convertNumber<ValueType>(formula.getBound().threshold);
currentObjective.thresholdIsStrict = storm::logic::isStrict(formula.getBound().comparisonType);
//Note that we minimize for upper bounds since we are looking for the EXISTENCE of a satisfying scheduler
formulaMinimizes = !storm::logic::isLowerBound(formula.getBound().comparisonType);
} else if (formula.hasOptimalityType()){
formulaMinimizes = storm::solver::minimize(formula.getOptimalityType());
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Current objective " << formula << " does not specify whether to minimize or maximize");
}
if(formulaMinimizes) {
// We negate all the values so we can consider the maximum for this objective
// Thus, all objectives will be maximized.
currentObjective.rewardsArePositive = false;
currentObjective.toOriginalValueTransformationFactor = -storm::utility::one<ValueType>();
}
if(formula.isProbabilityOperatorFormula()){
preprocessFormula(formula.asProbabilityOperatorFormula(), result, currentObjective);
} else if(formula.isRewardOperatorFormula()){
preprocessFormula(formula.asRewardOperatorFormula(), result, currentObjective);
} else if(formula.isTimeOperatorFormula()){
preprocessFormula(formula.asTimeOperatorFormula(), result, currentObjective);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the objective " << formula << " because it is not supported");
}
// Transform the threshold for the preprocessed Model
if(currentObjective.threshold) {
currentObjective.threshold = (currentObjective.threshold.get() - currentObjective.toOriginalValueTransformationOffset) / currentObjective.toOriginalValueTransformationFactor;
}
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
currentObjective.rewardFinitenessChecked = true;
if(formula.getSubformula().isUntilFormula()){
preprocessFormula(formula.getSubformula().asUntilFormula(), result, currentObjective);
} else if(formula.getSubformula().isBoundedUntilFormula()){
preprocessFormula(formula.getSubformula().asBoundedUntilFormula(), result, currentObjective);
} else if(formula.getSubformula().isGloballyFormula()){
preprocessFormula(formula.getSubformula().asGloballyFormula(), result, currentObjective);
} else if(formula.getSubformula().isEventuallyFormula()){
preprocessFormula(formula.getSubformula().asEventuallyFormula(), result, currentObjective);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
}
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::RewardOperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
// Check if the reward model is uniquely specified
STORM_LOG_THROW((formula.hasRewardModelName() && result.preprocessedModel.hasRewardModel(formula.getRewardModelName()))
|| result.preprocessedModel.hasUniqueRewardModel(), storm::exceptions::InvalidPropertyException, "The reward model is not unique and the formula " << formula << " does not specify a reward model.");
// reward finiteness has to be checked later iff infinite reward is possible for the subformula
currentObjective.rewardFinitenessChecked = formula.getSubformula().isCumulativeRewardFormula();
if(formula.getSubformula().isEventuallyFormula()){
preprocessFormula(formula.getSubformula().asEventuallyFormula(), result, currentObjective, false, false, formula.getOptionalRewardModelName());
} else if(formula.getSubformula().isCumulativeRewardFormula()) {
preprocessFormula(formula.getSubformula().asCumulativeRewardFormula(), result, currentObjective, formula.getOptionalRewardModelName());
} else if(formula.getSubformula().isTotalRewardFormula()) {
preprocessFormula(formula.getSubformula().asTotalRewardFormula(), result, currentObjective, formula.getOptionalRewardModelName());
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
}
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::TimeOperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
// Time formulas are only supported for Markov automata
STORM_LOG_THROW(result.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton), storm::exceptions::InvalidPropertyException, "Time operator formulas are only supported for Markov automata.");
// reward finiteness does not need to be checked if we want to minimize time
currentObjective.rewardFinitenessChecked = !currentObjective.rewardsArePositive;
if(formula.getSubformula().isEventuallyFormula()){
preprocessFormula(formula.getSubformula().asEventuallyFormula(), result, currentObjective, false, false);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
}
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::UntilFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
CheckTask<storm::logic::Formula, ValueType> phiTask(formula.getLeftSubformula());
CheckTask<storm::logic::Formula, ValueType> psiTask(formula.getRightSubformula());
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(result.preprocessedModel);
STORM_LOG_THROW(mc.canHandle(phiTask) && mc.canHandle(psiTask), storm::exceptions::InvalidPropertyException, "The subformulas of " << formula << " should be propositional.");
storm::storage::BitVector phiStates = mc.check(phiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector psiStates = mc.check(psiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
if(!(psiStates & result.preprocessedModel.getInitialStates()).empty() && !currentObjective.lowerTimeBound) {
// The probability is always one as the initial state is a target state.
// For this special case, the transformation to an expected reward objective fails.
// We could handle this with further preprocessing steps but as this case is boring anyway, we simply reject the input.
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The Probability for the objective " << currentObjective.originalFormula << " is always one as the rhs of the until formula is true in the initial state. Please omit this objective.");
}
auto duplicatorResult = storm::transformer::StateDuplicator<SparseModelType>::transform(result.preprocessedModel, ~phiStates | psiStates);
updatePreprocessedModel(result, *duplicatorResult.model, duplicatorResult.newToOldStateIndexMapping);
storm::storage::BitVector newPsiStates(result.preprocessedModel.getNumberOfStates(), false);
for(auto const& oldPsiState : psiStates){
//note that psiStates are always located in the second copy
newPsiStates.set(duplicatorResult.secondCopyOldToNewStateIndexMapping[oldPsiState], true);
}
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState
std::vector<ValueType> objectiveRewards(result.preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
for (auto const& firstCopyState : duplicatorResult.firstCopy) {
for (uint_fast64_t row = result.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[firstCopyState]; row < result.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[firstCopyState + 1]; ++row) {
objectiveRewards[row] = result.preprocessedModel.getTransitionMatrix().getConstrainedRowSum(row, newPsiStates);
}
}
if(!currentObjective.rewardsArePositive) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one<ValueType>());
}
result.preprocessedModel.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards));
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::BoundedUntilFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
if(formula.hasDiscreteTimeBound()) {
currentObjective.upperTimeBound = storm::utility::convertNumber<ValueType>(formula.getDiscreteTimeBound());
} else {
if(result.originalModel.isOfType(storm::models::ModelType::Mdp)) {
STORM_LOG_THROW(formula.getIntervalBounds().first == std::round(formula.getIntervalBounds().first), storm::exceptions::InvalidPropertyException, "Expected a boundedUntilFormula with discrete lower time bound but got " << formula << ".");
STORM_LOG_THROW(formula.getIntervalBounds().second == std::round(formula.getIntervalBounds().second), storm::exceptions::InvalidPropertyException, "Expected a boundedUntilFormula with discrete upper time bound but got " << formula << ".");
} else {
STORM_LOG_THROW(result.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton), storm::exceptions::InvalidPropertyException, "Got a boundedUntilFormula which can not be checked for the current model type.");
STORM_LOG_THROW(formula.getIntervalBounds().second > formula.getIntervalBounds().first, storm::exceptions::InvalidPropertyException, "Neither empty nor point intervalls are allowed but got " << formula << ".");
}
if(!storm::utility::isZero(formula.getIntervalBounds().first)) {
currentObjective.lowerTimeBound = storm::utility::convertNumber<ValueType>(formula.getIntervalBounds().first);
}
currentObjective.upperTimeBound = storm::utility::convertNumber<ValueType>(formula.getIntervalBounds().second);
}
preprocessFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), result, currentObjective, false, false);
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::GloballyFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective) {
// The formula will be transformed to an until formula for the complementary event.
// If the original formula minimizes, the complementary one will maximize and vice versa.
// Hence, the decision whether to consider positive or negative rewards flips.
currentObjective.rewardsArePositive = !currentObjective.rewardsArePositive;
// To transform from the value of the preprocessed model back to the value of the original model, we have to add 1 to the result.
// The transformation factor has already been set correctly.
currentObjective.toOriginalValueTransformationOffset = storm::utility::one<ValueType>();
auto negatedSubformula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer());
// We need to swap the two flags isProb0Formula and isProb1Formula
preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), result, currentObjective, isProb1Formula, isProb0Formula);
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::EventuallyFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
if(formula.isReachabilityProbabilityFormula()){
preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), result, currentObjective, isProb0Formula, isProb1Formula);
return;
}
CheckTask<storm::logic::Formula, ValueType> targetTask(formula.getSubformula());
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(result.preprocessedModel);
STORM_LOG_THROW(mc.canHandle(targetTask), storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " should be propositional.");
storm::storage::BitVector targetStates = mc.check(targetTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
auto duplicatorResult = storm::transformer::StateDuplicator<SparseModelType>::transform(result.preprocessedModel, targetStates);
updatePreprocessedModel(result, *duplicatorResult.model, duplicatorResult.newToOldStateIndexMapping);
// Add a reward model that gives zero reward to the actions of states of the second copy.
RewardModelType objectiveRewards(boost::none);
if(formula.isReachabilityRewardFormula()) {
objectiveRewards = result.preprocessedModel.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "");
objectiveRewards.reduceToStateBasedRewards(result.preprocessedModel.getTransitionMatrix(), false);
if(objectiveRewards.hasStateRewards()) {
storm::utility::vector::setVectorValues(objectiveRewards.getStateRewardVector(), duplicatorResult.secondCopy, storm::utility::zero<ValueType>());
}
if(objectiveRewards.hasStateActionRewards()) {
for(auto secondCopyState : duplicatorResult.secondCopy) {
std::fill_n(objectiveRewards.getStateActionRewardVector().begin() + result.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[secondCopyState], result.preprocessedModel.getTransitionMatrix().getRowGroupSize(secondCopyState), storm::utility::zero<ValueType>());
}
}
} else if(formula.isReachabilityTimeFormula() && result.preprocessedModel.isOfType(storm::models::ModelType::MarkovAutomaton)) {
objectiveRewards = RewardModelType(std::vector<ValueType>(result.preprocessedModel.getNumberOfStates(), storm::utility::zero<ValueType>()));
storm::utility::vector::setVectorValues(objectiveRewards.getStateRewardVector(), dynamic_cast<storm::models::sparse::MarkovAutomaton<ValueType>*>(&result.preprocessedModel)->getMarkovianStates() & duplicatorResult.firstCopy, storm::utility::one<ValueType>());
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability probabilities nor reachability rewards " << (result.preprocessedModel.isOfType(storm::models::ModelType::MarkovAutomaton) ? "nor reachability time" : "") << ". This is not supported.");
}
if(!currentObjective.rewardsArePositive){
if(objectiveRewards.hasStateRewards()) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards.getStateRewardVector(), -storm::utility::one<ValueType>());
}
if(objectiveRewards.hasStateActionRewards()) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards.getStateActionRewardVector(), -storm::utility::one<ValueType>());
}
}
result.preprocessedModel.addRewardModel(currentObjective.rewardModelName, std::move(objectiveRewards));
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
STORM_LOG_THROW(result.originalModel.isOfType(storm::models::ModelType::Mdp), storm::exceptions::InvalidPropertyException, "Cumulative reward formulas are not supported for the given model type.");
STORM_LOG_THROW(formula.hasDiscreteTimeBound(), storm::exceptions::InvalidPropertyException, "Expected a cumulativeRewardFormula with a discrete time bound but got " << formula << ".");
STORM_LOG_THROW(formula.getDiscreteTimeBound()>0, storm::exceptions::InvalidPropertyException, "Expected a cumulativeRewardFormula with a positive discrete time bound but got " << formula << ".");
currentObjective.upperTimeBound = storm::utility::convertNumber<ValueType>(formula.getDiscreteTimeBound());
RewardModelType objectiveRewards = result.preprocessedModel.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "");
objectiveRewards.reduceToStateBasedRewards(result.preprocessedModel.getTransitionMatrix(), false);
if(!currentObjective.rewardsArePositive){
if(objectiveRewards.hasStateRewards()) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards.getStateRewardVector(), -storm::utility::one<ValueType>());
}
if(objectiveRewards.hasStateActionRewards()) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards.getStateActionRewardVector(), -storm::utility::one<ValueType>());
}
}
result.preprocessedModel.addRewardModel(currentObjective.rewardModelName, std::move(objectiveRewards));
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::preprocessFormula(storm::logic::TotalRewardFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
RewardModelType objectiveRewards = result.preprocessedModel.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "");
objectiveRewards.reduceToStateBasedRewards(result.preprocessedModel.getTransitionMatrix(), false);
if(!currentObjective.rewardsArePositive){
if(objectiveRewards.hasStateRewards()) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards.getStateRewardVector(), -storm::utility::one<ValueType>());
}
if(objectiveRewards.hasStateActionRewards()) {
storm::utility::vector::scaleVectorInPlace(objectiveRewards.getStateActionRewardVector(), -storm::utility::one<ValueType>());
}
}
result.preprocessedModel.addRewardModel(currentObjective.rewardModelName, std::move(objectiveRewards));
}
template<typename SparseModelType>
void SparsePCAAPreprocessor<SparseModelType>::ensureRewardFiniteness(ReturnType& result) {
storm::storage::BitVector actionsWithNegativeReward(result.preprocessedModel.getTransitionMatrix().getRowCount(), false);
storm::storage::BitVector actionsWithPositiveReward(result.preprocessedModel.getTransitionMatrix().getRowCount(), false);
for(uint_fast64_t objIndex = 0; objIndex < result.objectives.size(); ++objIndex) {
if (!result.objectives[objIndex].rewardFinitenessChecked) {
result.objectives[objIndex].rewardFinitenessChecked = true;
if(result.objectives[objIndex].rewardsArePositive) {
actionsWithPositiveReward |= storm::utility::vector::filter(result.preprocessedModel.getRewardModel(result.objectives[objIndex].rewardModelName).getTotalRewardVector(result.preprocessedModel.getTransitionMatrix()), [&] (ValueType const& value) -> bool { return !storm::utility::isZero<ValueType>(value);});
} else {
actionsWithNegativeReward |= storm::utility::vector::filter(result.preprocessedModel.getRewardModel(result.objectives[objIndex].rewardModelName).getTotalRewardVector(result.preprocessedModel.getTransitionMatrix()), [&] (ValueType const& value) -> bool { return !storm::utility::isZero<ValueType>(value);});
}
}
}
if(actionsWithPositiveReward.empty() && actionsWithNegativeReward.empty()) {
// No rewards for which we need to ensure finiteness
result.possibleEcActions = storm::storage::BitVector(result.preprocessedModel.getNumberOfChoices(), true);
result.statesWhichCanBeVisitedInfinitelyOften = storm::storage::BitVector(result.preprocessedModel.getNumberOfStates(), true);
return;
}
result.possibleEcActions = storm::storage::BitVector(result.preprocessedModel.getNumberOfChoices(), false);
result.statesWhichCanBeVisitedInfinitelyOften = storm::storage::BitVector(result.preprocessedModel.getNumberOfStates(), false);
auto backwardTransitions = result.preprocessedModel.getBackwardTransitions();
auto mecDecomposition = storm::storage::MaximalEndComponentDecomposition<ValueType>(result.preprocessedModel.getTransitionMatrix(), backwardTransitions);
STORM_LOG_ASSERT(!mecDecomposition.empty(), "Empty maximal end component decomposition.");
std::vector<storm::storage::MaximalEndComponent> ecs;
ecs.reserve(mecDecomposition.size());
for(auto& mec : mecDecomposition) {
for(auto const& stateActionsPair : mec) {
for(auto const& action : stateActionsPair.second) {
result.possibleEcActions.set(action);
STORM_LOG_THROW(!actionsWithPositiveReward.get(action), storm::exceptions::InvalidPropertyException, "Infinite reward: Found an end componet that induces infinite reward for at least one objective");
}
}
ecs.push_back(std::move(mec));
}
storm::storage::BitVector currentECStates(result.preprocessedModel.getNumberOfStates(), false);
for(uint_fast64_t ecIndex = 0; ecIndex < ecs.size(); ++ecIndex) { //we will insert new ecs in the vector (thus no iterators for the loop)
bool currentECIsNeutral = true;
for(auto const& stateActionsPair : ecs[ecIndex]) {
bool stateHasNeutralActionWithinEC = false;
for(auto const& action : stateActionsPair.second) {
stateHasNeutralActionWithinEC |= !actionsWithNegativeReward.get(action);
}
currentECStates.set(stateActionsPair.first, stateHasNeutralActionWithinEC);
currentECIsNeutral &= stateHasNeutralActionWithinEC;
}
if(currentECIsNeutral) {
result.statesWhichCanBeVisitedInfinitelyOften |= currentECStates;
}else{
// Check if the ec contains neutral sub ecs. This is done by adding the subECs to our list of ECs
auto subECs = storm::storage::MaximalEndComponentDecomposition<ValueType>(result.preprocessedModel.getTransitionMatrix(), backwardTransitions, currentECStates);
ecs.reserve(ecs.size() + subECs.size());
for(auto& ec : subECs){
ecs.push_back(std::move(ec));
}
}
currentECStates.clear();
}
//Check whether the states that can be visited inf. often are reachable with prob. 1 under some scheduler
storm::storage::BitVector statesReachingNegativeRewardsFinitelyOftenForSomeScheduler = storm::utility::graph::performProb1E(result.preprocessedModel.getTransitionMatrix(), result.preprocessedModel.getTransitionMatrix().getRowGroupIndices(), backwardTransitions, storm::storage::BitVector(result.preprocessedModel.getNumberOfStates()), result.statesWhichCanBeVisitedInfinitelyOften);
STORM_LOG_Throw(!(statesReachingNegativeRewardsFinitelyOftenForSomeScheduler & result.preprocessedModel.getInitialStates()).empty(), storm::exceptions::InvalidPropertyException, "Infinite Rewards: For every scheduler, the induced reward for one or more of the objectives that minimize rewards is infinity.");
if(!statesReachingNegativeRewardsFinitelyOftenForSomeScheduler.full()) {
auto subsystemBuilderResult = storm::transformer::SubsystemBuilder<SparseModelType>::transform(result.preprocessedModel, statesReachingNegativeRewardsFinitelyOftenForSomeScheduler, storm::storage::BitVector(result.preprocessedModel.getTransitionMatrix().getRowCount(), true));
updatePreprocessedModel(result, *subsystemBuilderResult.model, subsystemBuilderResult.newToOldStateIndexMapping);
result.possibleEcActions = result.possibleEcActions % subsystemBuilderResult.subsystemActions;
result.statesWhichCanBeVisitedInfinitelyOften = result.statesWhichCanBeVisitedInfinitelyOften % statesReachingNegativeRewardsFinitelyOftenForSomeScheduler;
}
}
template class SparsePCAAPreprocessor<storm::models::sparse::Mdp<double>>;
template class SparsePCAAPreprocessor<storm::models::sparse::MarkovAutomaton<double>>;
#ifdef STORM_HAVE_CARL
template class SparsePCAAPreprocessor<storm::models::sparse::Mdp<storm::RationalNumber>>;
template class SparsePCAAPreprocessor<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>;
#endif
}
}
}

76
src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessor.h

@ -0,0 +1,76 @@
#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPREPROCESSOR_H_
#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPREPROCESSOR_H_
#include <memory>
#include "src/logic/Formulas.h"
#include "src/storage/BitVector.h"
#include "src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessorReturnType.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
/*
* This class invokes the necessary preprocessing for the Pareto Curve Approximation Algorithm (PCAA)
*/
template <class SparseModelType>
class SparsePCAAPreprocessor {
public:
typedef typename SparseModelType::ValueType ValueType;
typedef typename SparseModelType::RewardModelType RewardModelType;
typedef SparsePCAAPreprocessorReturnType<SparseModelType> ReturnType;
/*!
* Preprocesses the given model w.r.t. the given formulas.
* @param originalModel The considered model
* @param originalFormula the considered formula. The subformulas should only contain one OperatorFormula at top level, i.e., the formula is simple.
*/
static ReturnType preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel);
private:
/*!
* Initializes the returned Information
* @param originalModel The considered model
* @param originalFormula the considered formula
*/
static ReturnType initializeResult(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel);
/*!
* Updates the preprocessed model stored in the given result to the given model.
* The given newToOldStateIndexMapping should give for each state in the newPreprocessedModel
* the index of the state in the current result.preprocessedModel.
*/
static void updatePreprocessedModel(ReturnType& result, SparseModelType& newPreprocessedModel, std::vector<uint_fast64_t>& newToOldStateIndexMapping);
/*!
* Apply the neccessary preprocessing for the given formula.
* @param formula the current (sub)formula
* @param result the information collected so far
* @param currentObjective the currently considered objective. The given formula should be a a (sub)formula of this objective
* @param optionalRewardModelName the reward model name that is considered for the formula (if available)
*/
static void preprocessFormula(storm::logic::OperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::RewardOperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::TimeOperatorFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::UntilFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::BoundedUntilFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::GloballyFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective);
static void preprocessFormula(storm::logic::EventuallyFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
static void preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
static void preprocessFormula(storm::logic::TotalRewardFormula const& formula, ReturnType& result, PCAAObjective<ValueType>& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
/*!
* Checks whether the occurring reward properties are guaranteed to be finite for all states.
* if not, the input is rejected.
* Also applies further preprocessing steps regarding End Component Elimination
*/
static void ensureRewardFiniteness(ReturnType& result);
};
}
}
}
#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPREPROCESSOR_H_ */

90
src/modelchecker/multiobjective/pcaa/SparsePCAAPreprocessorReturnType.h

@ -0,0 +1,90 @@
#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPREPROCESSORRETURNTYPE_H_
#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPREPROCESSORRETURNTYPE_H_
#include <vector>
#include <memory>
#include <iomanip>
#include <type_traits>
#include <boost/optional.hpp>
#include "src/logic/Formulas.h"
#include "src/modelchecker/multiobjective/pcaa/PCAAObjective.h"
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/storage/BitVector.h"
#include "src/utility/macros.h"
#include "src/utility/constants.h"
#include "src/exceptions/UnexpectedException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseModelType>
struct SparsePCAAPreprocessorReturnType {
enum class QueryType { Achievability, Quantitative, Pareto };
storm::logic::MultiObjectiveFormula const& originalFormula;
SparseModelType const& originalModel;
SparseModelType preprocessedModel;
QueryType queryType;
// Maps any state of the preprocessed model to the corresponding state of the original Model
std::vector<uint_fast64_t> newToOldStateIndexMapping;
// The actions of the preprocessed model that can be part of an EC
storm::storage::BitVector possibleEcActions;
// The set of states of the preprocessed model for which there is a scheduler such that
// the state is visited infinitely often and the induced reward is finite for any objective
storm::storage::BitVector statesWhichCanBeVisitedInfinitelyOften;
// The (preprocessed) objectives
std::vector<PCAAObjective<typename SparseModelType::ValueType>> objectives;
// The index of the objective that is to be maximized (or minimized) in case of a quantitative Query
boost::optional<uint_fast64_t> indexOfOptimizingObjective;
SparsePCAAPreprocessorReturnType(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel, SparseModelType&& preprocessedModel) : originalFormula(originalFormula), originalModel(originalModel), preprocessedModel(preprocessedModel) {
// Intentionally left empty
}
void printToStream(std::ostream& out) const {
out << std::endl;
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl;
out << " Multi-objective Query " << std::endl;
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl;
out << std::endl;
out << "Original Formula: " << std::endl;
out << "--------------------------------------------------------------" << std::endl;
out << "\t" << originalFormula << std::endl;
out << std::endl;
out << "Objectives:" << std::endl;
out << "--------------------------------------------------------------" << std::endl;
for (auto const& obj : objectives) {
obj.printToStream(out);
}
out << "--------------------------------------------------------------" << std::endl;
out << std::endl;
out << "Original Model Information:" << std::endl;
originalModel.printModelInformationToStream(out);
out << std::endl;
out << "Preprocessed Model Information:" << std::endl;
preprocessedModel.printModelInformationToStream(out);
out << std::endl;
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl;
}
friend std::ostream& operator<<(std::ostream& out, SparsePCAAPreprocessorReturnType<SparseModelType> const& ret) {
ret.printToStream(out);
return out;
}
};
}
}
}
#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPREPROCESSORRETURNTYPE_H_ */

2
src/transformer/StateDuplicator.h

@ -45,7 +45,7 @@ namespace storm {
* Note that only reachable states are kept.
* Gate states will always belong to the second copy.
* Rewards and labels are duplicated accordingly.
* However, the non-gate-states in the second copy will not get the label for initial states.
* However, the non-gateStates in the second copy will not get the label for initial states.
*
* @param originalModel The model to be duplicated
* @param gateStates The states for which the incoming transitions are redirected

Loading…
Cancel
Save