Browse Source

removed perm schedulers from gspn to circumvent error msg for now

Former-commit-id: 7d10ec8367
tempestpy_adaptions
sjunges 9 years ago
parent
commit
cb913658cc
  1. 0
      src/permissivesched/MCPermissiveSchedulers.h
  2. 218
      src/permissivesched/MILPPermissiveSchedulers.h
  3. 57
      src/permissivesched/PermissiveSchedulerComputation.h
  4. 53
      src/permissivesched/PermissiveSchedulerPenalty.h
  5. 64
      src/permissivesched/PermissiveSchedulers.cpp
  6. 54
      src/permissivesched/PermissiveSchedulers.h
  7. 7
      src/permissivesched/SmtBasedPermissiveSchedulers.h
  8. 60
      test/functional/permissiveschedulers/MilpPermissiveSchedulerTest.cpp

0
src/permissivesched/MCPermissiveSchedulers.h

218
src/permissivesched/MILPPermissiveSchedulers.h

@ -1,218 +0,0 @@
#ifndef MILPPERMISSIVESCHEDULERS_H
#define MILPPERMISSIVESCHEDULERS_H
#include <memory>
#include <unordered_map>
#include "PermissiveSchedulerComputation.h"
#include "../storage/BitVector.h"
#include "../storage/StateActionPair.h"
#include "../storage/StateActionTargetTuple.h"
#include "../storage/expressions/Variable.h"
#include "../solver/LpSolver.h"
#include "../models/sparse/StandardRewardModel.h"
#include "PermissiveSchedulers.h"
namespace storm {
namespace ps {
template<typename RM>
class MilpPermissiveSchedulerComputation : public PermissiveSchedulerComputation<RM> {
private:
bool mCalledOptimizer = false;
storm::solver::LpSolver& solver;
std::unordered_map<storm::storage::StateActionPair, storm::expressions::Variable> multistrategyVariables;
std::unordered_map<uint_fast64_t, storm::expressions::Variable> mProbVariables;
std::unordered_map<uint_fast64_t, storm::expressions::Variable> mAlphaVariables;
std::unordered_map<storm::storage::StateActionTarget, storm::expressions::Variable> mBetaVariables;
std::unordered_map<uint_fast64_t, storm::expressions::Variable> mGammaVariables;
public:
MilpPermissiveSchedulerComputation(storm::solver::LpSolver& milpsolver, storm::models::sparse::Mdp<double, RM> const& mdp, storm::storage::BitVector const& goalstates, storm::storage::BitVector const& sinkstates)
: PermissiveSchedulerComputation<RM>(mdp, goalstates, sinkstates), solver(milpsolver)
{
}
void calculatePermissiveScheduler(bool lowerBound, double boundary) override {
createMILP(lowerBound, boundary, this->mPenalties);
//STORM_LOG_DEBUG("Calling optimizer");
solver.optimize();
//STORM_LOG_DEBUG("Done optimizing.")
mCalledOptimizer = true;
}
bool foundSolution() const override {
assert(mCalledOptimizer);
return !solver.isInfeasible();
}
SubMDPPermissiveScheduler<RM> getScheduler() const override {
assert(mCalledOptimizer);
assert(foundSolution());
SubMDPPermissiveScheduler<RM> result(this->mdp, true);
for(auto const& entry : multistrategyVariables) {
if(!solver.getBinaryValue(entry.second)) {
result.disable(this->mdp.getChoiceIndex(entry.first));
}
}
return result;
}
void dumpLpToFile(std::string const& filename) {
solver.writeModelToFile(filename);
}
private:
/**
* Create variables
*/
void createVariables(PermissiveSchedulerPenalties const& penalties, storm::storage::BitVector const& relevantStates) {
// We need the unique initial state later, so we get that one before looping.
assert(this->mdp.getInitialStates().getNumberOfSetBits() == 1);
uint_fast64_t initialStateIndex = this->mdp.getInitialStates().getNextSetIndex(0);
storm::expressions::Variable var;
for(uint_fast64_t s : relevantStates) {
// Create x_s variables
// Notice that only the initial probability appears in the objective.
if(s == initialStateIndex) {
var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0, -1.0);
} else {
var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0);
}
mProbVariables[s] = var;
// Create alpha_s variables
var = solver.addBinaryVariable("alp_" + std::to_string(s));
mAlphaVariables[s] = var;
// Create gamma_s variables
var = solver.addBoundedContinuousVariable("gam_" + std::to_string(s), 0.0, 1.0);
mGammaVariables[s] = var;
for(uint_fast64_t a = 0; a < this->mdp.getNumberOfChoices(s); ++a) {
auto stateAndAction = storage::StateActionPair(s,a);
// Create y_(s,a) variables
double penalty = penalties.get(stateAndAction);
var = solver.addBinaryVariable("y_" + std::to_string(s) + "_" + std::to_string(a), -penalty);
multistrategyVariables[stateAndAction] = var;
// Create beta_(s,a,t) variables
// Iterate over successors of s via a.
for(auto const& entry : this->mdp.getTransitionMatrix().getRow(this->mdp.getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0) {
storage::StateActionTarget sat = {s,a,entry.getColumn()};
var = solver.addBinaryVariable("beta_" + to_string(sat));
mBetaVariables[sat] = var;
}
}
}
}
solver.update();
}
/**
* Create constraints
*/
void createConstraints(bool lowerBound, double boundary, storm::storage::BitVector const& relevantStates) {
// (5) and (7) are omitted on purpose (-- we currenty do not support controllability of actions -- )
// (1)
assert(this->mdp.getInitialStates().getNumberOfSetBits() == 1);
uint_fast64_t initialStateIndex = this->mdp.getInitialStates().getNextSetIndex(0);
assert(relevantStates[initialStateIndex]);
if(lowerBound) {
solver.addConstraint("c1", mProbVariables[initialStateIndex] >= solver.getConstant(boundary));
} else {
solver.addConstraint("c1", mProbVariables[initialStateIndex] <= solver.getConstant(boundary));
}
for(uint_fast64_t s : relevantStates) {
std::string stateString = std::to_string(s);
storm::expressions::Expression expr = solver.getConstant(0.0);
// (2)
for(uint_fast64_t a = 0; a < this->mdp.getNumberOfChoices(s); ++a) {
expr = expr + multistrategyVariables[storage::StateActionPair(s,a)];
}
solver.addConstraint("c2-" + stateString, solver.getConstant(1) <= expr);
// (5)
solver.addConstraint("c5-" + std::to_string(s), mProbVariables[s] <= mAlphaVariables[s]);
// (3) For the relevant states.
for(uint_fast64_t a = 0; a < this->mdp.getNumberOfChoices(s); ++a) {
std::string sastring(stateString + "_" + std::to_string(a));
expr = solver.getConstant(0.0);
for(auto const& entry : this->mdp.getTransitionMatrix().getRow(this->mdp.getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0 && relevantStates.get(entry.getColumn())) {
expr = expr + solver.getConstant(entry.getValue()) * mProbVariables[entry.getColumn()];
} else if (entry.getValue() != 0 && this->mGoals.get(entry.getColumn())) {
expr = expr + solver.getConstant(entry.getValue());
}
}
if(lowerBound) {
solver.addConstraint("c3-" + sastring, mProbVariables[s] <= (solver.getConstant(1) - multistrategyVariables[storage::StateActionPair(s,a)]) + expr);
} else {
solver.addConstraint("c3-" + sastring, mProbVariables[s] >= (solver.getConstant(1) - multistrategyVariables[storage::StateActionPair(s,a)]) + expr);
}
}
for(uint_fast64_t a = 0; a < this->mdp.getNumberOfChoices(s); ++a) {
// (6)
std::string sastring(stateString + "_" + std::to_string(a));
expr = solver.getConstant(0.0);
for(auto const& entry : this->mdp.getTransitionMatrix().getRow(this->mdp.getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0) {
storage::StateActionTarget sat = {s,a,entry.getColumn()};
expr = expr + mBetaVariables[sat];
}
}
solver.addConstraint("c6-" + sastring, multistrategyVariables[storage::StateActionPair(s,a)] == (solver.getConstant(1) - mAlphaVariables[s]) + expr);
for(auto const& entry : this->mdp.getTransitionMatrix().getRow(this->mdp.getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0) {
storage::StateActionTarget sat = {s,a,entry.getColumn()};
std::string satstring = to_string(sat);
// (8)
if(relevantStates[entry.getColumn()]) {
assert(mGammaVariables.count(entry.getColumn()) > 0);
assert(mGammaVariables.count(s) > 0);
assert(mBetaVariables.count(sat) > 0);
solver.addConstraint("c8-" + satstring, mGammaVariables[entry.getColumn()] < mGammaVariables[s] + (solver.getConstant(1) - mBetaVariables[sat]) + mProbVariables[s]); // With rewards, we have to change this.
}
}
}
}
}
}
/**
*
*/
void createMILP(bool lowerBound, double boundary, PermissiveSchedulerPenalties const& penalties) {
storm::storage::BitVector irrelevant = this->mGoals | this->mSinks;
storm::storage::BitVector relevantStates = ~irrelevant;
// Notice that the separated construction of variables and
// constraints slows down the construction of the MILP.
// In the future, we might want to merge this.
createVariables(penalties, relevantStates);
createConstraints(lowerBound, boundary, relevantStates);
solver.setOptimizationDirection(storm::OptimizationDirection::Minimize);
}
};
}
}
#endif /* MILPPERMISSIVESCHEDULERS_H */

57
src/permissivesched/PermissiveSchedulerComputation.h

@ -1,57 +0,0 @@
#ifndef PERMISSIVESCHEDULERCOMPUTATION_H
#define PERMISSIVESCHEDULERCOMPUTATION_H
#include <memory>
#include "../storage/BitVector.h"
#include "../models/sparse/Mdp.h"
#include "PermissiveSchedulerPenalty.h"
#include "PermissiveSchedulers.h"
namespace storm {
namespace ps {
template<typename RM>
class PermissiveSchedulerComputation {
protected:
storm::models::sparse::Mdp<double, RM> const& mdp;
storm::storage::BitVector const& mGoals;
storm::storage::BitVector const& mSinks;
PermissiveSchedulerPenalties mPenalties;
public:
PermissiveSchedulerComputation(storm::models::sparse::Mdp<double, RM> const& mdp, storm::storage::BitVector const& goalstates, storm::storage::BitVector const& sinkstates)
: mdp(mdp), mGoals(goalstates), mSinks(sinkstates)
{
}
virtual void calculatePermissiveScheduler(bool lowerBound, double boundary) = 0;
void setPenalties(PermissiveSchedulerPenalties penalties) {
mPenalties = penalties;
}
PermissiveSchedulerPenalties const& getPenalties() const {
return mPenalties;
}
PermissiveSchedulerPenalties & getPenalties() {
return mPenalties;
}
virtual bool foundSolution() const = 0;
virtual SubMDPPermissiveScheduler<RM> getScheduler() const = 0;
};
}
}
#endif /* PERMISSIVESCHEDULERCOMPUTATION_H */

53
src/permissivesched/PermissiveSchedulerPenalty.h

@ -1,53 +0,0 @@
#ifndef PERMISSIVESCHEDULERPENALTY_H
#define PERMISSIVESCHEDULERPENALTY_H
#include <unordered_map>
#include "../storage/StateActionPair.h"
namespace storm {
namespace ps {
class PermissiveSchedulerPenalties {
std::unordered_map<storage::StateActionPair, double> mPenalties;
public:
double get(uint_fast64_t state, uint_fast64_t action) const {
return get(storage::StateActionPair(state, action));
}
double get(storage::StateActionPair const& sap) const {
auto it = mPenalties.find(sap);
if(it == mPenalties.end()) {
return 0.0;
}
else {
return it->second;
}
}
void set(uint_fast64_t state, uint_fast64_t action, double penalty) {
assert(penalty >= 1.0);
if(penalty == 1.0) {
auto it = mPenalties.find(std::make_pair(state, action));
if(it != mPenalties.end()) {
mPenalties.erase(it);
}
} else {
mPenalties.emplace(std::make_pair(state, action), penalty);
}
}
void clear() {
mPenalties.clear();
}
};
}
}
#endif /* PERMISSIVESCHEDULERPENALTY_H */

64
src/permissivesched/PermissiveSchedulers.cpp

@ -1,64 +0,0 @@
#include "PermissiveSchedulers.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "../utility/solver.h"
#include "../utility/graph.h"
#include "../modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "../modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "MILPPermissiveSchedulers.h"
#include "src/exceptions/NotImplementedException.h"
#include "src/utility/macros.h"
namespace storm {
namespace ps {
template<typename RM>
boost::optional<SubMDPPermissiveScheduler<RM>> computePermissiveSchedulerViaMILP(storm::models::sparse::Mdp<double, RM> const& mdp, storm::logic::ProbabilityOperatorFormula const& safeProp) {
storm::modelchecker::SparsePropositionalModelChecker<storm::models::sparse::Mdp<double, RM>> propMC(mdp);
assert(safeProp.getSubformula().isEventuallyFormula());
auto backwardTransitions = mdp.getBackwardTransitions();
storm::storage::BitVector goalstates = propMC.check(safeProp.getSubformula().asEventuallyFormula().getSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
goalstates = storm::utility::graph::performProb1A(mdp, backwardTransitions, storm::storage::BitVector(goalstates.size(), true), goalstates);
storm::storage::BitVector sinkstates = storm::utility::graph::performProb0A(mdp,backwardTransitions, storm::storage::BitVector(goalstates.size(), true), goalstates);
auto solver = storm::utility::solver::getLpSolver("Gurobi", storm::solver::LpSolverTypeSelection::Gurobi);
MilpPermissiveSchedulerComputation<storm::models::sparse::StandardRewardModel<double>> comp(*solver, mdp, goalstates, sinkstates);
STORM_LOG_THROW(!storm::logic::isStrict(safeProp.getComparisonType()), storm::exceptions::NotImplementedException, "Strict bounds are not supported");
comp.calculatePermissiveScheduler(storm::logic::isLowerBound(safeProp.getComparisonType()), safeProp.getBound());
//comp.dumpLpToFile("milpdump.lp");
std::cout << "Found Solution: " << (comp.foundSolution() ? "yes" : "no") << std::endl;
if(comp.foundSolution()) {
return boost::optional<SubMDPPermissiveScheduler<RM>>(comp.getScheduler());
} else {
return boost::optional<SubMDPPermissiveScheduler<RM>>();
}
}
template<typename RM>
boost::optional<SubMDPPermissiveScheduler<RM>> computePermissiveSchedulerViaMC(std::shared_ptr<storm::models::sparse::Mdp<double, RM>> mdp, storm::logic::ProbabilityOperatorFormula const& safeProp) {
}
template<typename RM>
boost::optional<SubMDPPermissiveScheduler<RM>> computerPermissiveSchedulerViaSMT(std::shared_ptr<storm::models::sparse::Mdp<double, RM>> mdp, storm::logic::ProbabilityOperatorFormula const& safeProp) {
storm::modelchecker::SparsePropositionalModelChecker<storm::models::sparse::Mdp<double, RM>> propMC(*mdp);
assert(safeProp.getSubformula().isEventuallyFormula());
auto backwardTransitions = mdp->getBackwardTransitions();
storm::storage::BitVector goalstates = propMC.check(safeProp.getSubformula().asEventuallyFormula().getSubformula())->asExplicitQualitativeCheckResult().getTruthValuesVector();
goalstates = storm::utility::graph::performProb1A(*mdp, backwardTransitions, storm::storage::BitVector(goalstates.size(), true), goalstates);
storm::storage::BitVector sinkstates = storm::utility::graph::performProb0A(*mdp,backwardTransitions, storm::storage::BitVector(goalstates.size(), true), goalstates);
/*SmtPermissiveSchedulerComputation comp(mdp, goalstates, sinkstates)
if(comp.foundSolution()) {
return boost::optional<SubMDPPermissiveScheduler>(comp.getScheduler());
} else {
return boost::optional<SubMDPPermissiveScheduler>();
}*/
}
template boost::optional<SubMDPPermissiveScheduler<>> computePermissiveSchedulerViaMILP(storm::models::sparse::Mdp<double> const& mdp, storm::logic::ProbabilityOperatorFormula const& safeProp);
}
}

54
src/permissivesched/PermissiveSchedulers.h

@ -1,54 +0,0 @@
#ifndef PERMISSIVESCHEDULERS_H
#define PERMISSIVESCHEDULERS_H
#include "../logic/ProbabilityOperatorFormula.h"
#include "../models/sparse/Mdp.h"
#include "../models/sparse/StandardRewardModel.h"
namespace storm {
namespace ps {
class PermissiveScheduler {
public:
virtual ~PermissiveScheduler() = default;
};
template<typename RM= storm::models::sparse::StandardRewardModel<double>>
class SubMDPPermissiveScheduler : public PermissiveScheduler {
storm::models::sparse::Mdp<double, RM> const &mdp;
storm::storage::BitVector enabledChoices;
public:
virtual ~SubMDPPermissiveScheduler() = default;
SubMDPPermissiveScheduler(SubMDPPermissiveScheduler &&) = default;
SubMDPPermissiveScheduler(SubMDPPermissiveScheduler const &) = delete;
SubMDPPermissiveScheduler(storm::models::sparse::Mdp<double, RM> const &refmdp, bool allEnabled) :
PermissiveScheduler(), mdp(refmdp), enabledChoices(refmdp.getNumberOfChoices(), allEnabled) {
// Intentionally left empty.
}
void disable(uint_fast64_t choiceIndex) {
assert(choiceIndex < enabledChoices.size());
enabledChoices.set(choiceIndex, false);
}
storm::models::sparse::Mdp<double, RM> apply() const {
return mdp.restrictChoices(enabledChoices);
}
};
template<typename RM = storm::models::sparse::StandardRewardModel<double>>
boost::optional<SubMDPPermissiveScheduler<RM>> computePermissiveSchedulerViaMILP(storm::models::sparse::Mdp<double, RM> const &mdp, storm::logic::ProbabilityOperatorFormula const &safeProp);
}
}
#endif /* PERMISSIVESCHEDULERS_H */

7
src/permissivesched/SmtBasedPermissiveSchedulers.h

@ -1,7 +0,0 @@
#ifndef SMTBASEDPERMISSIVESCHEDULERS_H
#define SMTBASEDPERMISSIVESCHEDULERS_H
#endif /* SMTBASEDPERMISSIVESCHEDULERS_H */

60
test/functional/permissiveschedulers/MilpPermissiveSchedulerTest.cpp

@ -1,60 +0,0 @@
#include <src/modelchecker/results/ExplicitQualitativeCheckResult.h>
#include "gtest/gtest.h"
#include "storm-config.h"
#include "src/parser/PrismParser.h"
#include "src/parser/FormulaParser.h"
#include "src/logic/Formulas.h"
#include "src/permissivesched/PermissiveSchedulers.h"
#include "src/builder/ExplicitPrismModelBuilder.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
TEST(MilpPermissiveSchedulerTest, DieSelection) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/die_c1.nm");
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer());
auto formula02 = formulaParser.parseSingleFormulaFromString("P>=0.10 [ F \"one\"]")->asProbabilityOperatorFormula();
ASSERT_TRUE(storm::logic::isLowerBound(formula02.getComparisonType()));
auto formula001 = formulaParser.parseSingleFormulaFromString("P>=0.17 [ F \"one\"]")->asProbabilityOperatorFormula();
auto formula02b = formulaParser.parseSingleFormulaFromString("P<=0.10 [ F \"one\"]")->asProbabilityOperatorFormula();
auto formula001b = formulaParser.parseSingleFormulaFromString("P<=0.17 [ F \"one\"]")->asProbabilityOperatorFormula();
// Customize and perform model-building.
typename storm::builder::ExplicitPrismModelBuilder<double>::Options options;
options = typename storm::builder::ExplicitPrismModelBuilder<double>::Options(formula02);
options.addConstantDefinitionsFromString(program, "");
options.buildCommandLabels = true;
std::shared_ptr<storm::models::sparse::Mdp<double>> mdp = storm::builder::ExplicitPrismModelBuilder<double>().translateProgram(program, options)->as<storm::models::sparse::Mdp<double>>();
boost::optional<storm::ps::SubMDPPermissiveScheduler<>> perms = storm::ps::computePermissiveSchedulerViaMILP<>(*mdp, formula02);
EXPECT_NE(perms, boost::none);
boost::optional<storm::ps::SubMDPPermissiveScheduler<>> perms2 = storm::ps::computePermissiveSchedulerViaMILP<>(*mdp, formula001);
EXPECT_EQ(perms2, boost::none);
boost::optional<storm::ps::SubMDPPermissiveScheduler<>> perms3 = storm::ps::computePermissiveSchedulerViaMILP<>(*mdp, formula02b);
EXPECT_EQ(perms3, boost::none);
boost::optional<storm::ps::SubMDPPermissiveScheduler<>> perms4 = storm::ps::computePermissiveSchedulerViaMILP<>(*mdp, formula001b);
EXPECT_NE(perms4, boost::none);
storm::modelchecker::SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>> checker0(*mdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(storm::solver::EquationSolverTypeSelection::Native)));
std::unique_ptr<storm::modelchecker::CheckResult> result0 = checker0.check(formula02);
storm::modelchecker::ExplicitQualitativeCheckResult& qualitativeResult0 = result0->asExplicitQualitativeCheckResult();
ASSERT_FALSE(qualitativeResult0[0]);
auto submdp = perms->apply();
storm::modelchecker::SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>> checker1(submdp, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<double>>(new storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(storm::solver::EquationSolverTypeSelection::Native)));
std::unique_ptr<storm::modelchecker::CheckResult> result1 = checker1.check(formula02);
storm::modelchecker::ExplicitQualitativeCheckResult& qualitativeResult1 = result1->asExplicitQualitativeCheckResult();
EXPECT_TRUE(qualitativeResult1[0]);
//
}
Loading…
Cancel
Save