@ -78,8 +78,7 @@ namespace storm {
storm : : pomdp : : Belief < ValueType > initialBelief = getInitialBelief ( pomdp , nextId ) ;
+ + nextId ;
beliefList . push_back ( initialBelief ) ;
beliefIsTarget . push_back (
targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
beliefIsTarget . push_back ( targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
// These are the components to build the MDP from the grid
std : : map < uint64_t , uint64_t > beliefStateMap ;
@ -344,8 +343,6 @@ namespace storm {
auto model = std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( overApproxMdp ) ;
auto modelPtr = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > ( model ) ;
std : : vector < std : : string > parameterNames ;
storm : : api : : exportSparseModelAsDrn ( modelPtr , " test " , parameterNames ) ;
@ -398,8 +395,16 @@ namespace storm {
storm : : pomdp : : Belief < ValueType > initialBelief = getInitialBelief ( pomdp , nextId ) ;
+ + nextId ;
beliefList . push_back ( initialBelief ) ;
beliefIsTarget . push_back (
targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
beliefIsTarget . push_back ( targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
// These are the components to build the MDP from the grid
std : : map < uint64_t , uint64_t > beliefStateMap ;
std : : vector < std : : vector < std : : map < uint64_t , ValueType > > > mdpTransitions ;
std : : vector < uint64_t > targetStates ;
uint64_t mdpStateId = 0 ;
beliefStateMap [ initialBelief . id ] = mdpStateId ;
+ + mdpStateId ;
// for the initial belief, add the triangulated initial states
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > initTemp = computeSubSimplexAndLambdas (
@ -410,6 +415,8 @@ namespace storm {
lambdaCache [ 0 ] = initLambdas ;
bool initInserted = false ;
std : : vector < std : : map < uint64_t , ValueType > > initTransitionsInBelief ;
std : : map < uint64_t , ValueType > initTransitionInActionBelief ;
for ( size_t j = 0 ; j < initLambdas . size ( ) ; + + j ) {
if ( ! cc . isEqual ( initLambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
@ -429,11 +436,22 @@ namespace storm {
targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
beliefsToBeExpanded . push_back ( nextId ) ;
+ + nextId ;
beliefStateMap [ nextId ] = mdpStateId ;
initTransitionInActionBelief [ mdpStateId ] = initLambdas [ j ] ;
+ + nextId ;
+ + mdpStateId ;
}
}
}
}
// If the initial belief is not on the grid, we add the transitions from our initial MDP state to the triangulated beliefs
if ( ! initTransitionInActionBelief . empty ( ) ) {
initTransitionsInBelief . push_back ( initTransitionInActionBelief ) ;
mdpTransitions . push_back ( initTransitionsInBelief ) ;
}
//beliefsToBeExpanded.push_back(initialBelief.id); TODO I'm curious what happens if we do this instead of first triangulating. Should do nothing special if belief is on grid, otherwise it gets interesting
@ -445,17 +463,26 @@ namespace storm {
result . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
result_backup . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
if ( ! isTarget ) {
if ( isTarget ) {
// MDP stuff
std : : vector < std : : map < uint64_t , ValueType > > transitionsInBelief ;
targetStates . push_back ( beliefStateMap [ currId ] ) ;
std : : map < uint64_t , ValueType > transitionInActionBelief ;
transitionInActionBelief [ beliefStateMap [ currId ] ] = storm : : utility : : one < ValueType > ( ) ;
transitionsInBelief . push_back ( transitionInActionBelief ) ;
mdpTransitions . push_back ( transitionsInBelief ) ;
} else {
uint64_t representativeState = pomdp . getStatesWithObservation ( beliefList [ currId ] . observation ) . front ( ) ;
uint64_t numChoices = pomdp . getNumberOfChoices ( representativeState ) ;
std : : vector < std : : map < uint32_t , ValueType > > observationProbabilitiesInAction ( numChoices ) ;
std : : vector < std : : map < uint32_t , uint64_t > > nextBelievesInAction ( numChoices ) ;
std : : vector < ValueType > actionRewardsInState ( numChoices ) ;
std : : vector < std : : map < uint64_t , ValueType > > transitionsInBelief ;
for ( uint64_t action = 0 ; action < numChoices ; + + action ) {
std : : map < uint32_t , ValueType > actionObservationProbabilities = computeObservationProbabilitiesAfterAction ( pomdp , beliefList [ currId ] , action ) ;
std : : map < uint32_t , uint64_t > actionObservationBelieves ;
std : : map < uint64_t , ValueType > transitionInActionBelief ;
for ( auto iter = actionObservationProbabilities . begin ( ) ; iter ! = actionObservationProbabilities . end ( ) ; + + iter ) {
uint32_t observation = iter - > first ;
// THIS CALL IS SLOW
@ -490,7 +517,13 @@ namespace storm {
beliefIsTarget . push_back (
targetObservations . find ( observation ) ! = targetObservations . end ( ) ) ;
beliefsToBeExpanded . push_back ( nextId ) ;
beliefStateMap [ nextId ] = mdpStateId ;
transitionInActionBelief [ mdpStateId ] = iter - > second * lambdas [ j ] ;
+ + nextId ;
+ + mdpStateId ;
} else {
transitionInActionBelief [ beliefStateMap [ getBeliefIdInVector ( beliefGrid , observation , subSimplex [ j ] ) ] ] = iter - > second * lambdas [ j ] ;
}
}
}
@ -499,12 +532,20 @@ namespace storm {
nextBelievesInAction [ action ] = actionObservationBelieves ;
actionRewardsInState [ action ] = getRewardAfterAction ( pomdp , pomdp . getChoiceIndex ( storm : : storage : : StateActionPair ( representativeState , action ) ) ,
beliefList [ currId ] ) ;
if ( ! transitionInActionBelief . empty ( ) ) {
transitionsInBelief . push_back ( transitionInActionBelief ) ;
}
}
observationProbabilities . emplace (
std : : make_pair ( currId , observationProbabilitiesInAction ) ) ;
observationProbabilities . emplace ( std : : make_pair ( currId , observationProbabilitiesInAction ) ) ;
nextBelieves . emplace ( std : : make_pair ( currId , nextBelievesInAction ) ) ;
beliefActionRewards . emplace ( std : : make_pair ( currId , actionRewardsInState ) ) ;
if ( transitionsInBelief . empty ( ) ) {
std : : map < uint64_t , ValueType > transitionInActionBelief ;
transitionInActionBelief [ beliefStateMap [ currId ] ] = storm : : utility : : one < ValueType > ( ) ;
transitionsInBelief . push_back ( transitionInActionBelief ) ;
}
mdpTransitions . push_back ( transitionsInBelief ) ;
}
}
expansionTimer . stop ( ) ;
@ -512,6 +553,31 @@ namespace storm {
STORM_PRINT ( " #Believes in List: " < < beliefList . size ( ) < < std : : endl )
STORM_PRINT ( " Belief space expansion took " < < expansionTimer < < std : : endl )
storm : : models : : sparse : : StateLabeling mdpLabeling ( mdpTransitions . size ( ) ) ;
mdpLabeling . addLabel ( " init " ) ;
mdpLabeling . addLabel ( " target " ) ;
mdpLabeling . addLabelToState ( " init " , 0 ) ;
for ( auto targetState : targetStates ) {
mdpLabeling . addLabelToState ( " target " , targetState ) ;
}
storm : : storage : : sparse : : ModelComponents < ValueType , RewardModelType > modelComponents ( buildTransitionMatrix ( mdpTransitions ) , mdpLabeling ) ;
storm : : models : : sparse : : Mdp < ValueType , RewardModelType > overApproxMdp ( modelComponents ) ;
storm : : models : : sparse : : StandardRewardModel < ValueType > mdpRewardModel ( boost : : none , std : : vector < ValueType > ( modelComponents . transitionMatrix . getRowCount ( ) ) ) ;
for ( auto const & iter : beliefStateMap ) {
auto currentBelief = beliefList [ iter . first ] ;
auto representativeState = pomdp . getStatesWithObservation ( currentBelief . observation ) . front ( ) ;
for ( uint64_t action = 0 ; action < overApproxMdp . getNumberOfChoices ( iter . second ) ; + + action ) {
// Add the reward
mdpRewardModel . setStateActionReward ( overApproxMdp . getChoiceIndex ( storm : : storage : : StateActionPair ( iter . second , action ) ) ,
getRewardAfterAction ( pomdp , pomdp . getChoiceIndex ( storm : : storage : : StateActionPair ( representativeState , action ) ) ,
currentBelief ) ) ;
}
}
overApproxMdp . addRewardModel ( " std " , mdpRewardModel ) ;
overApproxMdp . restrictRewardModels ( std : : set < std : : string > ( { " std " } ) ) ;
overApproxMdp . printModelInformationToStream ( std : : cout ) ;
storm : : utility : : Stopwatch overApproxTimer ( true ) ;
// Value Iteration
while ( ! finished & & iteration < maxIterations ) {
@ -600,13 +666,12 @@ namespace storm {
auto overApprox = storm : : utility : : zero < ValueType > ( ) ;
for ( size_t j = 0 ; j < initLambdas . size ( ) ; + + j ) {
if ( initLambdas [ j ] ! = storm : : utility : : zero < ValueType > ( ) ) {
overApprox + = initLambdas [ j ] *
result_backup [ getBeliefIdInVector ( beliefGrid , initialBelief . observation ,
initSubSimplex [ j ] ) ] ;
overApprox + = initLambdas [ j ] * result_backup [ getBeliefIdInVector ( beliefGrid , initialBelief . observation , initSubSimplex [ j ] ) ] ;
}
}
overApproxTimer . stop ( ) ;
ValueType underApprox = storm : : utility : : zero < ValueType > ( ) ;
/*
storm : : utility : : Stopwatch underApproxTimer ( true ) ;
ValueType underApprox = computeUnderapproximationWithMDP ( pomdp , beliefList , beliefIsTarget , targetObservations , observationProbabilities , nextBelieves ,
result , chosenActions , gridResolution , initialBelief . id , min , true ) ;
@ -615,13 +680,26 @@ namespace storm {
STORM_PRINT ( " Time Overapproximation: " < < overApproxTimer
< < std : : endl
< < " Time Underapproximation: " < < underApproxTimer
< < std : : endl ) ;
< < std : : endl ) ; */
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Under-Approximation Result: " < < underApprox < < std : : endl ) ;
//STORM_PRINT("Under-Approximation Result: " << underApprox << std::endl);
return std : : make_unique < POMDPCheckResult < ValueType > > (
POMDPCheckResult < ValueType > { overApprox , underApprox } ) ;
auto model = std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( overApproxMdp ) ;
auto modelPtr = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > ( model ) ;
std : : vector < std : : string > parameterNames ;
storm : : api : : exportSparseModelAsDrn ( modelPtr , " rewardTest " , parameterNames ) ;
std : : string propertyString = min ? " Rmin=? [F \" target \" ] " : " Rmax=? [F \" target \" ] " ;
std : : vector < storm : : jani : : Property > propertyVector = storm : : api : : parseProperties ( propertyString ) ;
std : : shared_ptr < storm : : logic : : Formula const > property = storm : : api : : extractFormulasFromProperties ( propertyVector ) . front ( ) ;
std : : unique_ptr < storm : : modelchecker : : CheckResult > res ( storm : : api : : verifyWithSparseEngine < ValueType > ( model , storm : : api : : createTask < ValueType > ( property , true ) ) ) ;
STORM_LOG_ASSERT ( res , " Result not exist. " ) ;
res - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( model - > getInitialStates ( ) ) ) ;
STORM_PRINT ( " OverApprox MDP: " < < ( res - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) . begin ( ) - > second ) < < std : : endl ) ;
return std : : make_unique < POMDPCheckResult < ValueType > > ( POMDPCheckResult < ValueType > { overApprox , underApprox } ) ;
}