@ -17,9 +17,10 @@
# include "storm/utility/vector.h"
# include "storm/utility/vector.h"
# include "storm/environment/solver/LongRunAverageSolverEnvironment.h"
# include "storm/environment/solver/LongRunAverageSolverEnvironment.h"
# include "storm/environment/solver/MinMax SolverEnvironment.h"
# include "storm/environment/solver/Topological SolverEnvironment.h"
# include "storm/exceptions/UnmetRequirementException.h"
# include "storm/exceptions/UnmetRequirementException.h"
# include "storm/exceptions/NotSupportedException.h"
namespace storm {
namespace storm {
namespace modelchecker {
namespace modelchecker {
@ -46,12 +47,12 @@ namespace storm {
}
}
template < typename ValueType >
template < typename ValueType >
ValueType SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForComponent ( Environment const & env , ValueGetter const & stateRewards Getter , ValueGetter const & actionRewards Getter , storm : : storage : : StronglyConnectedComponent const & component ) {
ValueType SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForComponent ( Environment const & env , ValueGetter const & stateValue Getter , ValueGetter const & actionValue Getter , storm : : storage : : StronglyConnectedComponent const & component ) {
// For deterministic models, we compute the LRA for a BSCC
// For deterministic models, we compute the LRA for a BSCC
STORM_LOG_ASSERT ( ! this - > isProduceSchedulerSet ( ) , " Scheduler production enabled for deterministic model. " ) ;
STORM_LOG_ASSERT ( ! this - > isProduceSchedulerSet ( ) , " Scheduler production enabled for deterministic model. " ) ;
auto trivialResult = computeLraForTrivialBscc ( env , stateRewardsGetter , actionRewards Getter , component ) ;
auto trivialResult = computeLraForTrivialBscc ( env , stateValueGetter , actionValue Getter , component ) ;
if ( trivialResult . first ) {
if ( trivialResult . first ) {
return trivialResult . second ;
return trivialResult . second ;
}
}
@ -67,18 +68,18 @@ namespace storm {
}
}
STORM_LOG_TRACE ( " Computing LRA for BSCC of size " < < component . size ( ) < < " using ' " < < storm : : solver : : toString ( method ) < < " '. " ) ;
STORM_LOG_TRACE ( " Computing LRA for BSCC of size " < < component . size ( ) < < " using ' " < < storm : : solver : : toString ( method ) < < " '. " ) ;
if ( method = = storm : : solver : : LraMethod : : ValueIteration ) {
if ( method = = storm : : solver : : LraMethod : : ValueIteration ) {
return computeLraForBsccVi ( env , stateRewardsGetter , actionRewards Getter , component ) ;
} /* else if (method == storm::solver::LraMethod::LraDistributionEquations) {
return computeLraForBsccVi ( env , stateValueGetter , actionValue Getter , component ) ;
} else if ( method = = storm : : solver : : LraMethod : : LraDistributionEquations ) {
// We only need the first element of the pair as the lra distribution is not relevant at this point.
// We only need the first element of the pair as the lra distribution is not relevant at this point.
return computeLongRunAve rages ForBsccLraDistr < ValueType > ( env , bscc , rateMatrix , valueGetter , exitRateVector ) . first ;
return computeLraForBsccLraDistr ( env , stateValueGetter , actionValueGetter , component ) . first ;
}
}
STORM_LOG_WARN_COND ( method = = storm : : solver : : LraMethod : : GainBiasEquations , " Unsupported lra method selected. Defaulting to " < < storm : : solver : : toString ( storm : : solver : : LraMethod : : GainBiasEquations ) < < " . " ) ;
STORM_LOG_WARN_COND ( method = = storm : : solver : : LraMethod : : GainBiasEquations , " Unsupported lra method selected. Defaulting to " < < storm : : solver : : toString ( storm : : solver : : LraMethod : : GainBiasEquations ) < < " . " ) ;
// We don't need the bias values
// We don't need the bias values
return computeLongRunAve rages ForBsccGainBias < ValueType > ( env , bscc , rateMatrix , valueGetter , exitRateVector ) . first ; */
return computeLraForBsccGainBias ( env , stateValueGetter , actionValueGetter , component ) . first ;
}
}
template < typename ValueType >
template < typename ValueType >
std : : pair < bool , ValueType > SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForTrivialBscc ( Environment const & env , ValueGetter const & stateRewards Getter , ValueGetter const & actionRewards Getter , storm : : storage : : StronglyConnectedComponent const & component ) {
std : : pair < bool , ValueType > SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForTrivialBscc ( Environment const & env , ValueGetter const & stateValue Getter , ValueGetter const & actionValue Getter , storm : : storage : : StronglyConnectedComponent const & component ) {
// For deterministic models, we can catch the case where all values are the same. This includes the special case where the BSCC consist only of just one state.
// For deterministic models, we can catch the case where all values are the same. This includes the special case where the BSCC consist only of just one state.
bool first = true ;
bool first = true ;
@ -86,8 +87,9 @@ namespace storm {
for ( auto const & element : component ) {
for ( auto const & element : component ) {
auto state = internal : : getComponentElementState ( element ) ;
auto state = internal : : getComponentElementState ( element ) ;
STORM_LOG_ASSERT ( state = = * internal : : getComponentElementChoicesBegin ( element ) , " Unexpected choice index at state " < < state < < " of deterministic model. " ) ;
STORM_LOG_ASSERT ( state = = * internal : : getComponentElementChoicesBegin ( element ) , " Unexpected choice index at state " < < state < < " of deterministic model. " ) ;
ValueType curr = stateRewards Getter ( state ) + ( this - > isContinuousTime ( ) ? ( * this - > _exitRates ) [ state ] * actionRewards Getter ( state ) : actionRewards Getter ( state ) ) ;
ValueType curr = stateValue Getter ( state ) + ( this - > isContinuousTime ( ) ? ( * this - > _exitRates ) [ state ] * actionValue Getter ( state ) : actionValue Getter ( state ) ) ;
if ( first ) {
if ( first ) {
val = curr ;
first = false ;
first = false ;
} else if ( val ! = curr ) {
} else if ( val ! = curr ) {
return { false , storm : : utility : : zero < ValueType > ( ) } ;
return { false , storm : : utility : : zero < ValueType > ( ) } ;
@ -98,8 +100,12 @@ namespace storm {
}
}
template < >
storm : : RationalFunction SparseDeterministicInfiniteHorizonHelper < storm : : RationalFunction > : : computeLraForBsccVi ( Environment const & env , ValueGetter const & stateValueGetter , ValueGetter const & actionValueGetter , storm : : storage : : StronglyConnectedComponent const & bscc ) {
STORM_LOG_THROW ( false , storm : : exceptions : : NotSupportedException , " The requested Method for LRA computation is not supported for parametric models. " ) ;
}
template < typename ValueType >
template < typename ValueType >
ValueType SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForBsccVi ( Environment const & env , ValueGetter const & stateRewardsGetter , ValueGetter const & actionRewardsGetter , storm : : storage : : StronglyConnectedComponent const & bscc ) {
ValueType SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForBsccVi ( Environment const & env , ValueGetter const & stateValue Getter , ValueGetter const & actionValue Getter , storm : : storage : : StronglyConnectedComponent const & bscc ) {
// Collect parameters of the computation
// Collect parameters of the computation
ValueType aperiodicFactor = storm : : utility : : convertNumber < ValueType > ( env . solver ( ) . lra ( ) . getAperiodicFactor ( ) ) ;
ValueType aperiodicFactor = storm : : utility : : convertNumber < ValueType > ( env . solver ( ) . lra ( ) . getAperiodicFactor ( ) ) ;
@ -108,12 +114,241 @@ namespace storm {
if ( this - > isContinuousTime ( ) ) {
if ( this - > isContinuousTime ( ) ) {
// We assume a CTMC (with deterministic timed states and no instant states)
// We assume a CTMC (with deterministic timed states and no instant states)
storm : : modelchecker : : helper : : internal : : LraViHelper < ValueType , storm : : storage : : StronglyConnectedComponent , storm : : modelchecker : : helper : : internal : : LraViTransitionsType : : DetTsNoIs > viHelper ( bscc , this - > _transitionMatrix , aperiodicFactor , this - > _markovianStates , this - > _exitRates ) ;
storm : : modelchecker : : helper : : internal : : LraViHelper < ValueType , storm : : storage : : StronglyConnectedComponent , storm : : modelchecker : : helper : : internal : : LraViTransitionsType : : DetTsNoIs > viHelper ( bscc , this - > _transitionMatrix , aperiodicFactor , this - > _markovianStates , this - > _exitRates ) ;
return viHelper . performValueIteration ( env , stateRewardsGetter , actionRewards Getter , this - > _exitRates ) ;
return viHelper . performValueIteration ( env , stateValueGetter , actionValue Getter , this - > _exitRates ) ;
} else {
} else {
// We assume a DTMC (with deterministic timed states and no instant states)
// We assume a DTMC (with deterministic timed states and no instant states)
storm : : modelchecker : : helper : : internal : : LraViHelper < ValueType , storm : : storage : : StronglyConnectedComponent , storm : : modelchecker : : helper : : internal : : LraViTransitionsType : : DetTsNoIs > viHelper ( bscc , this - > _transitionMatrix , aperiodicFactor ) ;
storm : : modelchecker : : helper : : internal : : LraViHelper < ValueType , storm : : storage : : StronglyConnectedComponent , storm : : modelchecker : : helper : : internal : : LraViTransitionsType : : DetTsNoIs > viHelper ( bscc , this - > _transitionMatrix , aperiodicFactor ) ;
return viHelper . performValueIteration ( env , stateRewardsGetter , actionRewardsGetter ) ;
return viHelper . performValueIteration ( env , stateValueGetter , actionValueGetter ) ;
}
}
template < typename ValueType >
std : : pair < ValueType , std : : vector < ValueType > > SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForBsccGainBias ( Environment const & env , ValueGetter const & stateValuesGetter , ValueGetter const & actionValuesGetter , storm : : storage : : StronglyConnectedComponent const & bscc ) {
// We build the equation system as in Line 3 of Algorithm 3 from
// Kretinsky, Meggendorfer: Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes (ATVA 2017)
// https://doi.org/10.1007/978-3-319-68167-2_25
// The first variable corresponds to the gain of the bscc whereas the subsequent variables yield the bias for each state s_1, s_2, ....
// No bias variable for s_0 is needed since it is always set to zero, yielding an nxn equation system matrix
// To make this work for CTMC, we could uniformize the model. This preserves LRA and ensures that we can compute the
// LRA as for a DTMC (the soujourn time in each state is the same). If we then multiply the equations with the uniformization rate,
// the uniformization rate cancels out. Hence, we obtain the equation system below.
// Get a mapping from global state indices to local ones.
std : : unordered_map < uint64_t , uint64_t > toLocalIndexMap ;
uint64_t localIndex = 0 ;
for ( auto const & globalIndex : bscc ) {
toLocalIndexMap [ globalIndex ] = localIndex ;
+ + localIndex ;
}
// Prepare an environment for the underlying equation solver
auto subEnv = env ;
if ( subEnv . solver ( ) . getLinearEquationSolverType ( ) = = storm : : solver : : EquationSolverType : : Topological ) {
// Topological solver does not make any sense since the BSCC is connected.
subEnv . solver ( ) . setLinearEquationSolverType ( subEnv . solver ( ) . topological ( ) . getUnderlyingEquationSolverType ( ) , subEnv . solver ( ) . topological ( ) . isUnderlyingEquationSolverTypeSetFromDefault ( ) ) ;
}
subEnv . solver ( ) . setLinearEquationSolverPrecision ( env . solver ( ) . lra ( ) . getPrecision ( ) , env . solver ( ) . lra ( ) . getRelativeTerminationCriterion ( ) ) ;
// Build the equation system matrix and vector.
storm : : solver : : GeneralLinearEquationSolverFactory < ValueType > linearEquationSolverFactory ;
bool isEquationSystemFormat = linearEquationSolverFactory . getEquationProblemFormat ( subEnv ) = = storm : : solver : : LinearEquationSolverProblemFormat : : EquationSystem ;
storm : : storage : : SparseMatrixBuilder < ValueType > builder ( bscc . size ( ) , bscc . size ( ) ) ;
std : : vector < ValueType > eqSysVector ;
eqSysVector . reserve ( bscc . size ( ) ) ;
// The first row asserts that the weighted bias variables and the reward at s_0 sum up to the gain
uint64_t row = 0 ;
ValueType entryValue ;
for ( auto const & globalState : bscc ) {
ValueType rateAtState = this - > _exitRates ? ( * this - > _exitRates ) [ globalState ] : storm : : utility : : one < ValueType > ( ) ;
// Coefficient for the gain variable
if ( isEquationSystemFormat ) {
// '1-0' in row 0 and -(-1) in other rows
builder . addNextValue ( row , 0 , storm : : utility : : one < ValueType > ( ) ) ;
} else if ( row > 0 ) {
// No coeficient in row 0, othwerise substract the gain
builder . addNextValue ( row , 0 , - storm : : utility : : one < ValueType > ( ) ) ;
}
// Compute weighted sum over successor state. As this is a BSCC, each successor state will again be in the BSCC.
auto diagonalValue = storm : : utility : : zero < ValueType > ( ) ;
if ( row > 0 ) {
if ( isEquationSystemFormat ) {
diagonalValue = rateAtState ;
} else {
diagonalValue = storm : : utility : : one < ValueType > ( ) - rateAtState ;
}
}
bool needDiagonalEntry = ! storm : : utility : : isZero ( diagonalValue ) ;
for ( auto const & entry : this - > _transitionMatrix . getRow ( globalState ) ) {
uint64_t col = toLocalIndexMap [ entry . getColumn ( ) ] ;
if ( col = = 0 ) {
//Skip transition to state_0. This corresponds to setting the bias of state_0 to zero
continue ;
}
entryValue = entry . getValue ( ) * rateAtState ;
if ( isEquationSystemFormat ) {
entryValue = - entryValue ;
}
if ( needDiagonalEntry & & col > = row ) {
if ( col = = row ) {
entryValue + = diagonalValue ;
} else { // col > row
builder . addNextValue ( row , row , diagonalValue ) ;
}
needDiagonalEntry = false ;
}
builder . addNextValue ( row , col , entryValue ) ;
}
if ( needDiagonalEntry ) {
builder . addNextValue ( row , row , diagonalValue ) ;
}
eqSysVector . push_back ( stateValuesGetter ( globalState ) + rateAtState * actionValuesGetter ( globalState ) ) ;
+ + row ;
}
// Create a linear equation solver
auto solver = linearEquationSolverFactory . create ( subEnv , builder . build ( ) ) ;
// Check solver requirements.
auto requirements = solver - > getRequirements ( subEnv ) ;
STORM_LOG_THROW ( ! requirements . hasEnabledCriticalRequirement ( ) , storm : : exceptions : : UnmetRequirementException , " Solver requirements " + requirements . getEnabledRequirementsAsString ( ) + " not checked. " ) ;
// Todo: Find bounds on the bias variables. Just inserting the maximal value from the vector probably does not work.
std : : vector < ValueType > eqSysSol ( bscc . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
// Take the mean of the rewards as an initial guess for the gain
//eqSysSol.front() = std::accumulate(eqSysVector.begin(), eqSysVector.end(), storm::utility::zero<ValueType>()) / storm::utility::convertNumber<ValueType, uint64_t>(bscc.size());
solver - > solveEquations ( subEnv , eqSysSol , eqSysVector ) ;
ValueType gain = eqSysSol . front ( ) ;
// insert bias value for state 0
eqSysSol . front ( ) = storm : : utility : : zero < ValueType > ( ) ;
// Return the gain and the bias values
return std : : pair < ValueType , std : : vector < ValueType > > ( std : : move ( gain ) , std : : move ( eqSysSol ) ) ;
}
template < typename ValueType >
std : : pair < ValueType , std : : vector < ValueType > > SparseDeterministicInfiniteHorizonHelper < ValueType > : : computeLraForBsccLraDistr ( Environment const & env , ValueGetter const & stateValuesGetter , ValueGetter const & actionValuesGetter , storm : : storage : : StronglyConnectedComponent const & bscc ) {
// Let A be ab auxiliary Matrix with A[s,s] = R(s,s) - r(s) & A[s,s'] = R(s,s') for s,s' in BSCC and s!=s'.
// We build and solve the equation system for
// x*A=0 & x_0+...+x_n=1 <=> A^t*x=0=x-x & x_0+...+x_n=1 <=> (1+A^t)*x = x & 1-x_0-...-x_n-1=x_n
// Then, x[i] will be the fraction of the time we are in state i.
// This method assumes that this BSCC consist of more than one state
if ( bscc . size ( ) = = 1 ) {
ValueType lraValue = stateValuesGetter ( * bscc . begin ( ) ) + ( this - > isContinuousTime ( ) ? ( * this - > _exitRates ) [ * bscc . begin ( ) ] * actionValuesGetter ( * bscc . begin ( ) ) : actionValuesGetter ( * bscc . begin ( ) ) ) ;
return { lraValue , { storm : : utility : : one < ValueType > ( ) } } ;
}
// Prepare an environment for the underlying linear equation solver
auto subEnv = env ;
if ( subEnv . solver ( ) . getLinearEquationSolverType ( ) = = storm : : solver : : EquationSolverType : : Topological ) {
// Topological solver does not make any sense since the BSCC is connected.
subEnv . solver ( ) . setLinearEquationSolverType ( subEnv . solver ( ) . topological ( ) . getUnderlyingEquationSolverType ( ) , subEnv . solver ( ) . topological ( ) . isUnderlyingEquationSolverTypeSetFromDefault ( ) ) ;
}
subEnv . solver ( ) . setLinearEquationSolverPrecision ( env . solver ( ) . lra ( ) . getPrecision ( ) , env . solver ( ) . lra ( ) . getRelativeTerminationCriterion ( ) ) ;
// Get a mapping from global state indices to local ones as well as a bitvector containing states within the BSCC.
std : : unordered_map < uint64_t , uint64_t > toLocalIndexMap ;
storm : : storage : : BitVector bsccStates ( this - > _transitionMatrix . getRowCount ( ) , false ) ;
uint64_t localIndex = 0 ;
for ( auto const & globalIndex : bscc ) {
bsccStates . set ( globalIndex , true ) ;
toLocalIndexMap [ globalIndex ] = localIndex ;
+ + localIndex ;
}
}
// Build the auxiliary Matrix A.
auto auxMatrix = this - > _transitionMatrix . getSubmatrix ( false , bsccStates , bsccStates , true ) ; // add diagonal entries!
uint64_t row = 0 ;
for ( auto const & globalIndex : bscc ) {
ValueType rateAtState = this - > _exitRates ? ( * this - > _exitRates ) [ globalIndex ] : storm : : utility : : one < ValueType > ( ) ;
for ( auto & entry : auxMatrix . getRow ( row ) ) {
if ( entry . getColumn ( ) = = row ) {
// This value is non-zero since we have a BSCC with more than one state
entry . setValue ( rateAtState * ( entry . getValue ( ) - storm : : utility : : one < ValueType > ( ) ) ) ;
} else if ( this - > isContinuousTime ( ) ) {
entry . setValue ( entry . getValue ( ) * rateAtState ) ;
}
}
+ + row ;
}
assert ( row = = auxMatrix . getRowCount ( ) ) ;
// We need to consider A^t. This will not delete diagonal entries since they are non-zero.
auxMatrix = auxMatrix . transpose ( ) ;
// Check whether we need the fixpoint characterization
storm : : solver : : GeneralLinearEquationSolverFactory < ValueType > linearEquationSolverFactory ;
bool isFixpointFormat = linearEquationSolverFactory . getEquationProblemFormat ( subEnv ) = = storm : : solver : : LinearEquationSolverProblemFormat : : FixedPointSystem ;
if ( isFixpointFormat ) {
// Add a 1 on the diagonal
for ( row = 0 ; row < auxMatrix . getRowCount ( ) ; + + row ) {
for ( auto & entry : auxMatrix . getRow ( row ) ) {
if ( entry . getColumn ( ) = = row ) {
entry . setValue ( storm : : utility : : one < ValueType > ( ) + entry . getValue ( ) ) ;
}
}
}
}
// We now build the equation system matrix.
// We can drop the last row of A and add ones in this row instead to assert that the variables sum up to one
// Phase 1: replace the existing entries of the last row with ones
uint64_t col = 0 ;
uint64_t lastRow = auxMatrix . getRowCount ( ) - 1 ;
for ( auto & entry : auxMatrix . getRow ( lastRow ) ) {
entry . setColumn ( col ) ;
if ( isFixpointFormat ) {
if ( col = = lastRow ) {
entry . setValue ( storm : : utility : : zero < ValueType > ( ) ) ;
} else {
entry . setValue ( - storm : : utility : : one < ValueType > ( ) ) ;
}
} else {
entry . setValue ( storm : : utility : : one < ValueType > ( ) ) ;
}
+ + col ;
}
storm : : storage : : SparseMatrixBuilder < ValueType > builder ( std : : move ( auxMatrix ) ) ;
for ( ; col < = lastRow ; + + col ) {
if ( isFixpointFormat ) {
if ( col ! = lastRow ) {
builder . addNextValue ( lastRow , col , - storm : : utility : : one < ValueType > ( ) ) ;
}
} else {
builder . addNextValue ( lastRow , col , storm : : utility : : one < ValueType > ( ) ) ;
}
}
std : : vector < ValueType > bsccEquationSystemRightSide ( bscc . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
bsccEquationSystemRightSide . back ( ) = storm : : utility : : one < ValueType > ( ) ;
// Create a linear equation solver
auto solver = linearEquationSolverFactory . create ( subEnv , builder . build ( ) ) ;
solver - > setBounds ( storm : : utility : : zero < ValueType > ( ) , storm : : utility : : one < ValueType > ( ) ) ;
// Check solver requirements.
auto requirements = solver - > getRequirements ( subEnv ) ;
requirements . clearLowerBounds ( ) ;
requirements . clearUpperBounds ( ) ;
STORM_LOG_THROW ( ! requirements . hasEnabledCriticalRequirement ( ) , storm : : exceptions : : UnmetRequirementException , " Solver requirements " + requirements . getEnabledRequirementsAsString ( ) + " not checked. " ) ;
std : : vector < ValueType > lraDistr ( bscc . size ( ) , storm : : utility : : one < ValueType > ( ) / storm : : utility : : convertNumber < ValueType , uint64_t > ( bscc . size ( ) ) ) ;
solver - > solveEquations ( subEnv , lraDistr , bsccEquationSystemRightSide ) ;
// Calculate final LRA Value
ValueType result = storm : : utility : : zero < ValueType > ( ) ;
auto solIt = lraDistr . begin ( ) ;
for ( auto const & globalState : bscc ) {
if ( this - > isContinuousTime ( ) ) {
result + = ( * solIt ) * ( stateValuesGetter ( globalState ) + ( * this - > _exitRates ) [ globalState ] * actionValuesGetter ( globalState ) ) ;
} else {
result + = ( * solIt ) * ( stateValuesGetter ( globalState ) + actionValuesGetter ( globalState ) ) ;
}
+ + solIt ;
}
assert ( solIt = = lraDistr . end ( ) ) ;
return std : : pair < ValueType , std : : vector < ValueType > > ( std : : move ( result ) , std : : move ( lraDistr ) ) ;
}
}
template < typename ValueType >
template < typename ValueType >
@ -203,6 +438,7 @@ namespace storm {
template class SparseDeterministicInfiniteHorizonHelper < double > ;
template class SparseDeterministicInfiniteHorizonHelper < double > ;
template class SparseDeterministicInfiniteHorizonHelper < storm : : RationalNumber > ;
template class SparseDeterministicInfiniteHorizonHelper < storm : : RationalNumber > ;
template class SparseDeterministicInfiniteHorizonHelper < storm : : RationalFunction > ;
}
}
}
}