@ -81,6 +81,15 @@ namespace storm {
beliefIsTarget . push_back (
beliefIsTarget . push_back (
targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
// These are the components to build the MDP from the grid
std : : map < uint64_t , uint64_t > beliefStateMap ;
std : : vector < std : : vector < std : : map < uint64_t , ValueType > > > mdpTransitions ;
std : : vector < uint64_t > targetStates ;
uint64_t mdpStateId = 0 ;
beliefStateMap [ initialBelief . id ] = mdpStateId ;
+ + mdpStateId ;
// for the initial belief, add the triangulated initial states
// for the initial belief, add the triangulated initial states
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > initTemp = computeSubSimplexAndLambdas (
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > initTemp = computeSubSimplexAndLambdas (
initialBelief . probabilities , gridResolution ) ;
initialBelief . probabilities , gridResolution ) ;
@ -90,6 +99,8 @@ namespace storm {
lambdaCache [ 0 ] = initLambdas ;
lambdaCache [ 0 ] = initLambdas ;
bool initInserted = false ;
bool initInserted = false ;
std : : vector < std : : map < uint64_t , ValueType > > initTransitionsInBelief ;
std : : map < uint64_t , ValueType > initTransitionInActionBelief ;
for ( size_t j = 0 ; j < initLambdas . size ( ) ; + + j ) {
for ( size_t j = 0 ; j < initLambdas . size ( ) ; + + j ) {
if ( ! cc . isEqual ( initLambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
if ( ! cc . isEqual ( initLambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
@ -107,12 +118,21 @@ namespace storm {
beliefGrid . push_back ( gridBelief ) ;
beliefGrid . push_back ( gridBelief ) ;
beliefIsTarget . push_back ( targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
beliefIsTarget . push_back ( targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
beliefsToBeExpanded . push_back ( nextId ) ;
beliefsToBeExpanded . push_back ( nextId ) ;
beliefStateMap [ nextId ] = mdpStateId ;
initTransitionInActionBelief [ mdpStateId ] = initLambdas [ j ] ;
+ + nextId ;
+ + nextId ;
+ + mdpStateId ;
}
}
}
}
}
}
}
}
// If the initial belief is not on the grid, we add the transitions from our initial MDP state to the triangulated beliefs
if ( ! initTransitionInActionBelief . empty ( ) ) {
initTransitionsInBelief . push_back ( initTransitionInActionBelief ) ;
mdpTransitions . push_back ( initTransitionsInBelief ) ;
}
//beliefsToBeExpanded.push_back(initialBelief.id); TODO I'm curious what happens if we do this instead of first triangulating. Should do nothing special if belief is on grid, otherwise it gets interesting
//beliefsToBeExpanded.push_back(initialBelief.id); TODO I'm curious what happens if we do this instead of first triangulating. Should do nothing special if belief is on grid, otherwise it gets interesting
@ -124,6 +144,14 @@ namespace storm {
if ( isTarget ) {
if ( isTarget ) {
result . emplace ( std : : make_pair ( currId , storm : : utility : : one < ValueType > ( ) ) ) ;
result . emplace ( std : : make_pair ( currId , storm : : utility : : one < ValueType > ( ) ) ) ;
result_backup . emplace ( std : : make_pair ( currId , storm : : utility : : one < ValueType > ( ) ) ) ;
result_backup . emplace ( std : : make_pair ( currId , storm : : utility : : one < ValueType > ( ) ) ) ;
// MDP stuff
std : : vector < std : : map < uint64_t , ValueType > > transitionsInBelief ;
targetStates . push_back ( beliefStateMap [ currId ] ) ;
std : : map < uint64_t , ValueType > transitionInActionBelief ;
transitionInActionBelief [ beliefStateMap [ currId ] ] = storm : : utility : : one < ValueType > ( ) ;
transitionsInBelief . push_back ( transitionInActionBelief ) ;
mdpTransitions . push_back ( transitionsInBelief ) ;
} else {
} else {
result . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
result . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
result_backup . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
result_backup . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
@ -131,12 +159,14 @@ namespace storm {
uint64_t numChoices = pomdp . getNumberOfChoices ( pomdp . getStatesWithObservation ( beliefList [ currId ] . observation ) . front ( ) ) ;
uint64_t numChoices = pomdp . getNumberOfChoices ( pomdp . getStatesWithObservation ( beliefList [ currId ] . observation ) . front ( ) ) ;
std : : vector < std : : map < uint32_t , ValueType > > observationProbabilitiesInAction ( numChoices ) ;
std : : vector < std : : map < uint32_t , ValueType > > observationProbabilitiesInAction ( numChoices ) ;
std : : vector < std : : map < uint32_t , uint64_t > > nextBelievesInAction ( numChoices ) ;
std : : vector < std : : map < uint32_t , uint64_t > > nextBelievesInAction ( numChoices ) ;
std : : vector < std : : map < uint64_t , ValueType > > transitionsInBelief ;
for ( uint64_t action = 0 ; action < numChoices ; + + action ) {
for ( uint64_t action = 0 ; action < numChoices ; + + action ) {
std : : map < uint32_t , ValueType > actionObservationProbabilities = computeObservationProbabilitiesAfterAction ( pomdp , beliefList [ currId ] , action ) ;
std : : map < uint32_t , ValueType > actionObservationProbabilities = computeObservationProbabilitiesAfterAction ( pomdp , beliefList [ currId ] , action ) ;
std : : map < uint32_t , uint64_t > actionObservationBelieves ;
std : : map < uint32_t , uint64_t > actionObservationBelieves ;
for ( auto iter = actionObservationProbabilities . begin ( ) ;
iter ! = actionObservationProbabilities . end ( ) ; + + iter ) {
std : : map < uint64_t , ValueType > transitionInActionBelief ;
for ( auto iter = actionObservationProbabilities . begin ( ) ; iter ! = actionObservationProbabilities . end ( ) ; + + iter ) {
uint32_t observation = iter - > first ;
uint32_t observation = iter - > first ;
// THIS CALL IS SLOW
// THIS CALL IS SLOW
// TODO speed this up
// TODO speed this up
@ -159,7 +189,6 @@ namespace storm {
subSimplexCache [ idNextBelief ] = subSimplex ;
subSimplexCache [ idNextBelief ] = subSimplex ;
lambdaCache [ idNextBelief ] = lambdas ;
lambdaCache [ idNextBelief ] = lambdas ;
}
}
for ( size_t j = 0 ; j < lambdas . size ( ) ; + + j ) {
for ( size_t j = 0 ; j < lambdas . size ( ) ; + + j ) {
if ( ! cc . isEqual ( lambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
if ( ! cc . isEqual ( lambdas [ j ] , storm : : utility : : zero < ValueType > ( ) ) ) {
if ( getBeliefIdInVector ( beliefGrid , observation , subSimplex [ j ] ) = = uint64_t ( - 1 ) ) {
if ( getBeliefIdInVector ( beliefGrid , observation , subSimplex [ j ] ) = = uint64_t ( - 1 ) ) {
@ -169,17 +198,31 @@ namespace storm {
beliefGrid . push_back ( gridBelief ) ;
beliefGrid . push_back ( gridBelief ) ;
beliefIsTarget . push_back ( targetObservations . find ( observation ) ! = targetObservations . end ( ) ) ;
beliefIsTarget . push_back ( targetObservations . find ( observation ) ! = targetObservations . end ( ) ) ;
beliefsToBeExpanded . push_back ( nextId ) ;
beliefsToBeExpanded . push_back ( nextId ) ;
beliefStateMap [ nextId ] = mdpStateId ;
transitionInActionBelief [ mdpStateId ] = iter - > second * lambdas [ j ] ;
+ + nextId ;
+ + nextId ;
+ + mdpStateId ;
} else {
transitionInActionBelief [ beliefStateMap [ getBeliefIdInVector ( beliefGrid , observation , subSimplex [ j ] ) ] ] = iter - > second * lambdas [ j ] ;
}
}
}
}
}
}
}
}
observationProbabilitiesInAction [ action ] = actionObservationProbabilities ;
observationProbabilitiesInAction [ action ] = actionObservationProbabilities ;
nextBelievesInAction [ action ] = actionObservationBelieves ;
nextBelievesInAction [ action ] = actionObservationBelieves ;
if ( ! transitionInActionBelief . empty ( ) ) {
transitionsInBelief . push_back ( transitionInActionBelief ) ;
}
}
observationProbabilities . emplace (
std : : make_pair ( currId , observationProbabilitiesInAction ) ) ;
}
observationProbabilities . emplace ( std : : make_pair ( currId , observationProbabilitiesInAction ) ) ;
nextBelieves . emplace ( std : : make_pair ( currId , nextBelievesInAction ) ) ;
nextBelieves . emplace ( std : : make_pair ( currId , nextBelievesInAction ) ) ;
if ( transitionsInBelief . empty ( ) ) {
std : : map < uint64_t , ValueType > transitionInActionBelief ;
transitionInActionBelief [ beliefStateMap [ currId ] ] = storm : : utility : : one < ValueType > ( ) ;
transitionsInBelief . push_back ( transitionInActionBelief ) ;
}
mdpTransitions . push_back ( transitionsInBelief ) ;
}
}
}
}
expansionTimer . stop ( ) ;
expansionTimer . stop ( ) ;
@ -187,6 +230,18 @@ namespace storm {
STORM_PRINT ( " #Believes in List: " < < beliefList . size ( ) < < std : : endl )
STORM_PRINT ( " #Believes in List: " < < beliefList . size ( ) < < std : : endl )
STORM_PRINT ( " Belief space expansion took " < < expansionTimer < < std : : endl )
STORM_PRINT ( " Belief space expansion took " < < expansionTimer < < std : : endl )
storm : : models : : sparse : : StateLabeling mdpLabeling ( mdpTransitions . size ( ) ) ;
mdpLabeling . addLabel ( " init " ) ;
mdpLabeling . addLabel ( " target " ) ;
mdpLabeling . addLabelToState ( " init " , 0 ) ;
for ( auto targetState : targetStates ) {
mdpLabeling . addLabelToState ( " target " , targetState ) ;
}
storm : : storage : : sparse : : ModelComponents < ValueType , RewardModelType > modelComponents ( buildTransitionMatrix ( mdpTransitions ) , mdpLabeling ) ;
storm : : models : : sparse : : Mdp < ValueType , RewardModelType > overApproxMdp ( modelComponents ) ;
overApproxMdp . printModelInformationToStream ( std : : cout ) ;
storm : : utility : : Stopwatch overApproxTimer ( true ) ;
storm : : utility : : Stopwatch overApproxTimer ( true ) ;
// Value Iteration
// Value Iteration
while ( ! finished & & iteration < maxIterations ) {
while ( ! finished & & iteration < maxIterations ) {
@ -276,21 +331,34 @@ namespace storm {
}
}
overApproxTimer . stop ( ) ;
overApproxTimer . stop ( ) ;
storm : : utility : : Stopwatch underApproxTimer ( true ) ;
ValueType underApprox = storm : : utility : : zero < ValueType > ( ) ;
/*storm::utility::Stopwatch underApproxTimer(true);
ValueType underApprox = computeUnderapproximationWithMDP ( pomdp , beliefList , beliefIsTarget , targetObservations , observationProbabilities , nextBelieves ,
ValueType underApprox = computeUnderapproximationWithMDP ( pomdp , beliefList , beliefIsTarget , targetObservations , observationProbabilities , nextBelieves ,
result , chosenActions , gridResolution , initialBelief . id , min , false ) ;
result , chosenActions , gridResolution , initialBelief . id , min , false ) ;
underApproxTimer . stop ( ) ;
underApproxTimer . stop ( ) ; */
STORM_PRINT ( " Time Overapproximation: " < < overApproxTimer
< < std : : endl
< < " Time Underapproximation: " < < underApproxTimer
< < std : : endl ) ;
// STORM_PRINT("Time Overapproximation: " << overApproxTimer << std::endl << "Time Underapproximation: " << underApproxTimer << std::endl);
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Under-Approximation Result: " < < underApprox < < std : : endl ) ;
//STORM_PRINT("Under-Approximation Result: " << underApprox << std::endl);
return std : : make_unique < POMDPCheckResult < ValueType > > (
POMDPCheckResult < ValueType > { overApprox , underApprox } ) ;
auto model = std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( overApproxMdp ) ;
auto modelPtr = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > ( model ) ;
std : : vector < std : : string > parameterNames ;
storm : : api : : exportSparseModelAsDrn ( modelPtr , " test " , parameterNames ) ;
std : : string propertyString = min ? " Pmin=? [F \" target \" ] " : " Pmax=? [F \" target \" ] " ;
std : : vector < storm : : jani : : Property > propertyVector = storm : : api : : parseProperties ( propertyString ) ;
std : : shared_ptr < storm : : logic : : Formula const > property = storm : : api : : extractFormulasFromProperties ( propertyVector ) . front ( ) ;
std : : unique_ptr < storm : : modelchecker : : CheckResult > res ( storm : : api : : verifyWithSparseEngine < ValueType > ( model , storm : : api : : createTask < ValueType > ( property , true ) ) ) ;
STORM_LOG_ASSERT ( res , " Result not exist. " ) ;
res - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( model - > getInitialStates ( ) ) ) ;
STORM_PRINT ( " OverApprox MDP: " < < ( res - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) . begin ( ) - > second ) < < std : : endl ) ;
return std : : make_unique < POMDPCheckResult < ValueType > > ( POMDPCheckResult < ValueType > { overApprox , underApprox } ) ;
}
}