@ -1,4 +1,5 @@
#include "basicValueIteration.h"
#define CUSP_USE_TEXTURE_MEMORY
#include <iostream>
#include <chrono>
@ -6,54 +7,111 @@
#include <cuda_runtime.h>
#include "cusparse_v2.h"
#include "utility.h"
#include "cuspExtension.h"
#include <thrust/transform.h>
#include <thrust/device_ptr.h>
#include <thrust/functional.h>
#define CUDA_CHECK_ALL_ERRORS() do { \
cudaError_t errSync = cudaGetLastError(); \
cudaError_t errAsync = cudaDeviceSynchronize(); \
if (errSync != cudaSuccess) { \
std::cout << "(DLL) Sync kernel error: " << cudaGetErrorString(errSync) << " (Code: " << errSync << ")" << std::endl; \
} \
if (errAsync != cudaSuccess) { \
std::cout << "(DLL) Async kernel error: " << cudaGetErrorString(errAsync) << " (Code: " << errAsync << ")" << std::endl; \
} } while(false)
__global__ void cuda_kernel_basicValueIteration_mvReduce(int const * const A, int * const B) {
*B = *A;
}
template <typename IndexType, typename ValueType>
void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::vector<IndexType> const& matrixRowIndices, std::vector<std::pair<IndexType, ValueType>> columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices) {
template<typename T, bool Relative>
struct equalModuloPrecision : public thrust::binary_function<T,T,T>
{
__host__ __device__ T operator()(const T &x, const T &y) const
{
if (Relative) {
const T result = (x - y) / y;
return (result > 0) ? result : -result;
} else {
const T result = (x - y);
return (result > 0) ? result : -result;
}
}
};
template <bool Minimize, bool Relative, typename IndexType, typename ValueType>
void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, ValueType const precision, std::vector<IndexType> const& matrixRowIndices, std::vector<std::pair<IndexType, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices) {
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory()))*100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size() + sizeof(ValueType) * b.size() + sizeof(IndexType) * nondeterministicChoiceIndices.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixColCount = nondeterministicChoiceIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
cudaMallocResult = cudaMalloc<IndexType>(&device_matrixRowIndices, matrixRowIndices.size());
bool converged = false;
uint_fast64_t iterationCount = 0;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<IndexType>(&device_matrixColIndicesAndValues, columnIndicesAndValues.size() * 2);
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<ValueType>(&device_x, x.size());
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<ValueType>(&device_b, b.size());
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_xSwap), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x swap, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<ValueType>(&device_multiplyResult, b.size());
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<IndexType>(&device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.size());
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_nondeterministicChoiceIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
@ -62,38 +120,99 @@ void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::ve
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * matrixRowIndices.size(), cudaMemcpyHostToDevice);
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * columnIndicesAndValues.size()) + (sizeof(ValueType) * columnIndicesAndValues.size()), cudaMemcpyHostToDevice);
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * x.size(), cudaMemcpyHostToDevice);
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * b.size(), cudaMemcpyHostToDevice);
// Preset the xSwap to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_xSwap, 0, sizeof(ValueType) * matrixColCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the Swap Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * matrixRowCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * nondeterministicChoiceIndices.size(), cudaMemcpyHostToDevice);
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// Data is on device, start Kernel
while (!converged && iterationCount < maxIterationCount)
{ // In a sub-area since transfer of control via label evades initialization
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<IndexType, ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::device_ptr<ValueType> devicePtrThrust_multiplyResult(device_multiplyResult);
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::transform(devicePtrThrust_multiplyResult, devicePtrThrust_multiplyResult + matrixRowCount, devicePtrThrust_b, devicePtrThrust_multiplyResult, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, IndexType, ValueType>(matrixColCount, matrixRowCount, device_nondeterministicChoiceIndices, device_xSwap, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
// Check for convergence
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_x_end(device_x + matrixColCount);
thrust::device_ptr<ValueType> devicePtrThrust_xSwap(device_xSwap);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x_end, devicePtrThrust_xSwap, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
ValueType maxX = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x_end, 0, thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
converged = maxX < precision;
++iterationCount;
// Swap pointers, device_x always contains the most current result
std::swap(device_x, device_xSwap);
}
std::cout << "(DLL) Executed " << iterationCount << " of max. " << maxIterationCount << " Iterations." << std::endl;
// Get x back from the device
cudaCopyResult = cudaMemcpy(x.data(), device_x, sizeof(ValueType) * matrixColCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
@ -118,6 +237,13 @@ cleanup:
}
device_x = nullptr;
}
if (device_xSwap != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_xSwap);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x swap, Error Code " << cudaFreeResult << "." << std::endl;
}
device_xSwap = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
@ -150,6 +276,18 @@ void cudaForStormTestFunction(int a, int b) {
std::cout << "Cuda for Storm: a + b = " << (a+b) << std::endl;
}
void basicValueIteration_mvReduce_uint64_double(uint_fast64_t const maxIterationCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<std::pair<uint_fast64_t, double>> columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) {
basicValueIteration_mvReduce<uint_fast64_t, double>(maxIterationCount, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices);
void basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<std::pair<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) {
if (relativePrecisionCheck) {
basicValueIteration_mvReduce<true, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices);
} else {
basicValueIteration_mvReduce<true, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices);
}
}
void basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<std::pair<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) {
if (relativePrecisionCheck) {
basicValueIteration_mvReduce<false, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices);
} else {
basicValueIteration_mvReduce<false, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices);
}
}