Browse Source

Implemented policy iteration for game solver

tempestpy_adaptions
TimQu 8 years ago
parent
commit
bb3c2bd556
  1. 415
      src/storm/solver/StandardGameSolver.cpp
  2. 10
      src/storm/solver/StandardGameSolver.h
  3. 30
      src/storm/solver/StandardMinMaxLinearEquationSolver.cpp

415
src/storm/solver/StandardGameSolver.cpp

@ -91,85 +91,53 @@ namespace storm {
return solveGameValueIteration(player1Dir, player2Dir, x, b);
case StandardGameSolverSettings<ValueType>::SolutionMethod::PolicyIteration:
return solveGamePolicyIteration(player1Dir, player2Dir, x, b);
default:
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "This solver does not implement the selected solution method");
}
return true;
return false;
}
template<typename ValueType>
bool StandardGameSolver<ValueType>::solveGamePolicyIteration(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
/* // Create the initial scheduler.
std::vector<storm::storage::sparse::state_type> scheduler = this->schedulerHint ? this->schedulerHint->getChoices() : std::vector<storm::storage::sparse::state_type>(this->A.getRowGroupCount());
// Create the initial choice selections.
std::vector<storm::storage::sparse::state_type> player1Choices = this->hasSchedulerHints() ? this->player1SchedulerHint->getChoices() : std::vector<storm::storage::sparse::state_type>(this->player1Matrix.getRowGroupCount(), 0);
std::vector<storm::storage::sparse::state_type> player2Choices = this->hasSchedulerHints() ? this->player2SchedulerHint->getChoices() : std::vector<storm::storage::sparse::state_type>(this->player2Matrix.getRowGroupCount(), 0);
// Get a vector for storing the right-hand side of the inner equation system.
if(!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A.getRowGroupCount());
if(!auxiliaryP2RowGroupVector) {
auxiliaryP2RowGroupVector = std::make_unique<std::vector<ValueType>>(this->player2Matrix.getRowGroupCount());
}
std::vector<ValueType>& subB = *auxiliaryRowGroupVector;
if(!auxiliaryP1RowGroupVector) {
auxiliaryP1RowGroupVector = std::make_unique<std::vector<ValueType>>(this->player1Matrix.getRowGroupCount());
}
std::vector<ValueType>& subB = *auxiliaryP1RowGroupVector;
// Resolve the nondeterminism according to the current scheduler.
storm::storage::SparseMatrix<ValueType> submatrix = this->A.selectRowsFromRowGroups(scheduler, true);
// Solve the equation system induced by the two schedulers.
storm::storage::SparseMatrix<ValueType> submatrix;
getInducedMatrixVector(x, b, player1Choices, player2Choices, submatrix, subB);
submatrix.convertToEquationSystem();
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A.getRowGroupIndices(), b);
// Create a solver that we will use throughout the procedure. We will modify the matrix in each iteration.
auto solver = linearEquationSolverFactory->create(std::move(submatrix));
if (this->lowerBound) {
solver->setLowerBound(this->lowerBound.get());
}
if (this->upperBound) {
solver->setUpperBound(this->upperBound.get());
}
solver->setCachingEnabled(true);
auto submatrixSolver = linearEquationSolverFactory->create(std::move(submatrix));
if (this->lowerBound) { submatrixSolver->setLowerBound(this->lowerBound.get()); }
if (this->upperBound) { submatrixSolver->setUpperBound(this->upperBound.get()); }
submatrixSolver->setCachingEnabled(true);
Status status = Status::InProgress;
uint64_t iterations = 0;
do {
// Solve the equation system for the 'DTMC'.
// FIXME: we need to remove the 0- and 1- states to make the solution unique.
// HOWEVER: if we start with a valid scheduler, then we will never get an illegal one, because staying
// within illegal MECs will never strictly improve the value. Is this true?
solver->solveEquations(x, subB);
submatrixSolver->solveEquations(x, subB);
// Go through the multiplication result and see whether we can improve any of the choices.
bool schedulerImproved = false;
for (uint_fast64_t group = 0; group < this->A.getRowGroupCount(); ++group) {
for (uint_fast64_t choice = this->A.getRowGroupIndices()[group]; choice < this->A.getRowGroupIndices()[group + 1]; ++choice) {
// If the choice is the currently selected one, we can skip it.
if (choice - this->A.getRowGroupIndices()[group] == scheduler[group]) {
continue;
}
// Create the value of the choice.
ValueType choiceValue = storm::utility::zero<ValueType>();
for (auto const& entry : this->A.getRow(choice)) {
choiceValue += entry.getValue() * x[entry.getColumn()];
}
choiceValue += b[choice];
// If the value is strictly better than the solution of the inner system, we need to improve the scheduler.
// TODO: If the underlying solver is not precise, this might run forever (i.e. when a state has two choices where the (exact) values are equal).
// only changing the scheduler if the values are not equal (modulo precision) would make this unsound.
if (valueImproved(dir, x[group], choiceValue)) {
schedulerImproved = true;
scheduler[group] = choice - this->A.getRowGroupIndices()[group];
}
}
}
bool schedulerImproved = extractChoices(player1Dir, player2Dir, x, b, *auxiliaryP2RowGroupVector, player1Choices, player2Choices);
// If the scheduler did not improve, we are done.
if (!schedulerImproved) {
status = Status::Converged;
} else {
// Update the scheduler and the solver.
submatrix = this->A.selectRowsFromRowGroups(scheduler, true);
// Update the solver.
getInducedMatrixVector(x, b, player1Choices, player2Choices, submatrix, subB);
submatrix.convertToEquationSystem();
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A.getRowGroupIndices(), b);
solver->setMatrix(std::move(submatrix));
submatrixSolver->setMatrix(std::move(submatrix));
}
// Update environment variables.
@ -180,27 +148,24 @@ namespace storm {
reportStatus(status, iterations);
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(scheduler));
if (this->isTrackSchedulersSet()) {
this->player1Scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(player1Choices));
this->player2Scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(player2Choices));
}
if(!this->isCachingEnabled()) {
clearCache();
}
if(status == Status::Converged || status == Status::TerminatedEarly) {
return true;
} else{
return false;
}*/
return status == Status::Converged || status == Status::TerminatedEarly;
}
template<typename ValueType>
bool StandardGameSolver<ValueType>::valueImproved(OptimizationDirection dir, ValueType const& value1, ValueType const& value2) const {
if (dir == OptimizationDirection::Minimize) {
return value1 > value2;
return value2 < value1;
} else {
return value1 < value2;
return value2 > value1;
}
}
@ -237,9 +202,16 @@ namespace storm {
std::vector<ValueType>& multiplyResult = *auxiliaryP2RowVector;
std::vector<ValueType>& reducedMultiplyResult = *auxiliaryP2RowGroupVector;
// if this->schedulerHint ...
if (this->hasSchedulerHints()) {
// Solve the equation system induced by the two schedulers.
storm::storage::SparseMatrix<ValueType> submatrix;
getInducedMatrixVector(x, b, this->player1SchedulerHint->getChoices(), this->player2SchedulerHint->getChoices(), submatrix, *auxiliaryP1RowGroupVector);
submatrix.convertToEquationSystem();
auto submatrixSolver = linearEquationSolverFactory->create(std::move(submatrix));
if (this->lowerBound) { submatrixSolver->setLowerBound(this->lowerBound.get()); }
if (this->upperBound) { submatrixSolver->setUpperBound(this->upperBound.get()); }
submatrixSolver->solveEquations(x, *auxiliaryP1RowGroupVector);
}
std::vector<ValueType>* newX = auxiliaryP1RowGroupVector.get();
std::vector<ValueType>* currentX = &x;
@ -274,204 +246,16 @@ namespace storm {
if (this->isTrackSchedulersSet()) {
std::vector<uint_fast64_t> player1Choices(player1Matrix.getRowGroupCount(), 0);
std::vector<uint_fast64_t> player2Choices(player2Matrix.getRowGroupCount(), 0);
multiplyAndReduce(player1Dir, player2Dir, x, &b, *linEqSolverPlayer2Matrix, multiplyResult, reducedMultiplyResult, *auxiliaryP1RowGroupVector, &player1Choices, &player2Choices);
extractChoices(player1Dir, player2Dir, x, b, *auxiliaryP2RowGroupVector, player1Choices, player2Choices);
this->player1Scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(player1Choices));
this->player2Scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(player2Choices));
}
if(!this->isCachingEnabled()) {
clearCache();
}
if(status == Status::Converged || status == Status::TerminatedEarly) {
return true;
} else{
return false;
}
/* // Set up the environment for value iteration.
bool converged = false;
uint_fast64_t numberOfPlayer1States = x.size();
std::vector<ValueType> tmpResult(numberOfPlayer1States);
std::vector<ValueType> nondetResult(player2Matrix.getRowCount());
std::vector<ValueType> player2Result(player2Matrix.getRowGroupCount());
// Now perform the actual value iteration.
uint_fast64_t iterations = 0;
do {
player2Matrix.multiplyWithVector(x, nondetResult);
storm::utility::vector::addVectors(b, nondetResult, nondetResult);
if (player2Goal == OptimizationDirection::Minimize) {
storm::utility::vector::reduceVectorMin(nondetResult, player2Result, player2Matrix.getRowGroupIndices());
} else {
storm::utility::vector::reduceVectorMax(nondetResult, player2Result, player2Matrix.getRowGroupIndices());
}
for (uint_fast64_t pl1State = 0; pl1State < numberOfPlayer1States; ++pl1State) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_rows relevantRows = player1Matrix.getRowGroup(pl1State);
if (relevantRows.getNumberOfEntries() > 0) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator it = relevantRows.begin();
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator ite = relevantRows.end();
// Set the first value.
tmpResult[pl1State] = player2Result[it->getColumn()];
++it;
// Now iterate through the different values and pick the extremal one.
if (player1Goal == OptimizationDirection::Minimize) {
for (; it != ite; ++it) {
tmpResult[pl1State] = std::min(tmpResult[pl1State], player2Result[it->getColumn()]);
}
} else {
for (; it != ite; ++it) {
tmpResult[pl1State] = std::max(tmpResult[pl1State], player2Result[it->getColumn()]);
}
}
} else {
tmpResult[pl1State] = storm::utility::zero<ValueType>();
}
}
// Check if the process converged and set up the new iteration in case we are not done.
converged = storm::utility::vector::equalModuloPrecision(x, tmpResult, this->precision, this->relative);
std::swap(x, tmpResult);
++iterations;
} while (!converged && iterations < this->maximalNumberOfIterations && !(this->hasCustomTerminationCondition() && this->getTerminationCondition().terminateNow(x)));
STORM_LOG_WARN_COND(converged, "Iterative solver for stochastic two player games did not converge after " << iterations << " iterations.");
if(this->trackScheduler){
std::vector<uint_fast64_t> player2Choices(player2Matrix.getRowGroupCount());
storm::utility::vector::reduceVectorMinOrMax(player2Goal, nondetResult, player2Result, player2Matrix.getRowGroupIndices(), &player2Choices);
this->player2Scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(player2Choices));
std::vector<uint_fast64_t> player1Choices(numberOfPlayer1States, 0);
for (uint_fast64_t pl1State = 0; pl1State < numberOfPlayer1States; ++pl1State) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_rows relevantRows = player1Matrix.getRowGroup(pl1State);
if (relevantRows.getNumberOfEntries() > 0) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator it = relevantRows.begin();
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator ite = relevantRows.end();
// Set the first value.
tmpResult[pl1State] = player2Result[it->getColumn()];
++it;
storm::storage::sparse::state_type localChoice = 1;
// Now iterate through the different values and pick the extremal one.
if (player1Goal == OptimizationDirection::Minimize) {
for (; it != ite; ++it, ++localChoice) {
if(player2Result[it->getColumn()] < tmpResult[pl1State]){
tmpResult[pl1State] = player2Result[it->getColumn()];
player1Choices[pl1State] = localChoice;
}
}
} else {
for (; it != ite; ++it, ++localChoice) {
if(player2Result[it->getColumn()] > tmpResult[pl1State]){
tmpResult[pl1State] = player2Result[it->getColumn()];
player1Choices[pl1State] = localChoice;
}
}
}
} else {
STORM_LOG_ERROR("There is no choice for Player 1 at state " << pl1State << " in the stochastic two player game. This is not expected!");
}
}
this->player1Scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(player1Choices));
}
* if(!linEqSolverA) {
linEqSolverA = linearEquationSolverFactory->create(A);
linEqSolverA->setCachingEnabled(true);
}
if (!auxiliaryRowVector.get()) {
auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(A.getRowCount());
}
std::vector<ValueType>& multiplyResult = *auxiliaryRowVector;
if (!auxiliaryRowGroupVector.get()) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(A.getRowGroupCount());
}
if(this->schedulerHint) {
// Resolve the nondeterminism according to the scheduler hint
storm::storage::SparseMatrix<ValueType> submatrix = this->A.selectRowsFromRowGroups(this->schedulerHint->getChoices(), true);
submatrix.convertToEquationSystem();
storm::utility::vector::selectVectorValues<ValueType>(*auxiliaryRowGroupVector, this->schedulerHint->getChoices(), this->A.getRowGroupIndices(), b);
// Solve the resulting equation system.
// Note that the linEqSolver might consider a slightly different interpretation of "equalModuloPrecision". Hence, we iteratively increase its precision.
auto submatrixSolver = linearEquationSolverFactory->create(std::move(submatrix));
submatrixSolver->setCachingEnabled(true);
if (this->lowerBound) { submatrixSolver->setLowerBound(this->lowerBound.get()); }
if (this->upperBound) { submatrixSolver->setUpperBound(this->upperBound.get()); }
submatrixSolver->solveEquations(x, *auxiliaryRowGroupVector);
}
std::vector<ValueType>* newX = auxiliaryRowGroupVector.get();
std::vector<ValueType>* currentX = &x;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
uint64_t iterations = 0;
Status status = Status::InProgress;
while (status == Status::InProgress) {
// Compute x' = A*x + b.
linEqSolverA->multiply(*currentX, &b, multiplyResult);
// Reduce the vector x' by applying min/max for all non-deterministic choices.
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, *newX, this->A.getRowGroupIndices());
// Determine whether the method converged.
if (storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, this->getSettings().getPrecision(), this->getSettings().getRelativeTerminationCriterion())) {
status = Status::Converged;
}
// Update environment variables.
std::swap(currentX, newX);
++iterations;
status = updateStatusIfNotConverged(status, *currentX, iterations);
}
reportStatus(status, iterations);
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
if (currentX == auxiliaryRowGroupVector.get()) {
std::swap(x, *currentX);
}
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
// Due to a custom termination condition, it may be the case that no iterations are performed. In this
// case we need to compute x'= A*x+b once.
if (iterations==0) {
linEqSolverA->multiply(x, &b, multiplyResult);
}
std::vector<storm::storage::sparse::state_type> choices(this->A.getRowGroupCount());
// Reduce the multiplyResult and keep track of the choices made
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, x, this->A.getRowGroupIndices(), &choices);
this->scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(choices));
}
if(!this->isCachingEnabled()) {
clearCache();
}
if(status == Status::Converged || status == Status::TerminatedEarly) {
return true;
} else{
return false;
}
*/
return (status == Status::Converged || status == Status::TerminatedEarly);
}
template<typename ValueType>
@ -502,17 +286,13 @@ namespace storm {
}
template<typename ValueType>
void StandardGameSolver<ValueType>::multiplyAndReduce(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType>& x, std::vector<ValueType> const* b, storm::solver::LinearEquationSolver<ValueType>& linEqSolver, std::vector<ValueType>& multiplyResult, std::vector<ValueType>& p2ReducedMultiplyResult, std::vector<ValueType>& p1ReducedMultiplyResult, std::vector<uint_fast64_t>* player1Choices, std::vector<uint_fast64_t>* player2Choices) const {
void StandardGameSolver<ValueType>::multiplyAndReduce(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType>& x, std::vector<ValueType> const* b, storm::solver::LinearEquationSolver<ValueType> const& linEqSolver, std::vector<ValueType>& multiplyResult, std::vector<ValueType>& p2ReducedMultiplyResult, std::vector<ValueType>& p1ReducedMultiplyResult) const {
linEqSolver.multiply(x, b, multiplyResult);
storm::utility::vector::reduceVectorMinOrMax(player2Dir, multiplyResult, p2ReducedMultiplyResult, player2Matrix.getRowGroupIndices(), player2Choices);
storm::utility::vector::reduceVectorMinOrMax(player2Dir, multiplyResult, p2ReducedMultiplyResult, player2Matrix.getRowGroupIndices());
uint_fast64_t pl1State = 0;
std::vector<uint_fast64_t>::iterator choiceIt;
if (player1Choices) {
choiceIt = player1Choices->begin();
}
for (auto& result : p1ReducedMultiplyResult) {
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_rows relevantRows = player1Matrix.getRowGroup(pl1State);
STORM_LOG_ASSERT(relevantRows.getNumberOfEntries() != 0, "There is a choice of player 1 that does not lead to any player 2 choice");
@ -521,41 +301,104 @@ namespace storm {
// Set the first value.
result = p2ReducedMultiplyResult[it->getColumn()];
if (player1Choices) {
*choiceIt = 0;
}
uint_fast64_t localChoice = 1;
++it;
// Now iterate through the different values and pick the extremal one.
if (player1Dir == OptimizationDirection::Minimize) {
for (; it != ite; ++it, ++localChoice) {
ValueType& val = p2ReducedMultiplyResult[it->getColumn()];
if (val < result) {
result = val;
if (player1Choices) {
*choiceIt = localChoice;
}
}
for (; it != ite; ++it) {
result = std::min(result, p2ReducedMultiplyResult[it->getColumn()]);
}
} else {
for (; it != ite; ++it, ++localChoice) {
ValueType& val = p2ReducedMultiplyResult[it->getColumn()];
if (val > result) {
result = val;
if (player1Choices) {
*choiceIt = localChoice;
}
}
for (; it != ite; ++it) {
result = std::max(result, p2ReducedMultiplyResult[it->getColumn()]);
}
}
++pl1State;
if (player1Choices) {
++choiceIt;
}
}
template<typename ValueType>
bool StandardGameSolver<ValueType>::extractChoices(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType> const& x, std::vector<ValueType> const& b, std::vector<ValueType>& player2ChoiceValues, std::vector<uint_fast64_t>& player1Choices, std::vector<uint_fast64_t>& player2Choices) const {
// get the choices of player 2 and the corresponding values.
bool schedulerImproved = false;
auto currentValueIt = player2ChoiceValues.begin();
for (uint_fast64_t p2Group = 0; p2Group < this->player2Matrix.getRowGroupCount(); ++p2Group) {
uint_fast64_t firstRowInGroup = this->player2Matrix.getRowGroupIndices()[p2Group];
uint_fast64_t rowGroupSize = this->player2Matrix.getRowGroupIndices()[p2Group + 1] - firstRowInGroup;
// We need to check whether the scheduler improved. Therefore, we first have to evaluate the current choice
uint_fast64_t currentP2Choice = player2Choices[p2Group];
*currentValueIt = storm::utility::zero<ValueType>();
for (auto const& entry : this->player2Matrix.getRow(firstRowInGroup + currentP2Choice)) {
*currentValueIt += entry.getValue() * x[entry.getColumn()];
}
*currentValueIt += b[firstRowInGroup + currentP2Choice];
// now check the other choices
for (uint_fast64_t p2Choice = 0; p2Choice < rowGroupSize; ++p2Choice) {
if (p2Choice == currentP2Choice) {
continue;
}
ValueType choiceValue = storm::utility::zero<ValueType>();
for (auto const& entry : this->player2Matrix.getRow(firstRowInGroup + p2Choice)) {
choiceValue += entry.getValue() * x[entry.getColumn()];
}
choiceValue += b[firstRowInGroup + p2Choice];
if (valueImproved(player2Dir, *currentValueIt, choiceValue)) {
schedulerImproved = true;
player2Choices[p2Group] = p2Choice;
*currentValueIt = std::move(choiceValue);
}
}
}
// Now extract the choices of player 1
for (uint_fast64_t p1Group = 0; p1Group < this->player1Matrix.getRowGroupCount(); ++p1Group) {
uint_fast64_t firstRowInGroup = this->player1Matrix.getRowGroupIndices()[p1Group];
uint_fast64_t rowGroupSize = this->player1Matrix.getRowGroupIndices()[p1Group + 1] - firstRowInGroup;
uint_fast64_t currentChoice = player1Choices[p1Group];
ValueType currentValue = player2ChoiceValues[this->player1Matrix.getRow(firstRowInGroup + currentChoice).begin()->getColumn()];
for (uint_fast64_t p1Choice = 0; p1Choice < rowGroupSize; ++p1Choice) {
// If the choice is the currently selected one, we can skip it.
if (p1Choice == currentChoice) {
continue;
}
ValueType const& choiceValue = player2ChoiceValues[this->player1Matrix.getRow(firstRowInGroup + p1Choice).begin()->getColumn()];
if (valueImproved(player1Dir, currentValue, choiceValue)) {
schedulerImproved = true;
player1Choices[p1Group] = p1Choice;
currentValue = choiceValue;
}
}
}
return schedulerImproved;
}
template<typename ValueType>
void StandardGameSolver<ValueType>::getInducedMatrixVector(std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& player1Choices, std::vector<uint_fast64_t> const& player2Choices, storm::storage::SparseMatrix<ValueType>& inducedMatrix, std::vector<ValueType>& inducedVector) const {
//Get the rows of the player2matrix that are selected by the schedulers
//Note that rows can be selected more then once and in an arbitrary order.
std::vector<storm::storage::sparse::state_type> selectedRows;
selectedRows.reserve(player1Matrix.getRowGroupCount());
uint_fast64_t pl1State = 0;
for (auto const& pl1Choice : player1Choices){
auto const& pl1Row = player1Matrix.getRow(pl1State, pl1Choice);
STORM_LOG_ASSERT(pl1Row.getNumberOfEntries() == 1, "It is assumed that rows of player one have one entry, but this is not the case.");
uint_fast64_t const& pl2State = pl1Row.begin()->getColumn();
selectedRows.push_back(player2Matrix.getRowGroupIndices()[pl2State] + player2Choices[pl2State]);
++pl1State;
}
//Get the matrix and the vector induced by this selection. Note that we add entries at the diagonal
inducedMatrix = player2Matrix.selectRowsFromRowIndexSequence(selectedRows, true);
inducedVector.resize(inducedMatrix.getRowCount());
storm::utility::vector::selectVectorValues<ValueType>(inducedVector, selectedRows, b);
}
template<typename ValueType>
typename StandardGameSolver<ValueType>::Status StandardGameSolver<ValueType>::updateStatusIfNotConverged(Status status, std::vector<ValueType> const& x, uint64_t iterations) const {

10
src/storm/solver/StandardGameSolver.h

@ -54,8 +54,16 @@ namespace storm {
bool solveGamePolicyIteration(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
bool solveGameValueIteration(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
// Computes p2Matrix * x + b, reduces the result w.r.t. player 2 choices, and then reduces the result w.r.t. player 1 choices.
void multiplyAndReduce(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType>& x, std::vector<ValueType> const* b,
storm::solver::LinearEquationSolver<ValueType>& linEqSolver, std::vector<ValueType>& multiplyResult, std::vector<ValueType>& p2ReducedMultiplyResult, std::vector<ValueType>& p1ReducedMultiplyResult, std::vector<uint_fast64_t>* player1Choices = nullptr, std::vector<uint_fast64_t>* player2Choices = nullptr) const;
storm::solver::LinearEquationSolver<ValueType> const& linEqSolver, std::vector<ValueType>& multiplyResult, std::vector<ValueType>& p2ReducedMultiplyResult, std::vector<ValueType>& p1ReducedMultiplyResult) const;
// Solves the equation system given by the two choice selections
void getInducedMatrixVector(std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& player1Choices, std::vector<uint_fast64_t> const& player2Choices, storm::storage::SparseMatrix<ValueType>& inducedMatrix, std::vector<ValueType>& inducedVector) const;
// Extracts the choices of the different players for the given solution x.
// Returns true iff there are "better" choices for one of the players.
bool extractChoices(OptimizationDirection player1Dir, OptimizationDirection player2Dir, std::vector<ValueType> const& x, std::vector<ValueType> const& b, std::vector<ValueType>& player2ChoiceValues, std::vector<uint_fast64_t>& player1Choices, std::vector<uint_fast64_t>& player2Choices) const;
bool valueImproved(OptimizationDirection dir, ValueType const& value1, ValueType const& value2) const;

30
src/storm/solver/StandardMinMaxLinearEquationSolver.cpp

@ -91,8 +91,10 @@ namespace storm {
return solveEquationsValueIteration(dir, x, b);
case StandardMinMaxLinearEquationSolverSettings<ValueType>::SolutionMethod::PolicyIteration:
return solveEquationsPolicyIteration(dir, x, b);
default:
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "This solver does not implement the selected solution method");
}
return true;
return false;
}
template<typename ValueType>
@ -133,9 +135,10 @@ namespace storm {
// Go through the multiplication result and see whether we can improve any of the choices.
bool schedulerImproved = false;
for (uint_fast64_t group = 0; group < this->A.getRowGroupCount(); ++group) {
uint_fast64_t currentChoice = scheduler[group];
for (uint_fast64_t choice = this->A.getRowGroupIndices()[group]; choice < this->A.getRowGroupIndices()[group + 1]; ++choice) {
// If the choice is the currently selected one, we can skip it.
if (choice - this->A.getRowGroupIndices()[group] == scheduler[group]) {
if (choice - this->A.getRowGroupIndices()[group] == currentChoice) {
continue;
}
@ -152,6 +155,7 @@ namespace storm {
if (valueImproved(dir, x[group], choiceValue)) {
schedulerImproved = true;
scheduler[group] = choice - this->A.getRowGroupIndices()[group];
x[group] = std::move(choiceValue);
}
}
}
@ -183,25 +187,15 @@ namespace storm {
clearCache();
}
if(status == Status::Converged || status == Status::TerminatedEarly) {
return true;
} else{
return false;
}
return status == Status::Converged || status == Status::TerminatedEarly;
}
template<typename ValueType>
bool StandardMinMaxLinearEquationSolver<ValueType>::valueImproved(OptimizationDirection dir, ValueType const& value1, ValueType const& value2) const {
if (dir == OptimizationDirection::Minimize) {
if (value1 > value2) {
return true;
}
return false;
return value2 < value1;
} else {
if (value1 < value2) {
return true;
}
return false;
return value2 > value1;
}
}
@ -297,11 +291,7 @@ namespace storm {
clearCache();
}
if(status == Status::Converged || status == Status::TerminatedEarly) {
return true;
} else{
return false;
}
return status == Status::Converged || status == Status::TerminatedEarly;
}
template<typename ValueType>

Loading…
Cancel
Save