@ -6,7 +6,8 @@
# include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
# include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
# include "storm/storage/MaximalEndComponentDecomposition.h"
# include "storm/transformer/StateDuplicator.h"
# include "storm/storage/memorystructure/MemoryStructureBuilder.h"
# include "storm/storage/memorystructure/SparseModelMemoryProduct.h"
# include "storm/transformer/SubsystemBuilder.h"
# include "storm/utility/macros.h"
# include "storm/utility/vector.h"
@ -26,12 +27,12 @@ namespace storm {
result . newToOldStateIndexMapping = storm : : utility : : vector : : buildVectorForRange ( 0 , originalModel . getNumberOfStates ( ) ) ;
//Invoke preprocessing on the individual objectives
for ( auto const & subFormula : originalFormula . getSubformulas ( ) ) {
for ( auto const & subFormula : originalFormula . getSubformulas ( ) ) {
STORM_LOG_INFO ( " Preprocessing objective " < < * subFormula < < " . " ) ;
result . objectives . emplace_back ( ) ;
PcaaObjective < ValueType > & currentObjective = result . objectives . back ( ) ;
currentObjective . originalFormula = subFormula ;
if ( currentObjective . originalFormula - > isOperatorFormula ( ) ) {
if ( currentObjective . originalFormula - > isOperatorFormula ( ) ) {
preprocessOperatorFormula ( currentObjective . originalFormula - > asOperatorFormula ( ) , result , currentObjective ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " Could not preprocess the subformula " < < * subFormula < < " of " < < originalFormula < < " because it is not supported " ) ;
@ -40,11 +41,11 @@ namespace storm {
// Set the query type. In case of a quantitative query, also set the index of the objective to be optimized.
// Note: If there are only zero (or one) objectives left, we should not consider a pareto query!
storm : : storage : : BitVector objectivesWithoutThreshold ( result . objectives . size ( ) ) ;
for ( uint_fast64_t objIndex = 0 ; objIndex < result . objectives . size ( ) ; + + objIndex ) {
for ( uint_fast64_t objIndex = 0 ; objIndex < result . objectives . size ( ) ; + + objIndex ) {
objectivesWithoutThreshold . set ( objIndex , ! result . objectives [ objIndex ] . threshold ) ;
}
uint_fast64_t numOfObjectivesWithoutThreshold = objectivesWithoutThreshold . getNumberOfSetBits ( ) ;
if ( numOfObjectivesWithoutThreshold = = 0 ) {
if ( numOfObjectivesWithoutThreshold = = 0 ) {
result . queryType = ReturnType : : QueryType : : Achievability ;
} else if ( numOfObjectivesWithoutThreshold = = 1 ) {
result . queryType = ReturnType : : QueryType : : Quantitative ;
@ -64,9 +65,9 @@ namespace storm {
//Get actions to which a positive or negative reward is assigned for at least one objective
result . actionsWithPositiveReward = storm : : storage : : BitVector ( result . preprocessedModel . getNumberOfChoices ( ) , false ) ;
result . actionsWithNegativeReward = storm : : storage : : BitVector ( result . preprocessedModel . getNumberOfChoices ( ) , false ) ;
for ( uint_fast64_t objIndex = 0 ; objIndex < result . objectives . size ( ) ; + + objIndex ) {
if ( ! result . objectives [ objIndex ] . upperTimeBound ) {
if ( result . objectives [ objIndex ] . rewardsArePositive ) {
for ( uint_fast64_t objIndex = 0 ; objIndex < result . objectives . size ( ) ; + + objIndex ) {
if ( ! result . objectives [ objIndex ] . upperTimeBound ) {
if ( result . objectives [ objIndex ] . rewardsArePositive ) {
result . actionsWithPositiveReward | = ~ storm : : utility : : vector : : filterZero ( result . preprocessedModel . getRewardModel ( result . objectives [ objIndex ] . rewardModelName ) . getTotalRewardVector ( result . preprocessedModel . getTransitionMatrix ( ) ) ) ;
} else {
result . actionsWithNegativeReward | = ~ storm : : utility : : vector : : filterZero ( result . preprocessedModel . getRewardModel ( result . objectives [ objIndex ] . rewardModelName ) . getTotalRewardVector ( result . preprocessedModel . getTransitionMatrix ( ) ) ) ;
@ -77,7 +78,7 @@ namespace storm {
// Analyze End components and ensure reward finiteness.
// Note that this is only necessary if there is at least one objective with no upper time bound
for ( auto const & obj : result . objectives ) {
if ( ! obj . upperTimeBound ) {
if ( ! obj . upperTimeBound ) {
auto backwardTransitions = result . preprocessedModel . getBackwardTransitions ( ) ;
analyzeEndComponents ( result , backwardTransitions ) ;
ensureRewardFiniteness ( result , backwardTransitions ) ;
@ -89,13 +90,36 @@ namespace storm {
template < typename SparseModelType >
void SparsePcaaPreprocessor < SparseModelType > : : updatePreprocessedModel ( ReturnType & result , SparseModelType & newPreprocessedModel , std : : vector < uint_fast64_t > & newToOldStateIndexMapping ) {
result . preprocessedModel = std : : move ( newPreprocessedModel ) ;
// the given newToOldStateIndexMapping reff ers to the indices of the former preprocessedModel as 'old indices'
for ( auto & preprocessedModelStateIndex : newToOldStateIndexMapping ) {
// the given newToOldStateIndexMapping refers to the indices of the former preprocessedModel as 'old indices'
for ( auto & preprocessedModelStateIndex : newToOldStateIndexMapping ) {
preprocessedModelStateIndex = result . newToOldStateIndexMapping [ preprocessedModelStateIndex ] ;
}
result . newToOldStateIndexMapping = std : : move ( newToOldStateIndexMapping ) ;
}
template < typename SparseModelType >
void SparsePcaaPreprocessor < SparseModelType > : : addMemoryToPreprocessedModel ( ReturnType & result , storm : : storage : : MemoryStructure & memory ) {
storm : : storage : : SparseModelMemoryProduct < ValueType > product = memory . product ( result . preprocessedModel ) ;
auto newModel = product . build ( ) ;
// update the newToOldStateIndexMapping
std : : vector < uint_fast64_t > updatedMapping ;
updatedMapping . reserve ( newModel - > getNumberOfStates ( ) ) ;
for ( uint_fast64_t oldState = 0 ; oldState < result . preprocessedModel . getNumberOfStates ( ) ; + + oldState ) {
for ( uint_fast64_t memoryState = 0 ; memoryState < memory . getNumberOfStates ( ) ; + + memoryState ) {
uint_fast64_t const & newState = product . getResultState ( oldState , memoryState ) ;
// Check if the state actually exists in the new model
if ( newState < newModel - > getNumberOfStates ( ) ) {
assert ( newState = = updatedMapping . size ( ) ) ;
updatedMapping . push_back ( result . newToOldStateIndexMapping [ oldState ] ) ;
}
}
}
result . preprocessedModel = std : : move ( dynamic_cast < SparseModelType & > ( * newModel ) ) ;
result . newToOldStateIndexMapping = std : : move ( updatedMapping ) ;
}
template < typename SparseModelType >
void SparsePcaaPreprocessor < SparseModelType > : : preprocessOperatorFormula ( storm : : logic : : OperatorFormula const & formula , ReturnType & result , PcaaObjective < ValueType > & currentObjective ) {
@ -110,7 +134,7 @@ namespace storm {
currentObjective . rewardsArePositive = true ;
bool formulaMinimizes = false ;
if ( formula . hasBound ( ) ) {
if ( formula . hasBound ( ) ) {
currentObjective . threshold = formula . template getThresholdAs < ValueType > ( ) ;
currentObjective . thresholdIsStrict = storm : : logic : : isStrict ( formula . getBound ( ) . comparisonType ) ;
//Note that we minimize for upper bounds since we are looking for the EXISTENCE of a satisfying scheduler
@ -120,25 +144,25 @@ namespace storm {
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " Current objective " < < formula < < " does not specify whether to minimize or maximize " ) ;
}
if ( formulaMinimizes ) {
if ( formulaMinimizes ) {
// We negate all the values so we can consider the maximum for this objective
// Thus, all objectives will be maximized.
currentObjective . rewardsArePositive = false ;
currentObjective . toOriginalValueTransformationFactor = - storm : : utility : : one < ValueType > ( ) ;
}
if ( formula . isProbabilityOperatorFormula ( ) ) {
if ( formula . isProbabilityOperatorFormula ( ) ) {
preprocessProbabilityOperatorFormula ( formula . asProbabilityOperatorFormula ( ) , result , currentObjective ) ;
} else if ( formula . isRewardOperatorFormula ( ) ) {
} else if ( formula . isRewardOperatorFormula ( ) ) {
preprocessRewardOperatorFormula ( formula . asRewardOperatorFormula ( ) , result , currentObjective ) ;
} else if ( formula . isTimeOperatorFormula ( ) ) {
} else if ( formula . isTimeOperatorFormula ( ) ) {
preprocessTimeOperatorFormula ( formula . asTimeOperatorFormula ( ) , result , currentObjective ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " Could not preprocess the objective " < < formula < < " because it is not supported " ) ;
}
// Transform the threshold for the preprocessed Model
if ( currentObjective . threshold ) {
if ( currentObjective . threshold ) {
currentObjective . threshold = ( currentObjective . threshold . get ( ) - currentObjective . toOriginalValueTransformationOffset ) / currentObjective . toOriginalValueTransformationFactor ;
}
}
@ -146,13 +170,13 @@ namespace storm {
template < typename SparseModelType >
void SparsePcaaPreprocessor < SparseModelType > : : preprocessProbabilityOperatorFormula ( storm : : logic : : ProbabilityOperatorFormula const & formula , ReturnType & result , PcaaObjective < ValueType > & currentObjective ) {
if ( formula . getSubformula ( ) . isUntilFormula ( ) ) {
if ( formula . getSubformula ( ) . isUntilFormula ( ) ) {
preprocessUntilFormula ( formula . getSubformula ( ) . asUntilFormula ( ) , result , currentObjective ) ;
} else if ( formula . getSubformula ( ) . isBoundedUntilFormula ( ) ) {
} else if ( formula . getSubformula ( ) . isBoundedUntilFormula ( ) ) {
preprocessBoundedUntilFormula ( formula . getSubformula ( ) . asBoundedUntilFormula ( ) , result , currentObjective ) ;
} else if ( formula . getSubformula ( ) . isGloballyFormula ( ) ) {
} else if ( formula . getSubformula ( ) . isGloballyFormula ( ) ) {
preprocessGloballyFormula ( formula . getSubformula ( ) . asGloballyFormula ( ) , result , currentObjective ) ;
} else if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
} else if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessEventuallyFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , result , currentObjective ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The subformula of " < < formula < < " is not supported. " ) ;
@ -165,11 +189,11 @@ namespace storm {
STORM_LOG_THROW ( ( formula . hasRewardModelName ( ) & & result . preprocessedModel . hasRewardModel ( formula . getRewardModelName ( ) ) )
| | result . preprocessedModel . hasUniqueRewardModel ( ) , storm : : exceptions : : InvalidPropertyException , " The reward model is not unique and the formula " < < formula < < " does not specify a reward model. " ) ;
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessEventuallyFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , result , currentObjective , formula . getOptionalRewardModelName ( ) ) ;
} else if ( formula . getSubformula ( ) . isCumulativeRewardFormula ( ) ) {
} else if ( formula . getSubformula ( ) . isCumulativeRewardFormula ( ) ) {
preprocessCumulativeRewardFormula ( formula . getSubformula ( ) . asCumulativeRewardFormula ( ) , result , currentObjective , formula . getOptionalRewardModelName ( ) ) ;
} else if ( formula . getSubformula ( ) . isTotalRewardFormula ( ) ) {
} else if ( formula . getSubformula ( ) . isTotalRewardFormula ( ) ) {
preprocessTotalRewardFormula ( result , currentObjective , formula . getOptionalRewardModelName ( ) ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The subformula of " < < formula < < " is not supported. " ) ;
@ -181,7 +205,7 @@ namespace storm {
// Time formulas are only supported for Markov automata
STORM_LOG_THROW ( result . originalModel . isOfType ( storm : : models : : ModelType : : MarkovAutomaton ) , storm : : exceptions : : InvalidPropertyException , " Time operator formulas are only supported for Markov automata. " ) ;
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessEventuallyFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , result , currentObjective ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The subformula of " < < formula < < " is not supported. " ) ;
@ -190,37 +214,39 @@ namespace storm {
template < typename SparseModelType >
void SparsePcaaPreprocessor < SparseModelType > : : preprocessUntilFormula ( storm : : logic : : UntilFormula const & formula , ReturnType & result , PcaaObjective < ValueType > & currentObjective ) {
CheckTask < storm : : logic : : Formula , ValueType > phiTask ( formula . getLeftSubformula ( ) ) ;
CheckTask < storm : : logic : : Formula , ValueType > psiTask ( formula . getRightSubformula ( ) ) ;
storm : : modelchecker : : SparsePropositionalModelChecker < SparseModelType > mc ( result . preprocessedModel ) ;
STORM_LOG_THROW ( mc . canHandle ( phiTask ) & & mc . canHandle ( psiTask ) , storm : : exceptions : : InvalidPropertyException , " The subformulas of " < < formula < < " should be propositional. " ) ;
storm : : storage : : BitVector phiStates = mc . check ( phiTask ) - > asExplicitQualitativeCheckResult ( ) . getTruthValuesVector ( ) ;
storm : : storage : : BitVector psiStates = mc . check ( psiTask ) - > asExplicitQualitativeCheckResult ( ) . getTruthValuesVector ( ) ;
if ( ! ( psiStates & result . preprocessedModel . getInitialStates ( ) ) . empty ( ) & & ! currentObjective . lowerTimeBound ) {
// Create a memory structure that stores whether a PhiState or a PsiState has already been reached
storm : : storage : : MemoryStructureBuilder builder ( 2 ) ;
// Get a unique label that is not already present in the model
std : : string memoryLabel = " obj " + std : : to_string ( result . objectives . size ( ) ) ;
while ( result . preprocessedModel . hasLabel ( memoryLabel ) ) memoryLabel = " _ " + memoryLabel ;
builder . setLabel ( 0 , memoryLabel ) ;
auto negatedLeftSubFormula = std : : make_shared < storm : : logic : : UnaryBooleanStateFormula > ( storm : : logic : : UnaryBooleanStateFormula : : OperatorType : : Not , formula . getLeftSubformula ( ) . asSharedPointer ( ) ) ;
auto targetFormula = std : : make_shared < storm : : logic : : BinaryBooleanStateFormula > ( storm : : logic : : BinaryBooleanStateFormula : : OperatorType : : Or , negatedLeftSubFormula , formula . getRightSubformula ( ) . asSharedPointer ( ) ) ;
builder . setTransition ( 0 , 0 , std : : make_shared < storm : : logic : : UnaryBooleanStateFormula > ( storm : : logic : : UnaryBooleanStateFormula : : OperatorType : : Not , targetFormula ) ) ;
builder . setTransition ( 0 , 1 , targetFormula ) ;
builder . setTransition ( 1 , 1 , std : : make_shared < storm : : logic : : BooleanLiteralFormula > ( true ) ) ;
storm : : storage : : MemoryStructure memory = builder . build ( ) ;
addMemoryToPreprocessedModel ( result , memory ) ;
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from a memoryLabel-state to a psiState
storm : : storage : : BitVector const & statesWithMemoryLabel = result . preprocessedModel . getStates ( memoryLabel ) ;
if ( ( statesWithMemoryLabel & result . preprocessedModel . getInitialStates ( ) ) . empty ( ) & & ! currentObjective . lowerTimeBound ) {
// The probability is always one as the initial state is a target state.
// For this special case, the transformation to an expected reward objective fails.
// We could handle this with further preprocessing steps but as this case is boring anyway, we simply reject the input.
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The Probability for the objective " < < currentObjective . originalFormula < < " is always one as the rhs of the until formula is true in the initial state. Please omit this objective. " ) ;
}
auto duplicatorResult = storm : : transformer : : StateDuplicator < SparseModelType > : : transform ( result . preprocessedModel , ~ phiStates | psiStates ) ;
updatePreprocessedModel ( result , * duplicatorResult . model , duplicatorResult . newToOldStateIndexMapping ) ;
storm : : storage : : BitVector newPsiStates ( result . preprocessedModel . getNumberOfStates ( ) , false ) ;
for ( auto const & oldPsiState : psiStates ) {
//note that psiStates are always located in the second copy
newPsiStates . set ( duplicatorResult . secondCopyOldToNewStateIndexMapping [ oldPsiState ] , true ) ;
// We could handle this with further preprocessing steps but as this case is trivial anyway, we reject the input.
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The Probability for the objective " < < * currentObjective . originalFormula < < " is always one as the rhs of the until formula is true in the initial state. Please omit this objective. " ) ;
}
storm : : modelchecker : : SparsePropositionalModelChecker < SparseModelType > mc ( result . preprocessedModel ) ;
storm : : storage : : BitVector psiStates = mc . check ( formula . getRightSubformula ( ) ) - > asExplicitQualitativeCheckResult ( ) . getTruthValuesVector ( ) ;
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState
std : : vector < ValueType > objectiveRewards ( result . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
for ( auto const & fir stCopyS tate : duplicatorResult . firstCopy ) {
for ( uint_fast64_t row = result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ fir stCopyS tate] ; row < result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ fir stCopyS tate + 1 ] ; + + row ) {
objectiveRewards [ row ] = result . preprocessedModel . getTransitionMatrix ( ) . getConstrainedRowSum ( row , newP siStates) ;
for ( auto const & state : statesWithMemoryLabel ) {
for ( uint_fast64_t row = result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state ] ; row < result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state + 1 ] ; + + row ) {
objectiveRewards [ row ] = result . preprocessedModel . getTransitionMatrix ( ) . getConstrainedRowSum ( row , psiStates ) ;
}
}
if ( ! currentObjective . rewardsArePositive ) {
if ( ! currentObjective . rewardsArePositive ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards , - storm : : utility : : one < ValueType > ( ) ) ;
}
result . preprocessedModel . addRewardModel ( currentObjective . rewardModelName , RewardModelType ( boost : : none , objectiveRewards ) ) ;
@ -258,43 +284,48 @@ namespace storm {
template < typename SparseModelType >
void SparsePcaaPreprocessor < SparseModelType > : : preprocessEventuallyFormula ( storm : : logic : : EventuallyFormula const & formula , ReturnType & result , PcaaObjective < ValueType > & currentObjective , boost : : optional < std : : string > const & optionalRewardModelName ) {
if ( formula . isReachabilityProbabilityFormula ( ) ) {
if ( formula . isReachabilityProbabilityFormula ( ) ) {
preprocessUntilFormula ( storm : : logic : : UntilFormula ( storm : : logic : : Formula : : getTrueFormula ( ) , formula . getSubformula ( ) . asSharedPointer ( ) ) , result , currentObjective ) ;
return ;
}
// Create a memory structure that stores whether a target state has already been reached
storm : : storage : : MemoryStructureBuilder builder ( 2 ) ;
// Get a unique label that is not already present in the model
std : : string memoryLabel = " obj " + std : : to_string ( result . objectives . size ( ) ) ;
while ( result . preprocessedModel . hasLabel ( memoryLabel ) ) memoryLabel = " _ " + memoryLabel ;
builder . setLabel ( 0 , memoryLabel ) ;
builder . setTransition ( 0 , 0 , std : : make_shared < storm : : logic : : UnaryBooleanStateFormula > ( storm : : logic : : UnaryBooleanStateFormula : : OperatorType : : Not , formula . getSubformula ( ) . asSharedPointer ( ) ) ) ;
builder . setTransition ( 0 , 1 , formula . getSubformula ( ) . asSharedPointer ( ) ) ;
builder . setTransition ( 1 , 1 , std : : make_shared < storm : : logic : : BooleanLiteralFormula > ( true ) ) ;
storm : : storage : : MemoryStructure memory = builder . build ( ) ;
addMemoryToPreprocessedModel ( result , memory ) ;
CheckTask < storm : : logic : : Formula , ValueType > targetTask ( formula . getSubformula ( ) ) ;
storm : : modelchecker : : SparsePropositionalModelChecker < SparseModelType > mc ( result . preprocessedModel ) ;
STORM_LOG_THROW ( mc . canHandle ( targetTask ) , storm : : exceptions : : InvalidPropertyException , " The subformula of " < < formula < < " should be propositional. " ) ;
storm : : storage : : BitVector targetStates = mc . check ( targetTask ) - > asExplicitQualitativeCheckResult ( ) . getTruthValuesVector ( ) ;
auto duplicatorResult = storm : : transformer : : StateDuplicator < SparseModelType > : : transform ( result . preprocessedModel , targetStates ) ;
updatePreprocessedModel ( result , * duplicatorResult . model , duplicatorResult . newToOldStateIndexMapping ) ;
// Add a reward model that gives zero reward to the actions of states of the second copy.
// Add a reward model that only gives reward to states with the memory label
RewardModelType objectiveRewards ( boost : : none ) ;
if ( formula . isReachabilityRewardFormula ( ) ) {
if ( formula . isReachabilityRewardFormula ( ) ) {
storm : : storage : : BitVector statesWithoutMemoryLabel = ~ result . preprocessedModel . getStates ( memoryLabel ) ;
objectiveRewards = result . preprocessedModel . getRewardModel ( optionalRewardModelName ? optionalRewardModelName . get ( ) : " " ) ;
objectiveRewards . reduceToStateBasedRewards ( result . preprocessedModel . getTransitionMatrix ( ) , false ) ;
if ( objectiveRewards . hasStateRewards ( ) ) {
storm : : utility : : vector : : setVectorValues ( objectiveRewards . getStateRewardVector ( ) , duplicatorResult . secondCopy , storm : : utility : : zero < ValueType > ( ) ) ;
if ( objectiveRewards . hasStateRewards ( ) ) {
storm : : utility : : vector : : setVectorValues ( objectiveRewards . getStateRewardVector ( ) , statesWithoutMemoryLabel , storm : : utility : : zero < ValueType > ( ) ) ;
}
if ( objectiveRewards . hasStateActionRewards ( ) ) {
for ( auto secondCopyS tate : duplicatorResult . secondCopy ) {
std : : fill_n ( objectiveRewards . getStateActionRewardVector ( ) . begin ( ) + result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ secondCopyS tate ] , result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupSize ( secondCopyS tate ) , storm : : utility : : zero < ValueType > ( ) ) ;
if ( objectiveRewards . hasStateActionRewards ( ) ) {
for ( auto state : statesWithoutMemoryLabel ) {
std : : fill_n ( objectiveRewards . getStateActionRewardVector ( ) . begin ( ) + result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state ] , result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupSize ( state ) , storm : : utility : : zero < ValueType > ( ) ) ;
}
}
} else if ( formula . isReachabilityTimeFormula ( ) & & result . preprocessedModel . isOfType ( storm : : models : : ModelType : : MarkovAutomaton ) ) {
} else if ( formula . isReachabilityTimeFormula ( ) & & result . preprocessedModel . isOfType ( storm : : models : : ModelType : : MarkovAutomaton ) ) {
objectiveRewards = RewardModelType ( std : : vector < ValueType > ( result . preprocessedModel . getNumberOfStates ( ) , storm : : utility : : zero < ValueType > ( ) ) ) ;
storm : : utility : : vector : : setVectorValues ( objectiveRewards . getStateRewardVector ( ) , dynamic_cast < storm : : models : : sparse : : MarkovAutomaton < ValueType > * > ( & result . preprocessedModel ) - > getMarkovianStates ( ) & duplicatorResult . firstCopy , storm : : utility : : one < ValueType > ( ) ) ;
storm : : utility : : vector : : setVectorValues ( objectiveRewards . getStateRewardVector ( ) , dynamic_cast < storm : : models : : sparse : : MarkovAutomaton < ValueType > * > ( & result . preprocessedModel ) - > getMarkovianStates ( ) & result . preprocessedModel . getStates ( memoryLabel ) , storm : : utility : : one < ValueType > ( ) ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The formula " < < formula < < " neither considers reachability probabilities nor reachability rewards " < < ( result . preprocessedModel . isOfType ( storm : : models : : ModelType : : MarkovAutomaton ) ? " nor reachability time " : " " ) < < " . This is not supported. " ) ;
}
if ( ! currentObjective . rewardsArePositive ) {
if ( objectiveRewards . hasStateRewards ( ) ) {
if ( ! currentObjective . rewardsArePositive ) {
if ( objectiveRewards . hasStateRewards ( ) ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards . getStateRewardVector ( ) , - storm : : utility : : one < ValueType > ( ) ) ;
}
if ( objectiveRewards . hasStateActionRewards ( ) ) {
if ( objectiveRewards . hasStateActionRewards ( ) ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards . getStateActionRewardVector ( ) , - storm : : utility : : one < ValueType > ( ) ) ;
}
}
@ -309,11 +340,11 @@ namespace storm {
RewardModelType objectiveRewards = result . preprocessedModel . getRewardModel ( optionalRewardModelName ? optionalRewardModelName . get ( ) : " " ) ;
objectiveRewards . reduceToStateBasedRewards ( result . preprocessedModel . getTransitionMatrix ( ) , false ) ;
if ( ! currentObjective . rewardsArePositive ) {
if ( objectiveRewards . hasStateRewards ( ) ) {
if ( ! currentObjective . rewardsArePositive ) {
if ( objectiveRewards . hasStateRewards ( ) ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards . getStateRewardVector ( ) , - storm : : utility : : one < ValueType > ( ) ) ;
}
if ( objectiveRewards . hasStateActionRewards ( ) ) {
if ( objectiveRewards . hasStateActionRewards ( ) ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards . getStateActionRewardVector ( ) , - storm : : utility : : one < ValueType > ( ) ) ;
}
}
@ -324,11 +355,11 @@ namespace storm {
void SparsePcaaPreprocessor < SparseModelType > : : preprocessTotalRewardFormula ( ReturnType & result , PcaaObjective < ValueType > & currentObjective , boost : : optional < std : : string > const & optionalRewardModelName ) {
RewardModelType objectiveRewards = result . preprocessedModel . getRewardModel ( optionalRewardModelName ? optionalRewardModelName . get ( ) : " " ) ;
objectiveRewards . reduceToStateBasedRewards ( result . preprocessedModel . getTransitionMatrix ( ) , false ) ;
if ( ! currentObjective . rewardsArePositive ) {
if ( objectiveRewards . hasStateRewards ( ) ) {
if ( ! currentObjective . rewardsArePositive ) {
if ( objectiveRewards . hasStateRewards ( ) ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards . getStateRewardVector ( ) , - storm : : utility : : one < ValueType > ( ) ) ;
}
if ( objectiveRewards . hasStateActionRewards ( ) ) {
if ( objectiveRewards . hasStateActionRewards ( ) ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards . getStateActionRewardVector ( ) , - storm : : utility : : one < ValueType > ( ) ) ;
}
}
@ -344,9 +375,9 @@ namespace storm {
auto mecDecomposition = storm : : storage : : MaximalEndComponentDecomposition < ValueType > ( result . preprocessedModel . getTransitionMatrix ( ) , backwardTransitions ) ;
STORM_LOG_ASSERT ( ! mecDecomposition . empty ( ) , " Empty maximal end component decomposition. " ) ;
ecs . reserve ( mecDecomposition . size ( ) ) ;
for ( auto & mec : mecDecomposition ) {
for ( auto const & stateActionsPair : mec ) {
for ( auto const & action : stateActionsPair . second ) {
for ( auto & mec : mecDecomposition ) {
for ( auto const & stateActionsPair : mec ) {
for ( auto const & action : stateActionsPair . second ) {
result . ecActions . set ( action ) ;
}
}
@ -356,17 +387,17 @@ namespace storm {
result . possiblyRecurrentStates = storm : : storage : : BitVector ( result . preprocessedModel . getNumberOfStates ( ) , false ) ;
storm : : storage : : BitVector neutralActions = ~ ( result . actionsWithNegativeReward | result . actionsWithPositiveReward ) ;
storm : : storage : : BitVector statesInCurrentECWithNeutralAction ( result . preprocessedModel . getNumberOfStates ( ) , false ) ;
for ( uint_fast64_t ecIndex = 0 ; ecIndex < ecs . size ( ) ; + + ecIndex ) { //we will insert new ecs in the vector (thus no iterators for the loop)
for ( uint_fast64_t ecIndex = 0 ; ecIndex < ecs . size ( ) ; + + ecIndex ) { //we will insert new ecs in the vector (thus no iterators for the loop)
bool currentECIsNeutral = true ;
for ( auto const & stateActionsPair : ecs [ ecIndex ] ) {
for ( auto const & stateActionsPair : ecs [ ecIndex ] ) {
bool stateHasNeutralActionWithinEC = false ;
for ( auto const & action : stateActionsPair . second ) {
for ( auto const & action : stateActionsPair . second ) {
stateHasNeutralActionWithinEC | = neutralActions . get ( action ) ;
}
statesInCurrentECWithNeutralAction . set ( stateActionsPair . first , stateHasNeutralActionWithinEC ) ;
currentECIsNeutral & = stateHasNeutralActionWithinEC ;
}
if ( currentECIsNeutral ) {
if ( currentECIsNeutral ) {
result . possiblyRecurrentStates | = statesInCurrentECWithNeutralAction ;
} else {
// Check if the ec contains neutral sub ecs. This is done by adding the subECs to our list of ECs
@ -374,7 +405,7 @@ namespace storm {
statesInCurrentECWithNeutralAction = storm : : utility : : graph : : performProb0E ( result . preprocessedModel . getTransitionMatrix ( ) , result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) , backwardTransitions , statesInCurrentECWithNeutralAction , ~ statesInCurrentECWithNeutralAction ) ;
auto subECs = storm : : storage : : MaximalEndComponentDecomposition < ValueType > ( result . preprocessedModel . getTransitionMatrix ( ) , backwardTransitions , statesInCurrentECWithNeutralAction ) ;
ecs . reserve ( ecs . size ( ) + subECs . size ( ) ) ;
for ( auto & ec : subECs ) {
for ( auto & ec : subECs ) {
ecs . push_back ( std : : move ( ec ) ) ;
}
}
@ -390,7 +421,7 @@ namespace storm {
storm : : storage : : BitVector statesReachingNegativeRewardsFinitelyOftenForSomeScheduler = storm : : utility : : graph : : performProb1E ( result . preprocessedModel . getTransitionMatrix ( ) , result . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) , backwardTransitions , storm : : storage : : BitVector ( result . preprocessedModel . getNumberOfStates ( ) , true ) , result . possiblyRecurrentStates ) ;
STORM_LOG_THROW ( ! ( statesReachingNegativeRewardsFinitelyOftenForSomeScheduler & result . preprocessedModel . getInitialStates ( ) ) . empty ( ) , storm : : exceptions : : InvalidPropertyException , " Infinite Rewards: For every scheduler, the induced reward for one or more of the objectives that minimize rewards is infinity. " ) ;
if ( ! statesReachingNegativeRewardsFinitelyOftenForSomeScheduler . full ( ) ) {
if ( ! statesReachingNegativeRewardsFinitelyOftenForSomeScheduler . full ( ) ) {
// Remove the states that for any scheduler have one objective with infinite expected reward.
auto subsystemBuilderResult = storm : : transformer : : SubsystemBuilder < SparseModelType > : : transform ( result . preprocessedModel , statesReachingNegativeRewardsFinitelyOftenForSomeScheduler , storm : : storage : : BitVector ( result . preprocessedModel . getNumberOfChoices ( ) , true ) ) ;
updatePreprocessedModel ( result , * subsystemBuilderResult . model , subsystemBuilderResult . newToOldStateIndexMapping ) ;