Browse Source

1) Excluded the constant templates from the SparseMatrix class, as gcc forbids

explicit specializations of function templates inside classes.
2) Added a parameter to these templates which allows the inference of the type
of the template parameter (gcc seems to need this)
3) Added DOT file output to the SparseMatrix.
main
Thomas Heinemann 13 years ago
parent
commit
b63d168192
  1. 26
      resources/3rdparty/eigen/Eigen/MetisSupport
  2. 17
      resources/3rdparty/eigen/Eigen/SparseLU
  3. 755
      resources/3rdparty/eigen/Eigen/src/Core/AssignEvaluator.h
  4. 1299
      resources/3rdparty/eigen/Eigen/src/Core/CoreEvaluators.h
  5. 411
      resources/3rdparty/eigen/Eigen/src/Core/ProductEvaluators.h
  6. 254
      resources/3rdparty/eigen/Eigen/src/Core/Ref.h
  7. 339
      resources/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
  8. 618
      resources/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h
  9. 82
      src/misc/const_templates.h
  10. 79
      src/sparse/static_sparse_matrix.h

26
resources/3rdparty/eigen/Eigen/MetisSupport

@ -0,0 +1,26 @@
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <metis.h>
}
/** \ingroup Support_modules
* \defgroup MetisSupport_Module MetisSupport module
*
* \code
* #include <Eigen/MetisSupport>
* \endcode
*/
#include "src/MetisSupport/MetisSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_METISSUPPORT_MODULE_H

17
resources/3rdparty/eigen/Eigen/SparseLU

@ -0,0 +1,17 @@
#ifndef EIGEN_SPARSELU_MODULE_H
#define EIGEN_SPARSELU_MODULE_H
#include "SparseCore"
/** \ingroup Sparse_modules
* \defgroup SparseLU_Module SparseLU module
*
*/
// Ordering interface
#include "OrderingMethods"
#include "src/SparseLU/SparseLU.h"
#endif // EIGEN_SPARSELU_MODULE_H

755
resources/3rdparty/eigen/Eigen/src/Core/AssignEvaluator.h

@ -0,0 +1,755 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename Derived, typename OtherDerived>
struct copy_using_evaluator_traits
{
public:
enum {
DstIsAligned = Derived::Flags & AlignedBit,
DstHasDirectAccess = Derived::Flags & DirectAccessBit,
SrcIsAligned = OtherDerived::Flags & AlignedBit,
JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned,
SrcEvalBeforeAssign = (evaluator_traits<OtherDerived>::HasEvalTo == 1)
};
private:
enum {
InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
: int(Derived::RowsAtCompileTime),
InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
: int(Derived::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
PacketSize = packet_traits<typename Derived::Scalar>::size
};
enum {
StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
MightVectorize = StorageOrdersAgree
&& (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = MightVectorize && DstHasDirectAccess
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix */
};
public:
enum {
Traversal = int(SrcEvalBeforeAssign) ? int(AllAtOnceTraversal)
: int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Traversal)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime
};
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator)
{
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, Index+1, Stop>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&) { }
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator,
int outer)
{
dstEvaluator.copyCoeffByOuterInner(outer, Index, srcEvaluator);
copy_using_evaluator_DefaultTraversal_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, Index+1, Stop>
::run(dstEvaluator, srcEvaluator, outer);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&, int) { }
};
/***********************
*** Linear traversal ***
***********************/
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator)
{
dstEvaluator.copyCoeff(Index, srcEvaluator);
copy_using_evaluator_LinearTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, Index+1, Stop>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&) { }
};
/**************************
*** Inner vectorization ***
**************************/
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename SrcEvaluatorType::XprType SrcXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
JointAlignment = copy_using_evaluator_traits<DstXprType,SrcXprType>::JointAlignment
};
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator)
{
dstEvaluator.template copyPacketByOuterInner<Aligned, JointAlignment>(outer, inner, srcEvaluator);
enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
copy_using_evaluator_innervec_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, NextIndex, Stop>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&) { }
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator,
int outer)
{
dstEvaluator.template copyPacketByOuterInner<Aligned, Aligned>(outer, Index, srcEvaluator);
typedef typename DstEvaluatorType::XprType DstXprType;
enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
copy_using_evaluator_innervec_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, NextIndex, Stop>
::run(dstEvaluator, srcEvaluator, outer);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&, int) { }
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// copy_using_evaluator_impl is based on assign_impl
template<typename DstXprType, typename SrcXprType,
int Traversal = copy_using_evaluator_traits<DstXprType, SrcXprType>::Traversal,
int Unrolling = copy_using_evaluator_traits<DstXprType, SrcXprType>::Unrolling>
struct copy_using_evaluator_impl;
/************************
*** Default traversal ***
************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, DefaultTraversal, NoUnrolling>
{
static void run(DstXprType& dst, const SrcXprType& src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
for(Index outer = 0; outer < dst.outerSize(); ++outer) {
for(Index inner = 0; inner < dst.innerSize(); ++inner) {
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
}
}
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, DefaultTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::SizeAtCompileTime>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, DefaultTraversal, InnerUnrolling>
{
typedef typename DstXprType::Index Index;
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::InnerSizeAtCompileTime>
::run(dstEvaluator, srcEvaluator, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
template <bool IsAligned = false>
struct unaligned_copy_using_evaluator_impl
{
// if IsAligned = true, then do nothing
template <typename SrcEvaluatorType, typename DstEvaluatorType>
static EIGEN_STRONG_INLINE void run(const SrcEvaluatorType&, DstEvaluatorType&,
typename SrcEvaluatorType::Index, typename SrcEvaluatorType::Index) {}
};
template <>
struct unaligned_copy_using_evaluator_impl<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
#ifdef _MSC_VER
template <typename DstEvaluatorType, typename SrcEvaluatorType>
static EIGEN_DONT_INLINE void run(DstEvaluatorType &dstEvaluator,
const SrcEvaluatorType &srcEvaluator,
typename DstEvaluatorType::Index start,
typename DstEvaluatorType::Index end)
#else
template <typename DstEvaluatorType, typename SrcEvaluatorType>
static EIGEN_STRONG_INLINE void run(DstEvaluatorType &dstEvaluator,
const SrcEvaluatorType &srcEvaluator,
typename DstEvaluatorType::Index start,
typename DstEvaluatorType::Index end)
#endif
{
for (typename DstEvaluatorType::Index index = start; index < end; ++index)
dstEvaluator.copyCoeff(index, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearVectorizedTraversal, NoUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index size = dst.size();
typedef packet_traits<typename DstXprType::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
dstIsAligned = int(copy_using_evaluator_traits<DstXprType,SrcXprType>::DstIsAligned),
dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : dstIsAligned,
srcAlignment = copy_using_evaluator_traits<DstXprType,SrcXprType>::JointAlignment
};
const Index alignedStart = dstIsAligned ? 0 : first_aligned(&dstEvaluator.coeffRef(0), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_copy_using_evaluator_impl<dstIsAligned!=0>::run(dstEvaluator, srcEvaluator, 0, alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
{
dstEvaluator.template copyPacket<dstAlignment, srcAlignment>(index, srcEvaluator);
}
unaligned_copy_using_evaluator_impl<>::run(dstEvaluator, srcEvaluator, alignedEnd, size);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearVectorizedTraversal, CompleteUnrolling>
{
typedef typename DstXprType::Index Index;
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
enum { size = DstXprType::SizeAtCompileTime,
packetSize = packet_traits<typename DstXprType::Scalar>::size,
alignedSize = (size/packetSize)*packetSize };
copy_using_evaluator_innervec_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, alignedSize>
::run(dstEvaluator, srcEvaluator);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, alignedSize, size>
::run(dstEvaluator, srcEvaluator);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index packetSize = packet_traits<typename DstXprType::Scalar>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize) {
dstEvaluator.template copyPacketByOuterInner<Aligned, Aligned>(outer, inner, srcEvaluator);
}
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
copy_using_evaluator_innervec_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::SizeAtCompileTime>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversal, InnerUnrolling>
{
typedef typename DstXprType::Index Index;
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::InnerSizeAtCompileTime>
::run(dstEvaluator, srcEvaluator, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index size = dst.size();
for(Index i = 0; i < size; ++i)
dstEvaluator.copyCoeff(i, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
copy_using_evaluator_LinearTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::SizeAtCompileTime>
::run(dstEvaluator, srcEvaluator);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, SliceVectorizedTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
typedef packet_traits<typename DstXprType::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
alignable = PacketTraits::AlignedOnScalar,
dstAlignment = alignable ? Aligned : int(copy_using_evaluator_traits<DstXprType,SrcXprType>::DstIsAligned)
};
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || copy_using_evaluator_traits<DstXprType,SrcXprType>::DstIsAligned) ? 0
: first_aligned(&dstEvaluator.coeffRef(0,0), innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner) {
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
}
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize) {
dstEvaluator.template copyPacketByOuterInner<dstAlignment, Unaligned>(outer, inner, srcEvaluator);
}
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner) {
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
}
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
/****************************
*** All-at-once traversal ***
****************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, AllAtOnceTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
// Evaluate rhs in temporary to prevent aliasing problems in a = a * a;
// TODO: Do not pass the xpr object to evalTo()
srcEvaluator.evalTo(dstEvaluator, dst);
}
};
/***************************************************************************
* Part 4 : Entry points
***************************************************************************/
// Based on DenseBase::LazyAssign()
template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst,
const EigenBase<SrcXprType>& src)
{
return noalias_copy_using_evaluator(dst.expression(), src.derived());
}
template<typename XprType, int AssumeAliasing = evaluator_traits<XprType>::AssumeAliasing>
struct AddEvalIfAssumingAliasing;
template<typename XprType>
struct AddEvalIfAssumingAliasing<XprType, 0>
{
static const XprType& run(const XprType& xpr)
{
return xpr;
}
};
template<typename XprType>
struct AddEvalIfAssumingAliasing<XprType, 1>
{
static const EvalToTemp<XprType> run(const XprType& xpr)
{
return EvalToTemp<XprType>(xpr);
}
};
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
return noalias_copy_using_evaluator(dst.const_cast_derived(),
AddEvalIfAssumingAliasing<SrcXprType>::run(src.derived()));
}
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& noalias_copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
#ifdef EIGEN_DEBUG_ASSIGN
internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
: (dst.rows() == src.rows() && dst.cols() == src.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#else
dst.const_cast_derived().resizeLike(src.derived());
#endif
return copy_using_evaluator_without_resizing(dst.const_cast_derived(), src.derived());
}
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& noalias_copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
return copy_using_evaluator_without_resizing(dst.const_cast_derived(), src.derived());
}
template<typename DstXprType, typename SrcXprType>
const DstXprType& copy_using_evaluator_without_resizing(const DstXprType& dst, const SrcXprType& src)
{
#ifdef EIGEN_DEBUG_ASSIGN
internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
copy_using_evaluator_impl<DstXprType, SrcXprType>::run(const_cast<DstXprType&>(dst), src);
return dst;
}
// Based on DenseBase::swap()
// TODO: Chech whether we need to do something special for swapping two
// Arrays or Matrices.
template<typename DstXprType, typename SrcXprType>
void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
{
copy_using_evaluator(SwapWrapper<DstXprType>(const_cast<DstXprType&>(dst)), src);
}
// Based on MatrixBase::operator+= (in CwiseBinaryOp.h)
template<typename DstXprType, typename SrcXprType>
void add_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
// Based on ArrayBase::operator+=
template<typename DstXprType, typename SrcXprType>
void add_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
// TODO: Add add_assign_using_evaluator for EigenBase ?
template<typename DstXprType, typename SrcXprType>
void subtract_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
template<typename DstXprType, typename SrcXprType>
void subtract_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
template<typename DstXprType, typename SrcXprType>
void multiply_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
template<typename DstXprType, typename SrcXprType>
void divide_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H

1299
resources/3rdparty/eigen/Eigen/src/Core/CoreEvaluators.h
File diff suppressed because it is too large
View File

411
resources/3rdparty/eigen/Eigen/src/Core/ProductEvaluators.h

@ -0,0 +1,411 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H
namespace Eigen {
namespace internal {
// We can evaluate the product either all at once, like GeneralProduct and its evalTo() function, or
// traverse the matrix coefficient by coefficient, like CoeffBasedProduct. Use the existing logic
// in ProductReturnType to decide.
template<typename XprType, typename ProductType>
struct product_evaluator_dispatcher;
template<typename Lhs, typename Rhs>
struct evaluator_impl<Product<Lhs, Rhs> >
: product_evaluator_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
{
typedef Product<Lhs, Rhs> XprType;
typedef product_evaluator_dispatcher<XprType, typename ProductReturnType<Lhs, Rhs>::Type> Base;
evaluator_impl(const XprType& xpr) : Base(xpr)
{ }
};
template<typename XprType, typename ProductType>
struct product_evaluator_traits_dispatcher;
template<typename Lhs, typename Rhs>
struct evaluator_traits<Product<Lhs, Rhs> >
: product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
{
static const int AssumeAliasing = 1;
};
// Case 1: Evaluate all at once
//
// We can view the GeneralProduct class as a part of the product evaluator.
// Four sub-cases: InnerProduct, OuterProduct, GemmProduct and GemvProduct.
// InnerProduct is special because GeneralProduct does not have an evalTo() method in this case.
template<typename Lhs, typename Rhs>
struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
{
static const int HasEvalTo = 0;
};
template<typename Lhs, typename Rhs>
struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
: public evaluator<typename Product<Lhs, Rhs>::PlainObject>::type
{
typedef Product<Lhs, Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename evaluator<PlainObject>::type evaluator_base;
// TODO: Computation is too early (?)
product_evaluator_dispatcher(const XprType& xpr) : evaluator_base(m_result)
{
m_result.coeffRef(0,0) = (xpr.lhs().transpose().cwiseProduct(xpr.rhs())).sum();
}
protected:
PlainObject m_result;
};
// For the other three subcases, simply call the evalTo() method of GeneralProduct
// TODO: GeneralProduct should take evaluators, not expression objects.
template<typename Lhs, typename Rhs, int ProductType>
struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
{
static const int HasEvalTo = 1;
};
template<typename Lhs, typename Rhs, int ProductType>
struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
{
typedef Product<Lhs, Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename evaluator<PlainObject>::type evaluator_base;
product_evaluator_dispatcher(const XprType& xpr) : m_xpr(xpr)
{ }
template<typename DstEvaluatorType, typename DstXprType>
void evalTo(DstEvaluatorType /* not used */, DstXprType& dst)
{
dst.resize(m_xpr.rows(), m_xpr.cols());
GeneralProduct<Lhs, Rhs, ProductType>(m_xpr.lhs(), m_xpr.rhs()).evalTo(dst);
}
protected:
const XprType& m_xpr;
};
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
{
static const int HasEvalTo = 0;
};
template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
struct product_evaluator_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
: evaluator_impl_base<Product<Lhs, Rhs> >
{
typedef Product<Lhs, Rhs> XprType;
typedef CoeffBasedProduct<LhsNested, RhsNested, Flags> CoeffBasedProductType;
product_evaluator_dispatcher(const XprType& xpr)
: m_lhsImpl(xpr.lhs()),
m_rhsImpl(xpr.rhs()),
m_innerDim(xpr.lhs().cols())
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
// Everything below here is taken from CoeffBasedProduct.h
enum {
RowsAtCompileTime = traits<CoeffBasedProductType>::RowsAtCompileTime,
PacketSize = packet_traits<Scalar>::size,
InnerSize = traits<CoeffBasedProductType>::InnerSize,
CoeffReadCost = traits<CoeffBasedProductType>::CoeffReadCost,
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
CanVectorizeInner = traits<CoeffBasedProductType>::CanVectorizeInner
};
typedef typename evaluator<Lhs>::type LhsEtorType;
typedef typename evaluator<Rhs>::type RhsEtorType;
typedef etor_product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
Unroll ? InnerSize-1 : Dynamic,
LhsEtorType, RhsEtorType, Scalar> CoeffImpl;
const CoeffReturnType coeff(Index row, Index col) const
{
Scalar res;
CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
*/
const CoeffReturnType coeff(Index index) const
{
Scalar res;
const Index row = RowsAtCompileTime == 1 ? 0 : index;
const Index col = RowsAtCompileTime == 1 ? index : 0;
CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
template<int LoadMode>
const PacketReturnType packet(Index row, Index col) const
{
PacketScalar res;
typedef etor_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
Unroll ? InnerSize-1 : Dynamic,
LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
protected:
typename evaluator<Lhs>::type m_lhsImpl;
typename evaluator<Rhs>::type m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/
/**************************************
*** Scalar path - no vectorization ***
**************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
{
etor_product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, innerDim, res);
res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, RetScalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(Index i = 1; i < innerDim; ++i)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
struct etor_product_coeff_vectorized_unroller
{
typedef typename Lhs::Index Index;
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::PacketScalar &pres)
{
etor_product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
}
};
template<typename Lhs, typename Rhs, typename Packet>
struct etor_product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::PacketScalar &pres)
{
pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::PacketScalar Packet;
typedef typename Lhs::Index Index;
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
{
Packet pres;
etor_product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
etor_product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, innerDim, res);
res = predux(pres);
}
};
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct etor_product_coeff_vectorized_dyn_selector
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
}
};
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
}
};
template<typename Lhs, typename Rhs, int LhsRows>
struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
}
};
template<typename Lhs, typename Rhs>
struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.transpose().cwiseProduct(rhs).sum();
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::Scalar &res)
{
etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, innerDim, res);
}
};
/*******************
*** Packet path ***
*******************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
for(Index i = 1; i < innerDim; ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
for(Index i = 1; i < innerDim; ++i)
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PRODUCT_EVALUATORS_H

254
resources/3rdparty/eigen/Eigen/src/Core/Ref.h

@ -0,0 +1,254 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REF_H
#define EIGEN_REF_H
namespace Eigen {
template<typename Derived> class RefBase;
template<typename PlainObjectType, int Options = 0,
typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
/** \class Ref
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing expressions
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
* but accept a variable outer stride (leading dimension).
* This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies.
* A Ref<> object can represent either a const expression or a l-value:
* \code
* // in-out argument:
* void foo1(Ref<VectorXf> x);
*
* // read-only const argument:
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
* In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
* Likewise, a Ref<MatrixXf> can reference any column major dense matrix expression of float whose column's elements are contiguously stored with
* the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension),
* can be greater than the number of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
* Here are some examples:
* \code
* MatrixXf A;
* VectorXf a;
* foo1(a.head()); // OK
* foo1(A.col()); // OK
* foo1(A.row()); // compilation error because here innerstride!=1
* foo2(A.row()); // The row is copied into a contiguous temporary
* foo2(2*a); // The expression is evaluated into a temporary
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more
* expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a
* template function, e.g.:
* \code
* // in the .h:
* void foo(const Ref<MatrixXf>& A);
* void foo(const Ref<MatrixXf,0,Stride<> >& A);
*
* // in the .cpp:
* template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
* ... // crazy code goes here
* }
* void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
* void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
* \endcode
*
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename _PlainObjectType, int _Options, typename _StrideType>
struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
: public traits<Map<_PlainObjectType, _Options, _StrideType> >
{
typedef _PlainObjectType PlainObjectType;
typedef _StrideType StrideType;
enum {
Options = _Options
};
template<typename Derived> struct match {
enum {
HasDirectAccess = internal::has_direct_access<Derived>::ret,
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
|| int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
|| (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
OuterStrideMatch = Derived::IsVectorAtCompileTime
|| int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime),
AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits<Derived>::Flags&AlignedBit)==AlignedBit),
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch
};
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
};
};
template<typename Derived>
struct traits<RefBase<Derived> > : public traits<Derived> {};
}
template<typename Derived> class RefBase
: public MapBase<Derived>
{
typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType;
typedef typename internal::traits<Derived>::StrideType StrideType;
public:
typedef MapBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(RefBase)
inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags)&RowMajorBit ? this->cols()
: this->rows();
}
RefBase()
: Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime),
// Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values:
m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime,
StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime)
{}
protected:
typedef Stride<StrideType::OuterStrideAtCompileTime,StrideType::InnerStrideAtCompileTime> StrideBase;
template<typename Expression>
void construct(Expression& expr)
{
if(PlainObjectType::RowsAtCompileTime==1)
{
eigen_assert(expr.rows()==1 || expr.cols()==1);
::new (static_cast<Base*>(this)) Base(expr.data(), 1, expr.size());
}
else if(PlainObjectType::ColsAtCompileTime==1)
{
eigen_assert(expr.rows()==1 || expr.cols()==1);
::new (static_cast<Base*>(this)) Base(expr.data(), expr.size(), 1);
}
else
::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
}
StrideBase m_stride;
};
template<typename PlainObjectType, int Options, typename StrideType> class Ref
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
{
typedef internal::traits<Ref> Traits;
public:
typedef RefBase<Ref> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
inline Ref(PlainObjectBase<Derived>& expr,
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
{
Base::construct(expr);
}
template<typename Derived>
inline Ref(const DenseBase<Derived>& expr,
typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0,
int = Derived::ThisConstantIsPrivateInPlainObjectBase)
#else
template<typename Derived>
inline Ref(DenseBase<Derived>& expr)
#endif
{
Base::construct(expr.const_cast_derived());
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref)
};
// this is the const ref version
template<typename PlainObjectType, int Options, typename StrideType> class Ref<const PlainObjectType, Options, StrideType>
: public RefBase<Ref<const PlainObjectType, Options, StrideType> >
{
typedef internal::traits<Ref> Traits;
public:
typedef RefBase<Ref> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
template<typename Derived>
inline Ref(const DenseBase<Derived>& expr)
{
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
// std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n";
construct(expr.derived(), typename Traits::template match<Derived>::type());
}
protected:
template<typename Expression>
void construct(const Expression& expr,internal::true_type)
{
Base::construct(expr);
}
template<typename Expression>
void construct(const Expression& expr, internal::false_type)
{
// std::cout << "Ref: copy\n";
m_object = expr;
Base::construct(m_object);
}
protected:
PlainObjectType m_object;
};
} // end namespace Eigen
#endif // EIGEN_REF_H

339
resources/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h

@ -0,0 +1,339 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
#define EIGEN_GENERALIZEDEIGENSOLVER_H
#include "./RealQZ.h"
namespace Eigen {
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class GeneralizedEigenSolver
*
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
*
* \tparam _MatrixType the type of the matrices of which we are computing the
* eigen-decomposition; this is expected to be an instantiation of the Matrix
* class template. Currently, only real matrices are supported.
*
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
*
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
* called the left eigenvector.
*
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
* a given matrix pair. Alternatively, you can use the
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
* eigenvectors() functions.
*
* Here is an usage example of this class:
* Example: \include GeneralizedEigenSolver.cpp
* Output: \verbinclude GeneralizedEigenSolver.out
*
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class GeneralizedEigenSolver
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type #MatrixType. */
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
/** \brief Complex scalar type for #MatrixType.
*
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
* \c float or \c double) and just \c Scalar if #Scalar is
* complex.
*/
typedef std::complex<RealScalar> ComplexScalar;
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type #Scalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
/** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type #ComplexScalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
*/
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
*
* This is a square matrix with entries of type #ComplexScalar.
* The size is the same as the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
/** \brief Default constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
*
* \sa compute() for an example.
*/
GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
/** \brief Default constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa GeneralizedEigenSolver()
*/
GeneralizedEigenSolver(Index size)
: m_eivec(size, size),
m_alphas(size),
m_betas(size),
m_isInitialized(false),
m_eigenvectorsOk(false),
m_realQZ(size),
m_matS(size, size),
m_tmp(size)
{}
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
*
* \param[in] A Square matrix whose eigendecomposition is to be computed.
* \param[in] B Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are computed.
*
* This constructor calls compute() to compute the generalized eigenvalues
* and eigenvectors.
*
* \sa compute()
*/
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
: m_eivec(A.rows(), A.cols()),
m_alphas(A.cols()),
m_betas(A.cols()),
m_isInitialized(false),
m_eigenvectorsOk(false),
m_realQZ(A.cols()),
m_matS(A.rows(), A.cols()),
m_tmp(A.cols())
{
compute(A, B, computeEigenvectors);
}
/* \brief Returns the computed generalized eigenvectors.
*
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
* \p computeEigenvectors was set to true (the default).
*
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
* matrix returned by this function is the matrix \f$ V \f$ in the
* generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
*
* \sa eigenvalues()
*/
// EigenvectorsType eigenvectors() const;
/** \brief Returns an expression of the computed generalized eigenvalues.
*
* \returns An expression of the column vector containing the eigenvalues.
*
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
* Not that betas might contain zeros. It is therefore not recommended to use this function,
* but rather directly deal with the alphas and betas vectors.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
*
* The eigenvalues are repeated according to their algebraic multiplicity,
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
* are not sorted in any particular order.
*
* \sa alphas(), betas(), eigenvectors()
*/
EigenvalueType eigenvalues() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return EigenvalueType(m_alphas,m_betas);
}
/** \returns A const reference to the vectors containing the alpha values
*
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
*
* \sa betas(), eigenvalues() */
ComplexVectorType alphas() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return m_alphas;
}
/** \returns A const reference to the vectors containing the beta values
*
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
*
* \sa alphas(), eigenvalues() */
VectorType betas() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return m_betas;
}
/** \brief Computes generalized eigendecomposition of given matrix.
*
* \param[in] A Square matrix whose eigendecomposition is to be computed.
* \param[in] B Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \returns Reference to \c *this
*
* This function computes the eigenvalues of the real matrix \p matrix.
* The eigenvalues() function can be used to retrieve them. If
* \p computeEigenvectors is true, then the eigenvectors are also computed
* and can be retrieved by calling eigenvectors().
*
* The matrix is first reduced to real generalized Schur form using the RealQZ
* class. The generalized Schur decomposition is then used to compute the eigenvalues
* and eigenvectors.
*
* The cost of the computation is dominated by the cost of the
* generalized Schur decomposition.
*
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
*/
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_realQZ.info();
}
/** Sets the maximal number of iterations allowed.
*/
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
{
m_realQZ.setMaxIterations(maxIters);
return *this;
}
protected:
MatrixType m_eivec;
ComplexVectorType m_alphas;
VectorType m_betas;
bool m_isInitialized;
bool m_eigenvectorsOk;
RealQZ<MatrixType> m_realQZ;
MatrixType m_matS;
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
ColumnVectorType m_tmp;
};
//template<typename MatrixType>
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
//{
// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
// Index n = m_eivec.cols();
// EigenvectorsType matV(n,n);
// // TODO
// return matV;
//}
template<typename MatrixType>
GeneralizedEigenSolver<MatrixType>&
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
{
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
// Reduce to generalized real Schur form:
// A = Q S Z and B = Q T Z
m_realQZ.compute(A, B, computeEigenvectors);
if (m_realQZ.info() == Success)
{
m_matS = m_realQZ.matrixS();
if (computeEigenvectors)
m_eivec = m_realQZ.matrixZ().transpose();
// Compute eigenvalues from matS
m_alphas.resize(A.cols());
m_betas.resize(A.cols());
Index i = 0;
while (i < A.cols())
{
if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
{
m_alphas.coeffRef(i) = m_matS.coeff(i, i);
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
++i;
}
else
{
Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
Scalar z = internal::sqrt(internal::abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
i += 2;
}
}
}
m_isInitialized = true;
m_eigenvectorsOk = false;//computeEigenvectors;
return *this;
}
} // end namespace Eigen
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H

618
resources/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h

@ -0,0 +1,618 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REAL_QZ_H
#define EIGEN_REAL_QZ_H
namespace Eigen {
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class RealQZ
*
* \brief Performs a real QZ decomposition of a pair of square matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* real QZ decomposition; this is expected to be an instantiation of the
* Matrix class template.
*
* Given a real square matrices A and B, this class computes the real QZ
* decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
* real orthogonal matrixes, T is upper-triangular matrix, and S is upper
* quasi-triangular matrix. An orthogonal matrix is a matrix whose
* inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
* matrix is a block-triangular matrix whose diagonal consists of 1-by-1
* blocks and 2-by-2 blocks where further reduction is impossible due to
* complex eigenvalues.
*
* The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
* 1x1 and 2x2 blocks on the diagonals of S and T.
*
* Call the function compute() to compute the real QZ decomposition of a
* given pair of matrices. Alternatively, you can use the
* RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
* constructor which computes the real QZ decomposition at construction
* time. Once the decomposition is computed, you can use the matrixS(),
* matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
* S, T, Q and Z in the decomposition. If computeQZ==false, some time
* is saved by not computing matrices Q and Z.
*
* Example: \include RealQZ_compute.cpp
* Output: \include RealQZ_compute.out
*
* \note The implementation is based on the algorithm in "Matrix Computations"
* by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
* generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
*
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class RealQZ
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
/** \brief Default constructor.
*
* \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via compute(). The \p size parameter is only
* used as a hint. It is not an error to give a wrong \p size, but it may
* impair performance.
*
* \sa compute() for an example.
*/
RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) :
m_S(size, size),
m_T(size, size),
m_Q(size, size),
m_Z(size, size),
m_workspace(size*2),
m_maxIters(400),
m_isInitialized(false)
{ }
/** \brief Constructor; computes real QZ decomposition of given matrices
*
* \param[in] A Matrix A.
* \param[in] B Matrix B.
* \param[in] computeQZ If false, A and Z are not computed.
*
* This constructor calls compute() to compute the QZ decomposition.
*/
RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
m_S(A.rows(),A.cols()),
m_T(A.rows(),A.cols()),
m_Q(A.rows(),A.cols()),
m_Z(A.rows(),A.cols()),
m_workspace(A.rows()*2),
m_maxIters(400),
m_isInitialized(false) {
compute(A, B, computeQZ);
}
/** \brief Returns matrix Q in the QZ decomposition.
*
* \returns A const reference to the matrix Q.
*/
const MatrixType& matrixQ() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
return m_Q;
}
/** \brief Returns matrix Z in the QZ decomposition.
*
* \returns A const reference to the matrix Z.
*/
const MatrixType& matrixZ() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
return m_Z;
}
/** \brief Returns matrix S in the QZ decomposition.
*
* \returns A const reference to the matrix S.
*/
const MatrixType& matrixS() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_S;
}
/** \brief Returns matrix S in the QZ decomposition.
*
* \returns A const reference to the matrix S.
*/
const MatrixType& matrixT() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_T;
}
/** \brief Computes QZ decomposition of given matrix.
*
* \param[in] A Matrix A.
* \param[in] B Matrix B.
* \param[in] computeQZ If false, A and Z are not computed.
* \returns Reference to \c *this
*/
RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_info;
}
/** \brief Returns number of performed QR-like iterations.
*/
Index iterations() const
{
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_global_iter;
}
/** Sets the maximal number of iterations allowed to converge to one eigenvalue
* or decouple the problem.
*/
RealQZ& setMaxIterations(Index maxIters)
{
m_maxIters = maxIters;
return *this;
}
private:
MatrixType m_S, m_T, m_Q, m_Z;
Matrix<Scalar,Dynamic,1> m_workspace;
ComputationInfo m_info;
Index m_maxIters;
bool m_isInitialized;
bool m_computeQZ;
Scalar m_normOfT, m_normOfS;
Index m_global_iter;
typedef Matrix<Scalar,3,1> Vector3s;
typedef Matrix<Scalar,2,1> Vector2s;
typedef Matrix<Scalar,2,2> Matrix2s;
typedef JacobiRotation<Scalar> JRs;
void hessenbergTriangular();
void computeNorms();
Index findSmallSubdiagEntry(Index iu);
Index findSmallDiagEntry(Index f, Index l);
void splitOffTwoRows(Index i);
void pushDownZero(Index z, Index f, Index l);
void step(Index f, Index l, Index iter);
}; // RealQZ
/** \internal Reduces S and T to upper Hessenberg - triangular form */
template<typename MatrixType>
void RealQZ<MatrixType>::hessenbergTriangular()
{
const Index dim = m_S.cols();
// perform QR decomposition of T, overwrite T with R, save Q
HouseholderQR<MatrixType> qrT(m_T);
m_T = qrT.matrixQR();
m_T.template triangularView<StrictlyLower>().setZero();
m_Q = qrT.householderQ();
// overwrite S with Q* S
m_S.applyOnTheLeft(m_Q.adjoint());
// init Z as Identity
if (m_computeQZ)
m_Z = MatrixType::Identity(dim,dim);
// reduce S to upper Hessenberg with Givens rotations
for (Index j=0; j<=dim-3; j++) {
for (Index i=dim-1; i>=j+2; i--) {
JRs G;
// kill S(i,j)
if(m_S.coeff(i,j) != 0)
{
G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
m_S.coeffRef(i,j) = Scalar(0.0);
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
}
// update Q
if (m_computeQZ)
m_Q.applyOnTheRight(i-1,i,G);
// kill T(i,i-1)
if(m_T.coeff(i,i-1)!=Scalar(0))
{
G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
m_T.coeffRef(i,i-1) = Scalar(0.0);
m_S.applyOnTheRight(i,i-1,G);
m_T.topRows(i).applyOnTheRight(i,i-1,G);
}
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(i,i-1,G.adjoint());
}
}
}
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
template<typename MatrixType>
inline void RealQZ<MatrixType>::computeNorms()
{
const Index size = m_S.cols();
m_normOfS = Scalar(0.0);
m_normOfT = Scalar(0.0);
for (Index j = 0; j < size; ++j)
{
m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
}
}
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
template<typename MatrixType>
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
{
Index res = iu;
while (res > 0)
{
Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res));
if (s == Scalar(0.0))
s = m_normOfS;
if (internal::abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
break;
res--;
}
return res;
}
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
template<typename MatrixType>
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
{
Index res = l;
while (res >= f) {
if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
break;
res--;
}
return res;
}
/** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
template<typename MatrixType>
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
{
const Index dim=m_S.cols();
if (internal::abs(m_S.coeff(i+1,i)==Scalar(0)))
return;
Index z = findSmallDiagEntry(i,i+1);
if (z==i-1)
{
// block of (S T^{-1})
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
template solve<OnTheRight>(m_S.template block<2,2>(i,i));
Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
Scalar q = p*p + STi(1,0)*STi(0,1);
if (q>=0) {
Scalar z = internal::sqrt(q);
// one QR-like iteration for ABi - lambda I
// is enough - when we know exact eigenvalue in advance,
// convergence is immediate
JRs G;
if (p>=0)
G.makeGivens(p + z, STi(1,0));
else
G.makeGivens(p - z, STi(1,0));
m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
// update Q
if (m_computeQZ)
m_Q.applyOnTheRight(i,i+1,G);
G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(i+1,i,G.adjoint());
m_S.coeffRef(i+1,i) = Scalar(0.0);
m_T.coeffRef(i+1,i) = Scalar(0.0);
}
}
else
{
pushDownZero(z,i,i+1);
}
}
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
template<typename MatrixType>
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
{
JRs G;
const Index dim = m_S.cols();
for (Index zz=z; zz<l; zz++)
{
// push 0 down
Index firstColS = zz>f ? (zz-1) : zz;
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
// update Q
if (m_computeQZ)
m_Q.applyOnTheRight(zz,zz+1,G);
// kill S(zz+1, zz-1)
if (zz>f)
{
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
}
}
// finally kill S(l,l-1)
G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
m_S.applyOnTheRight(l,l-1,G);
m_T.applyOnTheRight(l,l-1,G);
m_S.coeffRef(l,l-1)=Scalar(0.0);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
}
/** \internal QR-like iterative step for block f..l */
template<typename MatrixType>
inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) {
const Index dim = m_S.cols();
// x, y, z
Scalar x, y, z;
if (iter==10)
{
// Wilkinson ad hoc shift
const Scalar
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
b12=m_T.coeff(f+0,f+1),
b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
a87=m_S.coeff(l-1,l-2),
a98=m_S.coeff(l-0,l-1),
b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
Scalar ss = internal::abs(a87*b77i) + internal::abs(a98*b88i),
lpl = Scalar(1.5)*ss,
ll = ss*ss;
x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
- a11*a21*b12*b11i*b11i*b22i;
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
- a21*a21*b12*b11i*b11i*b22i;
z = a21*a32*b11i*b22i;
}
else if (iter==16)
{
// another exceptional shift
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
z = 0;
}
else if (iter>23 && !(iter%8))
{
// extremely exceptional shift
x = internal::random<Scalar>(-1.0,1.0);
y = internal::random<Scalar>(-1.0,1.0);
z = internal::random<Scalar>(-1.0,1.0);
}
else
{
// Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
// where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
// U and V are 2x2 bottom right sub matrices of A and B. Thus:
// = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
// = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
// Since we are only interested in having x, y, z with a correct ratio, we have:
const Scalar
a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
a32 = m_S.coeff(f+2,f+1),
a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
b22 = m_T.coeff(f+1,f+1),
b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
b99 = m_T.coeff(l,l);
x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
+ a12/b22 - (a11/b11)*(b12/b22);
y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
z = a32/b22;
}
JRs G;
for (Index k=f; k<=l-2; k++)
{
// variables for Householder reflections
Vector2s essential2;
Scalar tau, beta;
Vector3s hr(x,y,z);
// Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>();
Index fc=(std::max)(k-1,Index(0)); // first col to update
m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
if (m_computeQZ)
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
if (k>f)
m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
// Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>();
{
Index lr = (std::min)(k+4,dim); // last row to update
Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
// S
tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
tmp += m_S.col(k+2).head(lr);
m_S.col(k+2).head(lr) -= tau*tmp;
m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
// T
tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
tmp += m_T.col(k+2).head(lr);
m_T.col(k+2).head(lr) -= tau*tmp;
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
}
if (m_computeQZ)
{
// Z
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
tmp += m_Z.row(k+2);
m_Z.row(k+2) -= tau*tmp;
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
}
m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
// Z_{k2} to annihilate T(k+1,k)
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
m_S.applyOnTheRight(k+1,k,G);
m_T.applyOnTheRight(k+1,k,G);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(k+1,k,G.adjoint());
m_T.coeffRef(k+1,k) = Scalar(0.0);
// update x,y,z
x = m_S.coeff(k+1,k);
y = m_S.coeff(k+2,k);
if (k < l-2)
z = m_S.coeff(k+3,k);
} // loop over k
// Q_{n-1} to annihilate y = S(l,l-2)
G.makeGivens(x,y);
m_S.applyOnTheLeft(l-1,l,G.adjoint());
m_T.applyOnTheLeft(l-1,l,G.adjoint());
if (m_computeQZ)
m_Q.applyOnTheRight(l-1,l,G);
m_S.coeffRef(l,l-2) = Scalar(0.0);
// Z_{n-1} to annihilate T(l,l-1)
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
m_S.applyOnTheRight(l,l-1,G);
m_T.applyOnTheRight(l,l-1,G);
if (m_computeQZ)
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
m_T.coeffRef(l,l-1) = Scalar(0.0);
}
template<typename MatrixType>
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
{
const Index dim = A_in.cols();
assert (A_in.rows()==dim && A_in.cols()==dim
&& B_in.rows()==dim && B_in.cols()==dim
&& "Need square matrices of the same dimension");
m_isInitialized = true;
m_computeQZ = computeQZ;
m_S = A_in; m_T = B_in;
m_workspace.resize(dim*2);
m_global_iter = 0;
// entrance point: hessenberg triangular decomposition
hessenbergTriangular();
// compute L1 vector norms of T, S into m_normOfS, m_normOfT
computeNorms();
Index l = dim-1,
f,
local_iter = 0;
while (l>0 && local_iter<m_maxIters)
{
f = findSmallSubdiagEntry(l);
// now rows and columns f..l (including) decouple from the rest of the problem
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
if (f == l) // One root found
{
l--;
local_iter = 0;
}
else if (f == l-1) // Two roots found
{
splitOffTwoRows(f);
l -= 2;
local_iter = 0;
}
else // No convergence yet
{
// if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
Index z = findSmallDiagEntry(f,l);
if (z>=f)
{
// zero found
pushDownZero(z,f,l);
}
else
{
// We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg
// and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
// apply a QR-like iteration to rows and columns f..l.
step(f,l, local_iter);
local_iter++;
m_global_iter++;
}
}
}
// check if we converged before reaching iterations limit
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
return *this;
} // end compute
} // end namespace Eigen
#endif //EIGEN_REAL_QZ

82
src/misc/const_templates.h

@ -0,0 +1,82 @@
/*
* const_templates.h
*
* Created on: 11.10.2012
* Author: Thomas Heinemann
*/
#ifndef CONST_TEMPLATES_H_
#define CONST_TEMPLATES_H_
namespace mrmc {
namespace misc {
/*!
* Returns a constant value of 0 that is fit to the type it is being written to.
* As (at least) gcc has problems to use the correct template by the return value
* only, the function gets a pointer as a parameter to infer the return type.
*
* <b>Parameter</b>
*
* The parameter is a pointer which is used to infer the return type (So, if you want
* the return value to be of type double, the parameter has to be of type double*).
* In most cases, it is a good choice to use the address of the variable that is to be
* set.
*/
template<typename _Scalar>
static inline _Scalar constGetZero(_Scalar*) {
return _Scalar(0);
}
/*! @cond TEMPLATE_SPECIALIZATION
* (exclude the specializations from the documentation) */
template <>
inline int_fast32_t constGetZero(int_fast32_t*) {
return 0;
}
/*! @internal
* Specialization of constGetZero for int_fast32_t
*/
template <>
inline double constGetZero(double*) {
return 0.0;
}
/*! @endcond */
/*!
* Returns a constant value of 0 that is fit to the type it is being written to.
* As (at least) gcc has problems to use the correct template by the return value
* only, the function gets a pointer as a parameter to infer the return type.
*
* <b>Parameter</b>
*
* The parameter is a pointer which is used to infer the return type (So, if you want
* the return value to be of type double, the parameter has to be of type double*).
* In most cases, it is a good choice to use the address of the variable that is to be
* set.
*/
template<typename _Scalar>
static inline _Scalar constGetOne(_Scalar*) {
return _Scalar(1);
}
/*! @cond TEMPLATE_SPECIALIZATION
* (exclude the specializations from the documentation) */
template<>
inline int_fast32_t constGetOne(int_fast32_t*) {
return 1;
}
template<>
inline double constGetOne(double*) {
return 1.0;
}
/*! @endcond */
} //namespace misc
} //namespace mrmc
#endif /* CONST_TEMPLATES_H_ */

79
src/sparse/static_sparse_matrix.h

@ -11,6 +11,9 @@
#include "src/exceptions/invalid_state.h"
#include "src/exceptions/invalid_argument.h"
#include "src/exceptions/out_of_range.h"
#include "src/exceptions/file_IO_exception.h"
#include "src/misc/const_templates.h"
#include "Eigen/Sparse"
@ -430,15 +433,58 @@ class StaticSparseMatrix {
uint_fast64_t row_start = row_indications[state - 1];
uint_fast64_t row_end = row_indications[state];
while (row_start < row_end) {
value_storage[row_start] = getConstZero();
value_storage[row_start] = mrmc::misc::constGetZero(value_storage);
row_start++;
}
diagonal_storage[state] = getConstOne();
diagonal_storage[state] = mrmc::misc::constGetOne(diagonal_storage);
return true;
}
/*!
Creates a DOT file which provides the graph of the transition structure
represented by the matrix.
@param filename The Name of the file to write in. If the file already exists,
it will be overwritten.
*/
void toDOTFile(const char* filename) {
FILE *P;
P = fopen(filename, "w");
if (P == NULL) {
pantheios::log_ERROR("File could not be opened.");
throw mrmc::exceptions::file_IO_exception();
}
fprintf(P, "digraph dtmc {\n");
uint_fast64_t row = 0;
for (uint_fast64_t i = 0; i < non_zero_entry_count; i++ ) {
//Check whether we have to switch to the new row
while (row_indications[row] <= i) {
++row;
//write diagonal entry/self loop first
if (diagonal_storage[row] != 0) {
fprintf(P, "\t%Lu -> %Lu [label=%f]\n",
row, row, diagonal_storage[row]);
}
}
fprintf(P, "\t%Lu -> %Lu [label=%f]\n",
row, column_indications[i], value_storage[i]);
}
fprintf(P, "}\n");
fclose(P);
}
private:
uint_fast64_t current_size;
@ -492,35 +538,6 @@ class StaticSparseMatrix {
//!
template<typename _Scalar>
_Scalar constGetZero() const {
return _Scalar(0);
}
template <>
int_fast32_t constGetZero() const {
return 0;
}
template <>
double constGetZero() const {
return 0.0;
}
template<typename _Scalar>
_Scalar constGetOne() const {
return _Scalar(1);
}
template<>
int_fast32_t constGetOne() const {
return 1;
}
template<>
double constGetOne() const {
return 1.0;
}
template <typename _Scalar, typename _Index>
bool isEigenRowMajor(Eigen::SparseMatrix<_Scalar, Eigen::RowMajor, _Index>) {

Loading…
Cancel
Save