|
|
@ -288,8 +288,6 @@ namespace storm { |
|
|
|
// Create resulting vector. |
|
|
|
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates()); |
|
|
|
|
|
|
|
std::vector<uint_fast64_t> guessedScheduler; |
|
|
|
|
|
|
|
// Check whether we need to compute exact probabilities for some states. |
|
|
|
if (this->getInitialStates().isDisjointFrom(maybeStates) || qualitative) { |
|
|
|
if (qualitative) { |
|
|
@ -316,7 +314,7 @@ namespace storm { |
|
|
|
std::vector<Type> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, this->getModel().getNondeterministicChoiceIndices(), statesWithProbability1, submatrix.getRowCount()); |
|
|
|
|
|
|
|
// Create vector for results for maybe states. |
|
|
|
std::vector<Type> x = this->getInitialValueIterationValues(minimize, submatrix, subNondeterministicChoiceIndices, b, statesWithProbability1, maybeStates, &guessedScheduler); |
|
|
|
std::vector<Type> x = this->getInitialValueIterationValues(minimize, submatrix, subNondeterministicChoiceIndices, b, statesWithProbability1, maybeStates); |
|
|
|
|
|
|
|
// Solve the corresponding system of equations. |
|
|
|
if (linearEquationSolver != nullptr) { |
|
|
@ -332,45 +330,7 @@ namespace storm { |
|
|
|
// Set values of resulting vector that are known exactly. |
|
|
|
storm::utility::vector::setVectorValues<Type>(*result, statesWithProbability0, storm::utility::constGetZero<Type>()); |
|
|
|
storm::utility::vector::setVectorValues<Type>(*result, statesWithProbability1, storm::utility::constGetOne<Type>()); |
|
|
|
|
|
|
|
// Output a scheduler for debug purposes. |
|
|
|
std::vector<uint_fast64_t> myScheduler(this->getModel().getNumberOfStates()); |
|
|
|
this->computeTakenChoices(this->minimumOperatorStack.top(), false, *result, myScheduler, this->getModel().getNondeterministicChoiceIndices()); |
|
|
|
|
|
|
|
std::vector<uint_fast64_t> stateColoring(this->getModel().getNumberOfStates()); |
|
|
|
for (auto target : statesWithProbability1) { |
|
|
|
stateColoring[target] = 1; |
|
|
|
} |
|
|
|
|
|
|
|
std::vector<std::string> colors(2); |
|
|
|
colors[0] = "white"; |
|
|
|
colors[1] = "blue"; |
|
|
|
|
|
|
|
std::ofstream outFile; |
|
|
|
outFile.open("real.dot"); |
|
|
|
storm::storage::BitVector filterStates(this->getModel().getNumberOfStates(), true); |
|
|
|
this->getModel().writeDotToStream(outFile, true, &filterStates, result, nullptr, &stateColoring, &colors, &myScheduler); |
|
|
|
outFile.close(); |
|
|
|
|
|
|
|
std::cout << "=========== Scheduler Comparison ===========" << std::endl; |
|
|
|
uint_fast64_t index = 0; |
|
|
|
for (auto state : maybeStates) { |
|
|
|
if (myScheduler[state] != guessedScheduler[index]) { |
|
|
|
std::cout << state << " right: " << myScheduler[state] << ", wrong: " << guessedScheduler[index] << std::endl; |
|
|
|
std::cout << "Correct: " << std::endl; |
|
|
|
typename storm::storage::SparseMatrix<Type>::Rows correctRow = this->getModel().getTransitionMatrix().getRow(this->getModel().getNondeterministicChoiceIndices()[state] + myScheduler[state]); |
|
|
|
for (auto& transition : correctRow) { |
|
|
|
std::cout << "target " << transition.column() << " with prob " << transition.value() << std::endl; |
|
|
|
} |
|
|
|
std::cout << "Incorrect: " << std::endl; |
|
|
|
typename storm::storage::SparseMatrix<Type>::Rows incorrectRow = this->getModel().getTransitionMatrix().getRow(this->getModel().getNondeterministicChoiceIndices()[state] + myScheduler[state]); |
|
|
|
for (auto& transition : incorrectRow) { |
|
|
|
std::cout << "target " << transition.column() << " with prob " << transition.value() << std::endl; |
|
|
|
} |
|
|
|
} |
|
|
|
++index; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// If we were required to generate a scheduler, do so now. |
|
|
|
if (scheduler != nullptr) { |
|
|
|
this->computeTakenChoices(this->minimumOperatorStack.top(), false, *result, *scheduler, this->getModel().getNondeterministicChoiceIndices()); |
|
|
@ -580,20 +540,6 @@ namespace storm { |
|
|
|
storm::utility::vector::setVectorValues(*result, *targetStates, storm::utility::constGetZero<Type>()); |
|
|
|
storm::utility::vector::setVectorValues(*result, infinityStates, storm::utility::constGetInfinity<Type>()); |
|
|
|
|
|
|
|
// std::vector<uint_fast64_t> myScheduler(this->getModel().getNumberOfStates()); |
|
|
|
// this->computeTakenChoices(this->minimumOperatorStack.top(), true, *result, myScheduler, this->getModel().getNondeterministicChoiceIndices()); |
|
|
|
// |
|
|
|
// std::vector<uint_fast64_t> stateColoring(this->getModel().getNumberOfStates()); |
|
|
|
// for (auto target : *targetStates) { |
|
|
|
// stateColoring[target] = 1; |
|
|
|
// } |
|
|
|
// |
|
|
|
// std::vector<std::string> colors(2); |
|
|
|
// colors[0] = "white"; |
|
|
|
// colors[1] = "blue"; |
|
|
|
// |
|
|
|
// this->getModel().writeDotToStream(std::cout, true, storm::storage::BitVector(this->getModel().getNumberOfStates(), true), result, nullptr, &stateColoring, &colors, &myScheduler); |
|
|
|
|
|
|
|
// If we were required to generate a scheduler, do so now. |
|
|
|
if (scheduler != nullptr) { |
|
|
|
this->computeTakenChoices(this->minimumOperatorStack.top(), true, *result, *scheduler, this->getModel().getNondeterministicChoiceIndices()); |
|
|
@ -684,41 +630,43 @@ namespace storm { |
|
|
|
* Retrieves the values to be used as the initial values for the value iteration techniques. |
|
|
|
* |
|
|
|
* @param submatrix The matrix that will be used for value iteration later. |
|
|
|
* @param subNondeterministicChoiceIndices A vector indicating which rows represent the nondeterministic choices |
|
|
|
* of which state in the system that will be used for value iteration. |
|
|
|
* @param rightHandSide The right-hand-side of the equation system used for value iteration. |
|
|
|
* @param targetStates A set of target states that is to be reached. |
|
|
|
* @param maybeStates A set of states that was selected as the system on which to perform value iteration. |
|
|
|
* @param guessedScheduler If not the nullptr, this vector will be filled with the scheduler that was |
|
|
|
* derived as a preliminary guess. |
|
|
|
* @param distancePairs If not the nullptr, this pair of vectors contains the minimal path distances from |
|
|
|
* each state to a target state and a non-target state, respectively. |
|
|
|
* @return The initial values to be used for the value iteration for the given system. |
|
|
|
*/ |
|
|
|
std::vector<Type> getInitialValueIterationValues(bool minimize, storm::storage::SparseMatrix<Type> const& submatrix, |
|
|
|
std::vector<uint_fast64_t> const& subNondeterministicChoiceIndices, |
|
|
|
std::vector<Type> const& rightHandSide, |
|
|
|
storm::storage::BitVector const& targetStates, |
|
|
|
storm::storage::BitVector const& maybeStates, |
|
|
|
std::vector<uint_fast64_t>* guessedScheduler = nullptr) const { |
|
|
|
std::vector<uint_fast64_t>* guessedScheduler = nullptr, |
|
|
|
std::pair<std::vector<Type>, std::vector<Type>>* distancePairs = nullptr) const { |
|
|
|
storm::settings::Settings* s = storm::settings::instance(); |
|
|
|
double precision = s->get<double>("precision"); |
|
|
|
if (s->get<bool>("use-heuristic-presolve")) { |
|
|
|
std::pair<std::vector<Type>, std::vector<uint_fast64_t>> distancesAndPredecessorsPair = storm::utility::graph::performDijkstra(this->getModel(), |
|
|
|
this->getModel().template getBackwardTransitions<Type>([](Type const& value) -> Type { return value; }), |
|
|
|
minimize ? ~(maybeStates | targetStates) : targetStates, &maybeStates); |
|
|
|
// Compute both the most probable paths to target states as well as the most probable path to non-target states. |
|
|
|
// Note that here target state means a state does not *not* satisfy the property that is to be reached |
|
|
|
// if we want to minimize the reachability probability. |
|
|
|
std::pair<std::vector<Type>, std::vector<uint_fast64_t>> maxDistancesAndPredecessorsPairToTarget = storm::utility::graph::performDijkstra(this->getModel(), |
|
|
|
this->getModel().template getBackwardTransitions<Type>([](Type const& value) -> Type { return value; }), |
|
|
|
minimize ? ~(maybeStates | targetStates) : targetStates, &maybeStates); |
|
|
|
|
|
|
|
std::pair<std::vector<Type>, std::vector<uint_fast64_t>> distancesAndPredecessorsPair2 = storm::utility::graph::performDijkstra(this->getModel(), |
|
|
|
this->getModel().template getBackwardTransitions<Type>([](Type const& value) -> Type { return value; }), |
|
|
|
minimize ? targetStates : ~(maybeStates | targetStates), &maybeStates); |
|
|
|
|
|
|
|
std::vector<uint_fast64_t> scheduler = this->convertShortestPathsToScheduler(false, maybeStates, distancesAndPredecessorsPair.first, distancesAndPredecessorsPair.second); |
|
|
|
|
|
|
|
std::vector<uint_fast64_t> stateColoring(this->getModel().getNumberOfStates()); |
|
|
|
for (auto target : targetStates) { |
|
|
|
stateColoring[target] = 1; |
|
|
|
} |
|
|
|
std::pair<std::vector<Type>, std::vector<uint_fast64_t>> maxDistancesAndPredecessorsPairToNonTarget = storm::utility::graph::performDijkstra(this->getModel(), |
|
|
|
this->getModel().template getBackwardTransitions<Type>([](Type const& value) -> Type { return value; }), |
|
|
|
minimize ? targetStates : ~(maybeStates | targetStates), &maybeStates); |
|
|
|
|
|
|
|
std::vector<std::string> colors(2); |
|
|
|
colors[0] = "white"; |
|
|
|
colors[1] = "blue"; |
|
|
|
|
|
|
|
std::ofstream outFile; |
|
|
|
outFile.open("guessed.dot"); |
|
|
|
storm::storage::BitVector filterStates(this->getModel().getNumberOfStates(), true); |
|
|
|
this->getModel().writeDotToStream(outFile, true, &filterStates, &distancesAndPredecessorsPair.first, &distancesAndPredecessorsPair2.first, &stateColoring, &colors); |
|
|
|
outFile.close(); |
|
|
|
// Now guess the scheduler that could possibly maximize the probability of reaching the target states. |
|
|
|
std::vector<uint_fast64_t> scheduler = this->getSchedulerGuess(maybeStates, maxDistancesAndPredecessorsPairToTarget.first, maxDistancesAndPredecessorsPairToNonTarget.first); |
|
|
|
|
|
|
|
// Now that we have a guessed scheduler, we can compute the reachability probability of the system |
|
|
|
// under the given scheduler and take these values as the starting point for value iteration. |
|
|
|
std::vector<Type> result(scheduler.size(), Type(0.5)); |
|
|
|
std::vector<Type> b(scheduler.size()); |
|
|
|
storm::utility::vector::selectVectorValues(b, scheduler, subNondeterministicChoiceIndices, rightHandSide); |
|
|
@ -735,38 +683,52 @@ namespace storm { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// If some of the parameters were given, we fill them with the information that they are supposed |
|
|
|
// to contain. |
|
|
|
if (guessedScheduler != nullptr) { |
|
|
|
*guessedScheduler = std::move(scheduler); |
|
|
|
} |
|
|
|
if (distancePairs != nullptr) { |
|
|
|
distancePairs->first = std::move(maxDistancesAndPredecessorsPairToTarget.first); |
|
|
|
distancePairs->second = std::move(maxDistancesAndPredecessorsPairToNonTarget.first); |
|
|
|
} |
|
|
|
|
|
|
|
return result; |
|
|
|
} else { |
|
|
|
// If guessing a scheduler was not requested, we just return the constant zero vector as the |
|
|
|
// starting point for value iteration. |
|
|
|
return std::vector<Type>(submatrix.getColumnCount()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
std::vector<uint_fast64_t> convertShortestPathsToScheduler(bool minimize, storm::storage::BitVector const& maybeStates, std::vector<Type> const& distances, std::vector<uint_fast64_t> const& shortestPathSuccessors) const { |
|
|
|
/*! |
|
|
|
* Guesses a scheduler that possibly maximizes the probabiliy of reaching the target states. |
|
|
|
* |
|
|
|
* @param maybeStates The states for which the scheduler needs to resolve the nondeterminism. |
|
|
|
* @param distancesToTarget Contains the minimal distance of reaching a target state for each state. |
|
|
|
* @param distancesToNonTarget Contains the minimal distance of reaching a non-target state for each state. |
|
|
|
* @return The scheduler that was guessed based on the given distance information. |
|
|
|
*/ |
|
|
|
std::vector<uint_fast64_t> getSchedulerGuess(storm::storage::BitVector const& maybeStates, std::vector<Type> const& distancesToTarget, std::vector<Type> const& distancesToNonTarget) const { |
|
|
|
std::vector<uint_fast64_t> scheduler(maybeStates.getNumberOfSetBits()); |
|
|
|
|
|
|
|
Type extremalProbability = minimize ? 1 : 0; |
|
|
|
// For each of the states we need to resolve the nondeterministic choice based on the information we are given. |
|
|
|
Type maxProbability = 0; |
|
|
|
Type currentProbability = 0; |
|
|
|
uint_fast64_t currentStateIndex = 0; |
|
|
|
for (auto state : maybeStates) { |
|
|
|
extremalProbability = minimize ? 1 : 0; |
|
|
|
maxProbability = 0; |
|
|
|
|
|
|
|
for (uint_fast64_t row = 0, rowEnd = this->getModel().getNondeterministicChoiceIndices()[state + 1] - this->getModel().getNondeterministicChoiceIndices()[state]; row < rowEnd; ++row) { |
|
|
|
typename storm::storage::SparseMatrix<Type>::Rows currentRow = this->getModel().getTransitionMatrix().getRow(this->getModel().getNondeterministicChoiceIndices()[state] + row); |
|
|
|
currentProbability = 0; |
|
|
|
|
|
|
|
for (auto& transition : currentRow) { |
|
|
|
currentProbability += transition.value() * (1 / std::exp(distances[transition.column()])); |
|
|
|
currentProbability += transition.value() * distancesToTarget[transition.column()]; |
|
|
|
} |
|
|
|
|
|
|
|
if (minimize && currentProbability < extremalProbability) { |
|
|
|
extremalProbability = currentProbability; |
|
|
|
scheduler[currentStateIndex] = row; |
|
|
|
} else if (!minimize && currentProbability > extremalProbability) { |
|
|
|
extremalProbability = currentProbability; |
|
|
|
if (currentProbability < maxProbability) { |
|
|
|
maxProbability = currentProbability; |
|
|
|
scheduler[currentStateIndex] = row; |
|
|
|
} |
|
|
|
} |
|
|
|