Browse Source

fixed the case where an objective is satisfied at the initial state.

correctly added support for lower time bounds


Former-commit-id: 4d13d5de1b
main
TimQu 9 years ago
parent
commit
b267394a2c
  1. 71
      src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.cpp
  2. 75
      src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.cpp
  3. 4
      src/modelchecker/multiobjective/helper/SparseMultiObjectiveHelper.cpp
  4. 12
      src/modelchecker/multiobjective/helper/SparseMultiObjectivePostprocessor.cpp
  5. 117
      src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.cpp
  6. 23
      src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.h
  7. 18
      src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h
  8. 13
      src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp
  9. 21
      src/transformer/StateDuplicator.h
  10. 42
      test/functional/modelchecker/SparseMdpMultiObjectiveModelCheckerTest.cpp

71
src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.cpp

@ -80,6 +80,7 @@ namespace storm {
performMSStep(MS, PS, consideredObjectives);
if(currentEpoch % 1000 == 0) {
STORM_LOG_DEBUG(currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0]);
std::cout << std::endl << currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0] << std::endl;
}
--currentEpoch;
} else {
@ -256,41 +257,43 @@ namespace storm {
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) {
VT const maxRate = this->data.preprocessedModel.getMaximalExitRate();
storm::storage::BitVector boundedObjectives = ~this->unboundedObjectives;
for(uint_fast64_t objIndex : boundedObjectives) {
boost::optional<VT> objLowerBound, objUpperBound;
if(this->data.objectives[objIndex].timeBounds->which() == 0) {
objUpperBound = storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(this->data.objectives[objIndex].timeBounds.get()));
} else {
auto const& pair = boost::get<std::pair<double, double>>(this->data.objectives[objIndex].timeBounds.get());
if(!storm::utility::isZero(pair.first)) {
objLowerBound = storm::utility::convertNumber<VT>(pair.first);
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
auto const& obj = this->data.objectives[objIndex];
if(obj.timeBounds) {
boost::optional<VT> objLowerBound, objUpperBound;
if(obj.timeBounds->which() == 0) {
objUpperBound = storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(obj.timeBounds.get()));
} else {
auto const& pair = boost::get<std::pair<double, double>>(obj.timeBounds.get());
if(!storm::utility::isZero(pair.first)) {
objLowerBound = storm::utility::convertNumber<VT>(pair.first);
}
objUpperBound = storm::utility::convertNumber<VT>(pair.second);
}
if(objLowerBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objLowerBound)/digitizationConstant);
auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objLowerBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToLowerBound[objIndex] = -digitizationError;
} else {
this->offsetsToLowerBound[objIndex] = storm::utility::zero<VT>();
}
objUpperBound = storm::utility::convertNumber<VT>(pair.second);
}
if(objLowerBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objLowerBound)/digitizationConstant);
auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objLowerBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToLowerBound[objIndex] = -digitizationError;
} else {
this->offsetsToLowerBound[objIndex] = storm::utility::zero<VT>();
}
if(objUpperBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objUpperBound)/digitizationConstant);
auto timeBoundIt = upperTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objUpperBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToUpperBound[objIndex] = digitizationError;
} else {
this->offsetsToUpperBound[objIndex] = storm::utility::zero<VT>();
if(objUpperBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objUpperBound)/digitizationConstant);
auto timeBoundIt = upperTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objUpperBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToUpperBound[objIndex] = digitizationError;
} else {
this->offsetsToUpperBound[objIndex] = storm::utility::zero<VT>();
}
STORM_LOG_ASSERT(this->offsetsToUpperBound[objIndex] - this->offsetsToLowerBound[objIndex] <= this->maximumLowerUpperBoundGap, "Precision not sufficient.");
}
STORM_LOG_ASSERT(this->offsetsToUpperBound[objIndex] - this->offsetsToLowerBound[objIndex] <= this->maximumLowerUpperBoundGap, "Precision not sufficient.");
}
}
@ -374,12 +377,14 @@ namespace storm {
// check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed
if(newOptimalChoices != optimalChoicesAtCurrentEpoch) {
std::cout << "Scheduler changed!";
std::cout << "X";
optimalChoicesAtCurrentEpoch.swap(newOptimalChoices);
linEq.solver = nullptr;
storm::storage::SparseMatrix<ValueType> linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true);
linEqMatrix.convertToEquationSystem();
linEq.solver = linEq.factory.create(std::move(linEqMatrix));
} else {
std::cout << " ";
}
for(auto objIndex : consideredObjectives) {
PS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], PS.auxChoiceValues);

75
src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.cpp

@ -27,26 +27,68 @@ namespace storm {
std::vector<uint_fast64_t> optimalChoicesInCurrentEpoch(this->data.preprocessedModel.getNumberOfStates());
std::vector<ValueType> choiceValues(weightedRewardVector.size());
std::vector<ValueType> temporaryResult(this->data.preprocessedModel.getNumberOfStates());
std::vector<ValueType> zeroReward(weightedRewardVector.size(), storm::utility::zero<ValueType>());
// Get for each occurring timeBound the indices of the objectives with that bound.
std::map<uint_fast64_t, storm::storage::BitVector, std::greater<uint_fast64_t>> timeBounds;
storm::storage::BitVector boundedObjectives = ~this->unboundedObjectives;
for(uint_fast64_t objIndex : boundedObjectives) {
uint_fast64_t timeBound = boost::get<uint_fast64_t>(this->data.objectives[objIndex].timeBounds.get());
auto timeBoundIt = timeBounds.insert(std::make_pair(timeBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
// There is no error for the values of these objectives.
this->offsetsToLowerBound[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToUpperBound[objIndex] = storm::utility::zero<ValueType>();
std::map<uint_fast64_t, storm::storage::BitVector, std::greater<uint_fast64_t>> lowerTimeBounds;
std::map<uint_fast64_t, storm::storage::BitVector, std::greater<uint_fast64_t>> upperTimeBounds;
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
auto const& obj = this->data.objectives[objIndex];
if(obj.timeBounds) {
boost::optional<uint_fast64_t> objLowerBound, objUpperBound;
if(obj.timeBounds->which() == 0) {
objUpperBound = boost::get<uint_fast64_t>(obj.timeBounds.get());
} else {
auto const& pair = boost::get<std::pair<double, double>>(obj.timeBounds.get());
if(!storm::utility::isZero(pair.first)) {
objLowerBound = storm::utility::convertNumber<uint_fast64_t>(pair.first);
STORM_LOG_WARN_COND(storm::utility::isZero(pair.first - (*objLowerBound)), "Rounded non-integral bound " << pair.first << " to " << *objLowerBound << ".");
}
objUpperBound = storm::utility::convertNumber<uint_fast64_t>(pair.second);
STORM_LOG_WARN_COND(storm::utility::isZero(pair.second - (*objUpperBound)), "Rounded non-integral bound " << pair.second << " to " << *objUpperBound << ".");
}
if(objLowerBound) {
auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(*objLowerBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
}
if(objUpperBound) {
auto timeBoundIt = upperTimeBounds.insert(std::make_pair(*objUpperBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
}
// There is no error for the values of these objectives.
this->offsetsToLowerBound[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToUpperBound[objIndex] = storm::utility::zero<ValueType>();
}
}
// Stores the objectives for which we need to compute values in the current time epoch.
storm::storage::BitVector consideredObjectives = this->unboundedObjectives;
auto timeBoundIt = timeBounds.begin();
for(uint_fast64_t currentEpoch = timeBoundIt->first; currentEpoch > 0; --currentEpoch) {
if(timeBoundIt != timeBounds.end() && currentEpoch == timeBoundIt->first) {
consideredObjectives |= timeBoundIt->second;
for(auto objIndex : timeBoundIt->second) {
// Stores objectives for which the current epoch passed their lower bound
storm::storage::BitVector lowerBoundViolatedObjectives(consideredObjectives.size(), false);
auto lowerTimeBoundIt = lowerTimeBounds.begin();
auto upperTimeBoundIt = upperTimeBounds.begin();
uint_fast64_t currentEpoch = std::max(lowerTimeBounds.empty() ? 0 : lowerTimeBoundIt->first - 1, upperTimeBounds.empty() ? 0 : upperTimeBoundIt->first); // consider lowerBound - 1 since we are interested in the first epoch that passes the bound
while(currentEpoch > 0) {
//For lower time bounds we need to react when the currentEpoch passed the bound
// Hence, we substract 1 from the lower time bounds.
if(lowerTimeBoundIt != lowerTimeBounds.end() && currentEpoch == lowerTimeBoundIt->first - 1) {
lowerBoundViolatedObjectives |= lowerTimeBoundIt->second;
for(auto objIndex : lowerTimeBoundIt->second) {
// No more reward is earned for this objective.
storm::utility::vector::addScaledVector(weightedRewardVector, this->discreteActionRewards[objIndex], -weightVector[objIndex]);
}
++lowerTimeBoundIt;
}
if(upperTimeBoundIt != upperTimeBounds.end() && currentEpoch == upperTimeBoundIt->first) {
consideredObjectives |= upperTimeBoundIt->second;
for(auto objIndex : upperTimeBoundIt->second) {
// This objective now plays a role in the weighted sum
storm::utility::vector::addScaledVector(weightedRewardVector, this->discreteActionRewards[objIndex], weightVector[objIndex]);
}
++timeBoundIt;
++upperTimeBoundIt;
}
// Get values and scheduler for weighted sum of objectives
@ -58,7 +100,7 @@ namespace storm {
// TODO we could compute the result for one of the objectives from the weighted result, the given weight vector, and the remaining objective results.
for(auto objIndex : consideredObjectives) {
std::vector<ValueType>& objectiveResult = this->objectiveResults[objIndex];
std::vector<ValueType> objectiveRewards = this->discreteActionRewards[objIndex];
std::vector<ValueType> const& objectiveRewards = lowerBoundViolatedObjectives.get(objIndex) ? zeroReward : this->discreteActionRewards[objIndex];
auto rowGroupIndexIt = this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices().begin();
auto optimalChoiceIt = optimalChoicesInCurrentEpoch.begin();
for(ValueType& stateValue : temporaryResult){
@ -72,6 +114,7 @@ namespace storm {
}
objectiveResult.swap(temporaryResult);
}
--currentEpoch;
}
}

4
src/modelchecker/multiobjective/helper/SparseMultiObjectiveHelper.cpp

@ -47,8 +47,8 @@ namespace storm {
return true;
}
for(auto const& preprocessorResult : preprocessorData.solutionsFromPreprocessing) {
if(preprocessorResult == PreprocessorData::PreprocessorObjectiveSolution::False ||
preprocessorResult == PreprocessorData::PreprocessorObjectiveSolution::Undefined) {
if(preprocessorResult.first == PreprocessorData::PreprocessorObjectiveSolution::False ||
preprocessorResult.first == PreprocessorData::PreprocessorObjectiveSolution::Undefined) {
return true;
}
}

12
src/modelchecker/multiobjective/helper/SparseMultiObjectivePostprocessor.cpp

@ -54,7 +54,7 @@ namespace storm {
//Incorporate the results from prerpocessing
for(uint_fast64_t subformulaIndex = 0; subformulaIndex < preprocessorData.originalFormula.getNumberOfSubformulas(); ++subformulaIndex) {
switch(preprocessorData.solutionsFromPreprocessing[subformulaIndex]) {
switch(preprocessorData.solutionsFromPreprocessing[subformulaIndex].first) {
case PreprocessorData::PreprocessorObjectiveSolution::None:
// Nothing to be done
break;
@ -92,7 +92,7 @@ namespace storm {
//Incorporate the results from prerpocessing
boost::optional<ValueType> preprocessorNumericalResult;
for(uint_fast64_t subformulaIndex = 0; subformulaIndex < preprocessorData.originalFormula.getNumberOfSubformulas(); ++subformulaIndex) {
switch(preprocessorData.solutionsFromPreprocessing[subformulaIndex]) {
switch(preprocessorData.solutionsFromPreprocessing[subformulaIndex].first) {
case PreprocessorData::PreprocessorObjectiveSolution::None:
// Nothing to be done
break;
@ -101,9 +101,9 @@ namespace storm {
case PreprocessorData::PreprocessorObjectiveSolution::True:
// Nothing to be done
break;
case PreprocessorData::PreprocessorObjectiveSolution::Zero:
case PreprocessorData::PreprocessorObjectiveSolution::Numerical:
STORM_LOG_ASSERT(!preprocessorNumericalResult, "There are multiple numerical results obtained in preprocessing");
preprocessorNumericalResult = storm::utility::zero<ValueType>();
preprocessorNumericalResult = preprocessorData.solutionsFromPreprocessing[subformulaIndex].second;
break;
case PreprocessorData::PreprocessorObjectiveSolution::Unbounded:
STORM_LOG_ASSERT(!preprocessorNumericalResult, "There are multiple numerical results obtained in preprocessing");
@ -144,7 +144,7 @@ namespace storm {
//Issue a warning for objectives that have been solved in preprocessing
for(uint_fast64_t subformulaIndex = 0; subformulaIndex < preprocessorData.originalFormula.getNumberOfSubformulas(); ++subformulaIndex) {
switch(preprocessorData.solutionsFromPreprocessing[subformulaIndex]) {
switch(preprocessorData.solutionsFromPreprocessing[subformulaIndex].first) {
case PreprocessorData::PreprocessorObjectiveSolution::None:
// Nothing to be done
break;
@ -153,7 +153,7 @@ namespace storm {
case PreprocessorData::PreprocessorObjectiveSolution::True:
// Nothing to be done
break;
case PreprocessorData::PreprocessorObjectiveSolution::Zero:
case PreprocessorData::PreprocessorObjectiveSolution::Numerical:
STORM_LOG_WARN("The result of the objective " << preprocessorData.originalFormula.getSubformula(subformulaIndex) << " was obtained in preprocessing and will not be incorporated in the check result. Objective Result is zero.");
break;
case PreprocessorData::PreprocessorObjectiveSolution::Unbounded:

117
src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.cpp

@ -44,28 +44,8 @@ namespace storm {
data.preprocessedModel.removeRewardModel(rewModel);
}
assertRewardFiniteness(data);
// set solution for objectives for which there are no rewards left
for(uint_fast64_t objIndex = 0; objIndex < data.objectives.size(); ++objIndex) {
if(data.solutionsFromPreprocessing[objIndex] == PreprocessorData::PreprocessorObjectiveSolution::None &&
data.preprocessedModel.getRewardModel(data.objectives[objIndex].rewardModelName).isAllZero()) {
if(data.objectives[objIndex].threshold) {
if(storm::utility::zero<ValueType>() > *data.objectives[objIndex].threshold ||
(!data.objectives[objIndex].thresholdIsStrict && storm::utility::zero<ValueType>() >= *data.objectives[objIndex].threshold) ){
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::True;
} else {
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::False;
}
} else {
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::Zero;
}
}
}
// Only keep the objectives for which we have no solution yet
storm::storage::BitVector objWithNoSolution = storm::utility::vector::filter<typename PreprocessorData::PreprocessorObjectiveSolution>(data.solutionsFromPreprocessing, [&] (typename PreprocessorData::PreprocessorObjectiveSolution const& value) -> bool { return value == PreprocessorData::PreprocessorObjectiveSolution::None; });
data.objectives = storm::utility::vector::filterVector(data.objectives, objWithNoSolution);
ensureRewardFiniteness(data);
handleObjectivesWithSolutionFromPreprocessing(data);
// Set the query type. In case of a numerical query, also set the index of the objective to be optimized.
// Note: If there are only zero (or one) objectives left, we should not consider a pareto query!
@ -87,6 +67,16 @@ namespace storm {
return data;
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::updatePreprocessedModel(PreprocessorData& data, SparseModelType& newPreprocessedModel, std::vector<uint_fast64_t>& newToOldStateIndexMapping) {
data.preprocessedModel = std::move(newPreprocessedModel);
// the given newToOldStateIndexMapping reffers to the indices of the former preprocessedModel as 'old indices'
for(auto & preprocessedModelStateIndex : newToOldStateIndexMapping){
preprocessedModelStateIndex = data.newToOldStateIndexMapping[preprocessedModelStateIndex];
}
data.newToOldStateIndexMapping = std::move(newToOldStateIndexMapping);
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective) {
@ -200,6 +190,13 @@ namespace storm {
storm::storage::BitVector phiStates = mc.check(phiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector psiStates = mc.check(psiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
if(!(psiStates & data.preprocessedModel.getInitialStates()).empty()) {
// The probability is always one
data.solutionsFromPreprocessing[data.objectives.size()-1].first = PreprocessorData::PreprocessorObjectiveSolution::Numerical;
data.solutionsFromPreprocessing[data.objectives.size()-1].second = currentObjective.rewardsArePositive ? storm::utility::one<ValueType>() : -storm::utility::one<ValueType>();
return;
}
auto duplicatorResult = storm::transformer::StateDuplicator<SparseModelType>::transform(data.preprocessedModel, ~phiStates | psiStates);
updatePreprocessedModel(data, *duplicatorResult.model, duplicatorResult.newToOldStateIndexMapping);
@ -223,9 +220,10 @@ namespace storm {
noIncomingTransitionFromFirstCopyStates = duplicatorResult.gateStates & (~newPsiStates);
}
if((subsystemStates & data.preprocessedModel.getInitialStates()).empty()) {
data.solutionsFromPreprocessing[data.objectives.size()-1] = PreprocessorData::PreprocessorObjectiveSolution::False;
data.solutionsFromPreprocessing[data.objectives.size()-1].first = PreprocessorData::PreprocessorObjectiveSolution::False;
} else {
data.solutionsFromPreprocessing[data.objectives.size()-1] = PreprocessorData::PreprocessorObjectiveSolution::True;
data.solutionsFromPreprocessing[data.objectives.size()-1].first = PreprocessorData::PreprocessorObjectiveSolution::True;
// Get a subsystem that deletes actions for which the property would be violated
storm::storage::BitVector consideredActions(data.preprocessedModel.getTransitionMatrix().getRowCount(), true);
for(auto state : duplicatorResult.firstCopy) {
for(uint_fast64_t action = data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]; action < data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state +1]; ++action) {
@ -275,6 +273,8 @@ namespace storm {
currentObjective.timeBounds = formula.getIntervalBounds();
}
preprocessFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), data, currentObjective, false, false);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Got a boundedUntilFormula which can not be checked for the current model type.");
}
}
@ -287,7 +287,10 @@ namespace storm {
// To transform from the value of the preprocessed model back to the value of the original model, we have to add 1 to the result.
// The transformation factor has already been set correctly.
currentObjective.toOriginalValueTransformationOffset = storm::utility::one<ValueType>();
auto negatedSubformula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer());
// We need to swap the two flags isProb0Formula and isProb1Formula
preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), data, currentObjective, isProb1Formula, isProb0Formula);
}
@ -302,6 +305,14 @@ namespace storm {
storm::modelchecker::SparsePropositionalModelChecker<SparseModelType> mc(data.preprocessedModel);
STORM_LOG_THROW(mc.canHandle(targetTask), storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " should be propositional.");
storm::storage::BitVector targetStates = mc.check(targetTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
if(!(targetStates & data.preprocessedModel.getInitialStates()).empty()) {
// The value is always zero
data.solutionsFromPreprocessing[data.objectives.size()-1].first = PreprocessorData::PreprocessorObjectiveSolution::Numerical;
data.solutionsFromPreprocessing[data.objectives.size()-1].second = storm::utility::zero<ValueType>();
return;
}
auto duplicatorResult = storm::transformer::StateDuplicator<SparseModelType>::transform(data.preprocessedModel, targetStates);
updatePreprocessedModel(data, *duplicatorResult.model, duplicatorResult.newToOldStateIndexMapping);
@ -340,7 +351,7 @@ namespace storm {
data.preprocessedModel.getStateLabeling().setStates(data.prob1StatesLabel, data.preprocessedModel.getStateLabeling().getStates(data.prob1StatesLabel) & duplicatorResult.secondCopy);
storm::storage::BitVector subsystemStates = duplicatorResult.secondCopy | storm::utility::graph::performProb1E(data.preprocessedModel, data.preprocessedModel.getBackwardTransitions(), duplicatorResult.firstCopy, duplicatorResult.gateStates);
if((subsystemStates & data.preprocessedModel.getInitialStates()).empty()) {
data.solutionsFromPreprocessing[data.objectives.size()-1] = PreprocessorData::PreprocessorObjectiveSolution::Undefined;
data.solutionsFromPreprocessing[data.objectives.size()-1].first = PreprocessorData::PreprocessorObjectiveSolution::Undefined;
} else if(!subsystemStates.full()) {
auto subsystemBuilderResult = storm::transformer::SubsystemBuilder<SparseModelType>::transform(data.preprocessedModel, subsystemStates, storm::storage::BitVector(data.preprocessedModel.getTransitionMatrix().getRowCount(), true));
updatePreprocessedModel(data, *subsystemBuilderResult.model, subsystemBuilderResult.newToOldStateIndexMapping);
@ -384,7 +395,7 @@ namespace storm {
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::assertRewardFiniteness(PreprocessorData& data) {
void SparseMultiObjectivePreprocessor<SparseModelType>::ensureRewardFiniteness(PreprocessorData& data) {
bool negativeRewardsOccur = false;
bool positiveRewardsOccur = false;
for(auto& obj : data.objectives) {
@ -395,17 +406,17 @@ namespace storm {
}
storm::storage::BitVector actionsWithNegativeReward;
if(negativeRewardsOccur) {
actionsWithNegativeReward = assertNegativeRewardFiniteness(data);
actionsWithNegativeReward = ensureNegativeRewardFiniteness(data);
} else {
actionsWithNegativeReward = storm::storage::BitVector(data.preprocessedModel.getTransitionMatrix().getRowCount(), false);
}
if(positiveRewardsOccur) {
assertPositiveRewardFiniteness(data, actionsWithNegativeReward);
ensurePositiveRewardFiniteness(data, actionsWithNegativeReward);
}
}
template<typename SparseModelType>
storm::storage::BitVector SparseMultiObjectivePreprocessor<SparseModelType>::assertNegativeRewardFiniteness(PreprocessorData& data) {
storm::storage::BitVector SparseMultiObjectivePreprocessor<SparseModelType>::ensureNegativeRewardFiniteness(PreprocessorData& data) {
storm::storage::BitVector actionsWithNonNegativeReward(data.preprocessedModel.getTransitionMatrix().getRowCount(), true);
storm::storage::BitVector objectivesWithNegativeReward(data.objectives.size(), false);
@ -436,9 +447,9 @@ namespace storm {
STORM_LOG_WARN("For every scheduler, the induced reward for one or more of the objectives that minimize rewards is infinity.");
for(auto objIndex : objectivesWithNegativeReward) {
if(data.objectives[objIndex].threshold) {
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::False;
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::False;
} else {
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::Unbounded;
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::Unbounded;
}
}
} else if(!statesReachingNegativeRewardsFinitelyOftenForSomeScheduler.full()) {
@ -450,10 +461,10 @@ namespace storm {
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::assertPositiveRewardFiniteness(PreprocessorData& data, storm::storage::BitVector const& actionsWithNegativeReward) {
void SparseMultiObjectivePreprocessor<SparseModelType>::ensurePositiveRewardFiniteness(PreprocessorData& data, storm::storage::BitVector const& actionsWithNegativeReward) {
storm::utility::Stopwatch sw;
auto mecDecomposition = storm::storage::MaximalEndComponentDecomposition<ValueType>(data.preprocessedModel.getTransitionMatrix(), data.preprocessedModel.getBackwardTransitions());
STORM_LOG_DEBUG("Maximal end component decomposition for asserting positive reward finiteness took " << sw << " seconds.");
STORM_LOG_DEBUG("Maximal end component decomposition for ensuring positive reward finiteness took " << sw << " seconds.");
if(mecDecomposition.empty()) {
return;
}
@ -474,9 +485,9 @@ namespace storm {
}
if(ecHasActionWithPositiveReward) {
if(obj.threshold) {
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::True;
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::True;
} else {
data.solutionsFromPreprocessing[objIndex] = PreprocessorData::PreprocessorObjectiveSolution::Unbounded;
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::Unbounded;
}
break;
}
@ -486,15 +497,39 @@ namespace storm {
}
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::updatePreprocessedModel(PreprocessorData& data, SparseModelType& newPreprocessedModel, std::vector<uint_fast64_t>& newToOldStateIndexMapping) {
data.preprocessedModel = std::move(newPreprocessedModel);
// the given newToOldStateIndexMapping reffers to the indices of the former preprocessedModel as 'old indices'
for(auto & preprocessedModelStateIndex : newToOldStateIndexMapping){
preprocessedModelStateIndex = data.newToOldStateIndexMapping[preprocessedModelStateIndex];
void SparseMultiObjectivePreprocessor<SparseModelType>::handleObjectivesWithSolutionFromPreprocessing(PreprocessorData& data) {
// Set solution for objectives for which there are no rewards left
for(uint_fast64_t objIndex = 0; objIndex < data.objectives.size(); ++objIndex) {
if(data.solutionsFromPreprocessing[objIndex].first == PreprocessorData::PreprocessorObjectiveSolution::None &&
data.preprocessedModel.getRewardModel(data.objectives[objIndex].rewardModelName).isAllZero()) {
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::Numerical;
data.solutionsFromPreprocessing[objIndex].second = storm::utility::zero<ValueType>();
}
}
data.newToOldStateIndexMapping = std::move(newToOldStateIndexMapping);
// Translate numerical solutions from preprocessing to Truth values (if the objective specifies a threshold) or to values for the original model (otherwise).
for(uint_fast64_t objIndex = 0; objIndex < data.objectives.size(); ++objIndex) {
if(data.solutionsFromPreprocessing[objIndex].first == PreprocessorData::PreprocessorObjectiveSolution::Numerical) {
ValueType& value = data.solutionsFromPreprocessing[objIndex].second;
ObjectiveInformation const& obj = data.objectives[objIndex];
if(obj.threshold) {
if((obj.thresholdIsStrict && value > (*obj.threshold)) || (!obj.thresholdIsStrict && value >= (*obj.threshold))) {
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::True;
} else {
data.solutionsFromPreprocessing[objIndex].first = PreprocessorData::PreprocessorObjectiveSolution::False;
}
} else {
value = value * obj.toOriginalValueTransformationFactor + obj.toOriginalValueTransformationOffset;
}
}
}
// Only keep the objectives for which we have no solution yet
storm::storage::BitVector objWithNoSolution = storm::utility::vector::filter<std::pair<typename PreprocessorData::PreprocessorObjectiveSolution, ValueType>>(data.solutionsFromPreprocessing, [&] (std::pair<typename PreprocessorData::PreprocessorObjectiveSolution, ValueType> const& value) -> bool { return value.first == PreprocessorData::PreprocessorObjectiveSolution::None; });
data.objectives = storm::utility::vector::filterVector(data.objectives, objWithNoSolution);
}
template class SparseMultiObjectivePreprocessor<storm::models::sparse::Mdp<double>>;
template class SparseMultiObjectivePreprocessor<storm::models::sparse::MarkovAutomaton<double>>;

23
src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.h

@ -31,6 +31,13 @@ namespace storm {
private:
/*!
* Updates the preprocessed model stored in the given data to the given model.
* The given newToOldStateIndexMapping should give for each state in the newPreprocessedModel
* the index of the state in the current data.preprocessedModel.
*/
static void updatePreprocessedModel(PreprocessorData& data, SparseModelType& newPreprocessedModel, std::vector<uint_fast64_t>& newToOldStateIndexMapping);
/*!
* Apply the neccessary preprocessing for the given formula.
* @param formula the current (sub)formula
@ -64,25 +71,27 @@ namespace storm {
* For reward properties that minimize, all states from which only infinite reward is possible are removed.
* Note that this excludes solutions of numerical queries where the minimum is infinity...
*/
static void assertRewardFiniteness(PreprocessorData& data);
static void ensureRewardFiniteness(PreprocessorData& data);
/*!
* Checks reward finiteness for the negative rewards and returns the set of actions in the
* preprocessedModel that give negative rewards for some objective
*/
static storm::storage::BitVector assertNegativeRewardFiniteness(PreprocessorData& data);
static storm::storage::BitVector ensureNegativeRewardFiniteness(PreprocessorData& data);
/*!
* Checks reward finiteness for the positive rewards
*/
static void assertPositiveRewardFiniteness(PreprocessorData& data, storm::storage::BitVector const& actionsWithNegativeReward);
static void ensurePositiveRewardFiniteness(PreprocessorData& data, storm::storage::BitVector const& actionsWithNegativeReward);
/*!
* Updates the preprocessed model stored in the given data to the given model.
* The given newToOldStateIndexMapping should give for each state in the newPreprocessedModel
* the index of the state in the current data.preprocessedModel.
* Handles the objectives for which a solution has been found in preprocessing, that is:
* * Set the solution for objectives for which no reward is left to zero
* * Translate numerical solutions for objectives with a threshold to either True or False
* * Translate numerical solutions for objectives without a threshold to a value for the original model
* * Only keep the objectives for which there is no solution yet
*/
static void updatePreprocessedModel(PreprocessorData& data, SparseModelType& newPreprocessedModel, std::vector<uint_fast64_t>& newToOldStateIndexMapping);
static void handleObjectivesWithSolutionFromPreprocessing(PreprocessorData& data);
};

18
src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h

@ -12,6 +12,7 @@
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/storage/BitVector.h"
#include "src/utility/macros.h"
#include "src/utility/constants.h"
#include "src/exceptions/UnexpectedException.h"
@ -23,10 +24,13 @@ namespace storm {
struct SparseMultiObjectivePreprocessorData {
enum class QueryType { Achievability, Numerical, Pareto };
enum class PreprocessorObjectiveSolution { None, False, True, Zero, Unbounded, Undefined };
enum class PreprocessorObjectiveSolution { None, False, True, Numerical, Unbounded, Undefined };
storm::logic::MultiObjectiveFormula const& originalFormula;
std::vector<PreprocessorObjectiveSolution> solutionsFromPreprocessing;
// Stores the result for this objective obtained from preprocessing.
// In case of a numerical result, the value is store in the second entry of the pair. Otherwise, the second entry can be ignored.
std::vector<std::pair<PreprocessorObjectiveSolution, typename SparseModelType::ValueType>> solutionsFromPreprocessing;
SparseModelType const& originalModel;
SparseModelType preprocessedModel;
@ -39,7 +43,7 @@ namespace storm {
bool produceSchedulers;
SparseMultiObjectivePreprocessorData(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel, SparseModelType&& preprocessedModel, std::vector<uint_fast64_t>&& newToOldStateIndexMapping) : originalFormula(originalFormula), solutionsFromPreprocessing(originalFormula.getNumberOfSubformulas(), PreprocessorObjectiveSolution::None), originalModel(originalModel), preprocessedModel(preprocessedModel), newToOldStateIndexMapping(newToOldStateIndexMapping), produceSchedulers(false) {
SparseMultiObjectivePreprocessorData(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel, SparseModelType&& preprocessedModel, std::vector<uint_fast64_t>&& newToOldStateIndexMapping) : originalFormula(originalFormula), solutionsFromPreprocessing(originalFormula.getNumberOfSubformulas(), std::make_pair(PreprocessorObjectiveSolution::None, storm::utility::zero<typename SparseModelType::ValueType>())), originalModel(originalModel), preprocessedModel(preprocessedModel), newToOldStateIndexMapping(newToOldStateIndexMapping), produceSchedulers(false) {
// get a unique name for the labels of states that have to be reached with probability 1 and add the label
this->prob1StatesLabel = "prob1";
@ -72,13 +76,13 @@ namespace storm {
out << "\t" << originalFormula << std::endl;
bool hasOneObjectiveSolvedInPreprocessing = false;
for(uint_fast64_t subformulaIndex = 0; subformulaIndex < originalFormula.getNumberOfSubformulas(); ++subformulaIndex) {
if(!hasOneObjectiveSolvedInPreprocessing && solutionsFromPreprocessing[subformulaIndex]!= PreprocessorObjectiveSolution::None) {
if(!hasOneObjectiveSolvedInPreprocessing && solutionsFromPreprocessing[subformulaIndex].first != PreprocessorObjectiveSolution::None) {
hasOneObjectiveSolvedInPreprocessing = true;
out << std::endl;
out << "Solutions of objectives obtained from Preprocessing: " << std::endl;
out << "--------------------------------------------------------------" << std::endl;
}
switch(solutionsFromPreprocessing[subformulaIndex]) {
switch(solutionsFromPreprocessing[subformulaIndex].first) {
case PreprocessorObjectiveSolution::None:
break;
case PreprocessorObjectiveSolution::False:
@ -87,8 +91,8 @@ namespace storm {
case PreprocessorObjectiveSolution::True:
out<< "\t" << subformulaIndex << ": " << originalFormula.getSubformula(subformulaIndex) << " \t= true" << std::endl;
break;
case PreprocessorObjectiveSolution::Zero:
out<< "\t" << subformulaIndex << ": " << originalFormula.getSubformula(subformulaIndex) << " \t= zero" << std::endl;
case PreprocessorObjectiveSolution::Numerical:
out<< "\t" << subformulaIndex << ": " << originalFormula.getSubformula(subformulaIndex) << " \t= " << solutionsFromPreprocessing[subformulaIndex].second << std::endl;
break;
case PreprocessorObjectiveSolution::Unbounded:
out<< "\t" << subformulaIndex << ": " << originalFormula.getSubformula(subformulaIndex) << " \t= unbounded" << std::endl;

13
src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp

@ -42,10 +42,13 @@ namespace storm {
storm::utility::vector::addScaledVector(weightedRewardVector, discreteActionRewards[objIndex], weightVector[objIndex]);
}
unboundedWeightedPhase(weightedRewardVector);
STORM_LOG_DEBUG("Unbounded weighted phase result: " << weightedResult[data.preprocessedModel.getInitialStates().getNextSetIndex(0)] << " (value in initial state).");
unboundedIndividualPhase(weightVector);
if(!this->unboundedObjectives.full()) {
boundedPhase(weightVector, weightedRewardVector);
// Only invoke boundedPhase if necessarry, i.e., if there is at least one objective with a time bound
for(auto const& obj : this->data.objectives) {
if(obj.timeBounds) {
boundedPhase(weightVector, weightedRewardVector);
break;
}
}
STORM_LOG_DEBUG("Weight vector check done. Lower bounds for results in initial state: " << storm::utility::vector::convertNumericVector<double>(getLowerBoundsOfInitialStateResults()));
}
@ -87,7 +90,9 @@ namespace storm {
template <class SparseModelType>
storm::storage::TotalScheduler const& SparseMultiObjectiveWeightVectorChecker<SparseModelType>::getScheduler() const {
STORM_LOG_THROW(this->checkHasBeenCalled, storm::exceptions::IllegalFunctionCallException, "Tried to retrieve results but check(..) has not been called before.");
STORM_LOG_THROW(this->unboundedObjectives.full(), storm::exceptions::NotImplementedException, "Scheduler retrival is not implemented for timeBounded objectives.");
for(auto const& obj : this->data.objectives) {
STORM_LOG_THROW(!obj.timeBounds, storm::exceptions::NotImplementedException, "Scheduler retrival is not implemented for timeBounded objectives.");
}
return scheduler;
}

21
src/transformer/StateDuplicator.h

@ -44,7 +44,8 @@ namespace storm {
*
* Note that only reachable states are kept.
* Gate states will always belong to the second copy.
* Rewards and labels are duplicated accordingly, but the states in the second copy will not get the label for initial states.
* Rewards and labels are duplicated accordingly.
* However, the non-gate-states in the second copy will not get the label for initial states.
*
* @param originalModel The model to be duplicated
* @param gateStates The states for which the incoming transitions are redirected
@ -57,18 +58,18 @@ namespace storm {
initializeTransformation(originalModel, gateStates, result);
// Transform the ingedients of the model
storm::storage::SparseMatrix<typename SparseModelType::ValueType> matrix = transformMatrix(originalModel.getTransitionMatrix(), result);
storm::storage::SparseMatrix<typename SparseModelType::ValueType> matrix = transformMatrix(originalModel.getTransitionMatrix(), result, gateStates);
storm::models::sparse::StateLabeling labeling(matrix.getRowGroupCount());
for(auto const& label : originalModel.getStateLabeling().getLabels()){
storm::storage::BitVector newBitVectorForLabel = transformStateBitVector(originalModel.getStateLabeling().getStates(label), result);
if(label=="init"){
newBitVectorForLabel &=result.firstCopy;
newBitVectorForLabel &= (result.firstCopy | result.gateStates);
}
labeling.addLabel(label, std::move(newBitVectorForLabel));
}
std::unordered_map<std::string, typename SparseModelType::RewardModelType> rewardModels;
for(auto const& rewardModel : originalModel.getRewardModels()){
rewardModels.insert(std::make_pair(rewardModel.first, transformRewardModel(rewardModel.second, originalModel.getTransitionMatrix().getRowGroupIndices(), result)));
rewardModels.insert(std::make_pair(rewardModel.first, transformRewardModel(rewardModel.second, originalModel.getTransitionMatrix().getRowGroupIndices(), result, gateStates)));
}
boost::optional<std::vector<storm::models::sparse::LabelSet>> choiceLabeling;
if(originalModel.hasChoiceLabeling()){
@ -99,8 +100,6 @@ namespace storm {
result.firstCopy.resize(numStates, false); // the new states do NOT belong to the first copy
result.secondCopy = (statesForSecondCopy & (~statesForFirstCopy)) % result.reachableStates; // only consider reachable states
result.secondCopy.resize(numStates, true); // the new states DO belong to the second copy
result.gateStates = gateStates;
result.gateStates.resize(numStates, false); // there are no duplicated gateStates
STORM_LOG_ASSERT((result.firstCopy^result.secondCopy).full(), "firstCopy and secondCopy do not partition the state space.");
// Get the state mappings.
@ -127,11 +126,13 @@ namespace storm {
++newState;
}
STORM_LOG_ASSERT(newState == numStates, "Unexpected state Indices");
result.gateStates = transformStateBitVector(gateStates, result);
}
template<typename ValueType = typename SparseModelType::ValueType, typename RewardModelType = typename SparseModelType::RewardModelType>
static typename std::enable_if<std::is_same<RewardModelType, storm::models::sparse::StandardRewardModel<ValueType>>::value, RewardModelType>::type
transformRewardModel(RewardModelType const& originalRewardModel, std::vector<uint_fast64_t> const& originalRowGroupIndices, StateDuplicatorReturnType const& result) {
transformRewardModel(RewardModelType const& originalRewardModel, std::vector<uint_fast64_t> const& originalRowGroupIndices, StateDuplicatorReturnType const& result, storm::storage::BitVector const& gateStates) {
boost::optional<std::vector<ValueType>> stateRewardVector;
boost::optional<std::vector<ValueType>> stateActionRewardVector;
boost::optional<storm::storage::SparseMatrix<ValueType>> transitionRewardMatrix;
@ -142,13 +143,13 @@ namespace storm {
stateActionRewardVector = transformActionValueVector(originalRewardModel.getStateActionRewardVector(), originalRowGroupIndices, result);
}
if(originalRewardModel.hasTransitionRewards()){
transitionRewardMatrix = transformMatrix(originalRewardModel.getTransitionRewardMatrix(), result);
transitionRewardMatrix = transformMatrix(originalRewardModel.getTransitionRewardMatrix(), result, gateStates);
}
return RewardModelType(std::move(stateRewardVector), std::move(stateActionRewardVector), std::move(transitionRewardMatrix));
}
template<typename ValueType = typename SparseModelType::ValueType>
static storm::storage::SparseMatrix<ValueType> transformMatrix(storm::storage::SparseMatrix<ValueType> const& originalMatrix, StateDuplicatorReturnType const& result) {
static storm::storage::SparseMatrix<ValueType> transformMatrix(storm::storage::SparseMatrix<ValueType> const& originalMatrix, StateDuplicatorReturnType const& result, storm::storage::BitVector const& gateStates) {
// Build the builder
uint_fast64_t numStates = result.newToOldStateIndexMapping.size();
uint_fast64_t numRows = 0;
@ -168,7 +169,7 @@ namespace storm {
uint_fast64_t oldState = result.newToOldStateIndexMapping[newState];
for (uint_fast64_t oldRow = originalMatrix.getRowGroupIndices()[oldState]; oldRow < originalMatrix.getRowGroupIndices()[oldState+1]; ++oldRow){
for(auto const& entry : originalMatrix.getRow(oldRow)){
if(result.firstCopy.get(newState) && !result.gateStates.get(entry.getColumn())){
if(result.firstCopy.get(newState) && !gateStates.get(entry.getColumn())){
builder.addNextValue(newRow, result.firstCopyOldToNewStateIndexMapping[entry.getColumn()], entry.getValue());
} else if (!result.duplicatedStates.get(entry.getColumn())){
builder.addNextValue(newRow, result.secondCopyOldToNewStateIndexMapping[entry.getColumn()], entry.getValue());

42
test/functional/modelchecker/SparseMdpMultiObjectiveModelCheckerTest.cpp

@ -80,6 +80,14 @@ TEST(SparseMdpMultiObjectiveModelCheckerTest, preprocessorResultsTest) {
formulasAsString += "; \n multi(Rmax=? [ C ]) ";
formulasAsString += "; \n multi(R>1 [ C ]) ";
formulasAsString += "; \n multi(R<1 [ C ]) ";
formulasAsString += "; \n multi(Pmax=? [ G true ]) ";
formulasAsString += "; \n multi(Pmin=? [ G true ]) ";
formulasAsString += "; \n multi(P>0.9 [ G true ]) ";
formulasAsString += "; \n multi(P>1 [ G true ]) ";
formulasAsString += "; \n multi(Pmax=? [ G false ]) ";
formulasAsString += "; \n multi(P>0 [ G false ]) ";
formulasAsString += "; \n multi(Pmin=? [ F \"init\" ]) ";
formulasAsString += "; \n multi(P>0.5 [ F \"init\" ]) ";
// programm, model, formula
storm::prism::Program program = storm::parseProgram(programFile);
@ -138,6 +146,40 @@ TEST(SparseMdpMultiObjectiveModelCheckerTest, preprocessorResultsTest) {
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[11], true));
ASSERT_TRUE(result->isExplicitQualitativeCheckResult());
EXPECT_FALSE(result->asExplicitQualitativeCheckResult()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[12], true));
ASSERT_TRUE(result->isExplicitQuantitativeCheckResult());
EXPECT_EQ(storm::utility::one<double>(), result->asExplicitQuantitativeCheckResult<double>()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[13], true));
ASSERT_TRUE(result->isExplicitQuantitativeCheckResult());
EXPECT_EQ(storm::utility::one<double>(), result->asExplicitQuantitativeCheckResult<double>()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[14], true));
ASSERT_TRUE(result->isExplicitQualitativeCheckResult());
EXPECT_TRUE(result->asExplicitQualitativeCheckResult()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[15], true));
ASSERT_TRUE(result->isExplicitQualitativeCheckResult());
EXPECT_FALSE(result->asExplicitQualitativeCheckResult()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[16], true));
ASSERT_TRUE(result->isExplicitQuantitativeCheckResult());
EXPECT_EQ(storm::utility::zero<double>(), result->asExplicitQuantitativeCheckResult<double>()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[17], true));
ASSERT_TRUE(result->isExplicitQualitativeCheckResult());
EXPECT_FALSE(result->asExplicitQualitativeCheckResult()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[18], true));
ASSERT_TRUE(result->isExplicitQuantitativeCheckResult());
EXPECT_EQ(storm::utility::one<double>(), result->asExplicitQuantitativeCheckResult<double>()[initState]);
result = checker.check(storm::modelchecker::CheckTask<storm::logic::Formula>(*formulas[19], true));
ASSERT_TRUE(result->isExplicitQualitativeCheckResult());
EXPECT_TRUE(result->asExplicitQualitativeCheckResult()[initState]);
}
TEST(SparseMdpMultiObjectiveModelCheckerTest, consensus) {

Loading…
Cancel
Save