TimQu
8 years ago
9 changed files with 823 additions and 45 deletions
-
34resources/examples/testfiles/ma/server.ma
-
88resources/examples/testfiles/mdp/multiobj_consensus2_3_2.nm
-
160resources/examples/testfiles/mdp/multiobj_dpm100.nm
-
95resources/examples/testfiles/mdp/multiobj_scheduler05.nm
-
288resources/examples/testfiles/mdp/multiobj_team3.nm
-
153resources/examples/testfiles/mdp/multiobj_zeroconf4.nm
-
20resources/examples/testfiles/mdp/multiobjective1.nm
-
20resources/examples/testfiles/mdp/multiobjective2.nm
-
10src/test/modelchecker/SparseMdpPcaaModelCheckerTest.cpp
@ -0,0 +1,34 @@ |
|||
|
|||
ma |
|||
|
|||
const double rateProcessing = 2; |
|||
const double rateA = 1; |
|||
const double rateB = 1; |
|||
|
|||
module server |
|||
|
|||
s : [0..5]; // current state: |
|||
// 0: wait for request |
|||
// 1: received request from A |
|||
// 2: received request from B |
|||
// 3: starting to process request of B |
|||
// 4: processing request |
|||
// 5: error |
|||
|
|||
|
|||
|
|||
<> s=0 -> rateA : (s'=1) + rateB : (s'=2); |
|||
[alpha] s=1 -> 1 : (s'=4); |
|||
[alpha] s=2 -> 1 : (s'=3); |
|||
[beta] s=2 -> 0.5 : (s'=0) + 0.5 : (s'=3); |
|||
[] s=3 -> 1 : (s'=4); |
|||
<> s=4 -> rateProcessing : (s'=0) + (rateA+rateB) : (s'=5); |
|||
<> s=5 -> 1 : true; |
|||
|
|||
endmodule |
|||
|
|||
|
|||
label "error" = (s=5); |
|||
label "processB" = (s=3); |
|||
|
|||
|
@ -0,0 +1,88 @@ |
|||
// model of randomised consensus |
|||
|
|||
mdp |
|||
|
|||
const int N = 2; // num processes |
|||
const int MAX = 3; // num rounds (R) |
|||
const int K = 2; // Parameter for coins |
|||
|
|||
// need to turn these into local copies later so the reading phase is complete? |
|||
formula leaders_agree1 = (p1=1 | r1<max(r1,r2)) & (p2=1 | r2<max(r1,r2)); |
|||
formula leaders_agree2 = (p1=2 | r1<max(r1,r2)) & (p2=2 | r2<max(r1,r2)); |
|||
|
|||
formula decide1 = leaders_agree1 & (p1=1 | r1<max(r1,r2)-1) & (p2=1 | r2<max(r1,r2)-1); |
|||
formula decide2 = leaders_agree2 & (p1=2 | r1<max(r1,r2)-1) & (p2=2 | r2<max(r1,r2)-1); |
|||
|
|||
module process1 |
|||
|
|||
s1 : [0..5]; // local state |
|||
// 0 initialise/read registers |
|||
// 1 finish reading registers (make a decision) |
|||
// 1 warn of change |
|||
// 2 enter shared coin protocol |
|||
// 4 finished |
|||
// 5 error (reached max round and cannot decide) |
|||
r1 : [0..MAX]; // round of the process |
|||
p1 : [0..2]; // preference (0 corresponds to null) |
|||
|
|||
// nondeterministic choice as to initial preference |
|||
[] s1=0 & r1=0 -> (p1'=1) & (r1'=1); |
|||
[] s1=0 & r1=0 -> (p1'=2) & (r1'=1); |
|||
|
|||
// read registers (currently does nothing because read vs from other processes |
|||
[] s1=0 & r1>0 & r1<=MAX -> (s1'=1); |
|||
// maxke a decision |
|||
[] s1=1 & decide1 -> (s1'=4) & (p1'=1); |
|||
[] s1=1 & decide2 -> (s1'=4) & (p1'=2); |
|||
[] s1=1 & r1<MAX & leaders_agree1 & !decide1 -> (s1'=0) & (p1'=1) & (r1'=r1+1); |
|||
[] s1=1 & r1<MAX & leaders_agree2 & !decide2 -> (s1'=0) & (p1'=2) & (r1'=r1+1); |
|||
[] s1=1 & r1<MAX & !(leaders_agree1 | leaders_agree2) -> (s1'=2) & (p1'=0); |
|||
[] s1=1 & r1=MAX & !(decide1 | decide2) -> (s1'=5); // run out of rounds so error |
|||
// enter the coin procotol for the current round |
|||
[coin1_s1_start] s1=2 & r1=1 -> (s1'=3); |
|||
[coin2_s1_start] s1=2 & r1=2 -> (s1'=3); |
|||
// get response from the coin protocol |
|||
[coin1_s1_p1] s1=3 & r1=1 -> (s1'=0) & (p1'=1) & (r1'=r1+1); |
|||
[coin1_s1_p2] s1=3 & r1=1 -> (s1'=0) & (p1'=2) & (r1'=r1+1); |
|||
[coin2_s1_p1] s1=3 & r1=2 -> (s1'=0) & (p1'=1) & (r1'=r1+1); |
|||
[coin2_s1_p2] s1=3 & r1=2 -> (s1'=0) & (p1'=2) & (r1'=r1+1); |
|||
// done so loop |
|||
[done] s1>=4 -> true; |
|||
|
|||
endmodule |
|||
|
|||
module process2 = process1[ s1=s2, |
|||
p1=p2,p2=p1, |
|||
r1=r2,r2=r1, |
|||
coin1_s1_start=coin1_s2_start,coin2_s1_start=coin2_s2_start, |
|||
coin1_s1_p1=coin1_s2_p1,coin2_s1_p1=coin2_s2_p1, |
|||
coin1_s1_p2=coin1_s2_p2,coin2_s1_p2=coin2_s2_p2 ] |
|||
endmodule |
|||
|
|||
module coin1_error |
|||
|
|||
c1 : [0..1]; // 1 is the error state |
|||
v1 : [0..2]; // value of the coin returned the first time |
|||
|
|||
// first returned value (any processes) |
|||
[coin1_s1_p1] v1=0 -> (v1'=1); |
|||
[coin1_s2_p1] v1=0 -> (v1'=1); |
|||
[coin1_s1_p2] v1=0 -> (v1'=2); |
|||
[coin1_s2_p2] v1=0 -> (v1'=2); |
|||
// later values returned |
|||
[coin1_s1_p1] v1=1 -> true; // good behaviour |
|||
[coin1_s2_p1] v1=1 -> true; // good behaviour |
|||
[coin1_s1_p2] v1=2 -> true; // good behaviour |
|||
[coin1_s2_p2] v1=2 -> true; // good behaviour |
|||
[coin1_s1_p1] v1=2 -> (c1'=1); // error |
|||
[coin1_s2_p1] v1=2 -> (c1'=1); // error |
|||
[coin1_s1_p2] v1=1 -> (c1'=1); // error |
|||
[coin1_s2_p2] v1=1 -> (c1'=1); // error |
|||
|
|||
endmodule |
|||
|
|||
// coins 2 and 3 are of no use as there are not enough rounds afterwards to decide |
|||
|
|||
// Labels |
|||
label "one_proc_err" = (s1=5 | s2=5); |
|||
label "one_coin_ok" = (c1=0); |
@ -0,0 +1,160 @@ |
|||
// power manager example |
|||
mdp |
|||
|
|||
const int QMAX =2; // max queue size |
|||
|
|||
// to model the pm making a choice and then a move being made we need |
|||
// two clock ticks for each transition |
|||
// first the pm decides tick1 and then the system moves tick2 |
|||
|
|||
module timer |
|||
|
|||
c : [0..1]; |
|||
|
|||
[tick1] c=0 -> (c'=1); |
|||
[tick2] c=1 -> (c'=0); |
|||
|
|||
endmodule |
|||
|
|||
//------------------------------------------------------------------------- |
|||
|
|||
// POWER MANAGER |
|||
module PM |
|||
|
|||
pm : [0..4] init 4; |
|||
// 0 - go to active |
|||
// 1 - go to idle |
|||
// 2 - go to idlelp |
|||
// 3 - go to stby |
|||
// 4 - go to sleep |
|||
|
|||
[tick1] true -> (pm'=0); |
|||
[tick1] true -> (pm'=1); |
|||
[tick1] true -> (pm'=2); |
|||
[tick1] true -> (pm'=3); |
|||
[tick1] true -> (pm'=4); |
|||
|
|||
endmodule |
|||
|
|||
|
|||
//------------------------------------------------------------------------- |
|||
|
|||
// SERVICE REQUESTER |
|||
module SR |
|||
|
|||
sr : [0..1] init 0; |
|||
// 0 idle |
|||
// 1 1req |
|||
|
|||
[tick2] sr=0 -> 0.898: (sr'=0) + 0.102: (sr'=1); |
|||
[tick2] sr=1 -> 0.454: (sr'=0) + 0.546: (sr'=1); |
|||
|
|||
endmodule |
|||
|
|||
//------------------------------------------------------------------------- |
|||
|
|||
// SERVICE PROVIDER |
|||
|
|||
module SP |
|||
|
|||
sp : [0..10] init 9; |
|||
// 0 active |
|||
// 1 idle |
|||
// 2 active_idlelp |
|||
// 3 idlelp |
|||
// 4 idlelp_active |
|||
// 5 active_stby |
|||
// 6 stby |
|||
// 7 stby_active |
|||
// 8 active_sleep |
|||
// 9 sleep |
|||
// 10 sleep_active |
|||
|
|||
// states where PM has no control (transient states) |
|||
[tick2] sp=2 -> 0.75 : (sp'=2) + 0.25 : (sp'=3); // active_idlelp |
|||
[tick2] sp=4 -> 0.25 : (sp'=0) + 0.75 : (sp'=4); // idlelp_active |
|||
[tick2] sp=5 -> 0.995 : (sp'=5) + 0.005 : (sp'=6); // active_stby |
|||
[tick2] sp=7 -> 0.005 : (sp'=0) + 0.995 : (sp'=7); // stby_active |
|||
[tick2] sp=8 -> 0.9983 : (sp'=8) + 0.0017 : (sp'=9); // active_sleep |
|||
[tick2] sp=10 -> 0.0017 : (sp'=0) + 0.9983 : (sp'=10); // sleep_active |
|||
|
|||
// states where PM has control |
|||
// goto_active |
|||
[tick2] sp=0 & pm=0 -> (sp'=0); // active |
|||
[tick2] sp=1 & pm=0 -> (sp'=0); // idle |
|||
[tick2] sp=3 & pm=0 -> (sp'=4); // idlelp |
|||
[tick2] sp=6 & pm=0 -> (sp'=7); // stby |
|||
[tick2] sp=9 & pm=0 -> (sp'=10); // sleep |
|||
// goto_idle |
|||
[tick2] sp=0 & pm=1 -> (sp'=1); // active |
|||
[tick2] sp=1 & pm=1 -> (sp'=1); // idle |
|||
[tick2] sp=3 & pm=1 -> (sp'=3); // idlelp |
|||
[tick2] sp=6 & pm=1 -> (sp'=6); // stby |
|||
[tick2] sp=9 & pm=1 -> (sp'=9); // sleep |
|||
// goto_idlelp |
|||
[tick2] sp=0 & pm=2 -> (sp'=2); // active |
|||
[tick2] sp=1 & pm=2 -> (sp'=2); // idle |
|||
[tick2] sp=3 & pm=2 -> (sp'=3); // idlelp |
|||
[tick2] sp=6 & pm=2 -> (sp'=6); // stby |
|||
[tick2] sp=9 & pm=2 -> (sp'=9); // sleep |
|||
// goto_stby |
|||
[tick2] sp=0 & pm=3 -> (sp'=5); // active |
|||
[tick2] sp=1 & pm=3 -> (sp'=5); // idle |
|||
[tick2] sp=3 & pm=3 -> (sp'=5); // idlelp |
|||
[tick2] sp=6 & pm=3 -> (sp'=6); // stby |
|||
[tick2] sp=9 & pm=3 -> (sp'=9); // sleep |
|||
// goto_sleep |
|||
[tick2] sp=0 & pm=4 -> (sp'=8); // active |
|||
[tick2] sp=1 & pm=4 -> (sp'=8); // idle |
|||
[tick2] sp=3 & pm=4 -> (sp'=8); // idlelp |
|||
[tick2] sp=6 & pm=4 -> (sp'=8); // stby |
|||
[tick2] sp=9 & pm=4 -> (sp'=9); // sleep |
|||
|
|||
endmodule |
|||
|
|||
|
|||
//------------------------------------------------------------------------- |
|||
|
|||
// SQ |
|||
module SQ |
|||
|
|||
q : [0..QMAX] init 0; |
|||
|
|||
// serve if busy |
|||
[tick2] sr=0 & sp=0 -> (q'=max(q-1,0)); |
|||
[tick2] sr=1 & sp=0 -> (q'=q); |
|||
|
|||
// otherwise do nothing |
|||
[tick2] sr=0 & sp>0 -> (q'=q); |
|||
[tick2] sr=1 & sp>0 -> (q'=min(q+1,QMAX)); |
|||
|
|||
endmodule |
|||
|
|||
//------------------------------------------------------------------------- |
|||
//rewards "time" |
|||
// [tick2] bat=1 : 1; |
|||
//endrewards |
|||
|
|||
rewards "power" |
|||
[tick2] sp=0 & c=1 : 2.5; |
|||
[tick2] sp=1 & c=1 : 1.5; |
|||
[tick2] sp=2 & c=1 : 2.5; |
|||
[tick2] sp=3 & c=1 : 0.8; |
|||
[tick2] sp=4 & c=1 : 2.5; |
|||
[tick2] sp=5 & c=1 : 2.5; |
|||
[tick2] sp=6 & c=1 : 0.3; |
|||
[tick2] sp=7 & c=1 : 2.5; |
|||
[tick2] sp=8 & c=1 : 2.5; |
|||
[tick2] sp=9 & c=1 : 0.1; |
|||
[tick2] sp=10 & c=1 : 2.5; |
|||
endrewards |
|||
|
|||
// is an instantaneous property but I suppose we can look at average size |
|||
// i.e. divide by the expected number of time steps |
|||
rewards "queue" |
|||
[tick2] c=1 : q; |
|||
endrewards |
|||
|
|||
rewards "lost" |
|||
[tick2] sr=1 & sp>0 & q=2 : 1; |
|||
endrewards |
@ -0,0 +1,95 @@ |
|||
mdp |
|||
|
|||
label "tasks_complete" = (task6=3); |
|||
|
|||
const int K=5; |
|||
|
|||
module scheduler |
|||
|
|||
task1 : [0..3]; |
|||
task2 : [0..3]; |
|||
task3 : [0..3]; |
|||
task4 : [0..3]; |
|||
task5 : [0..3]; |
|||
task6 : [0..3]; |
|||
|
|||
[p1_add] task1=0 -> (task1'=1); |
|||
[p2_add] task1=0 -> (task1'=2); |
|||
[p1_mult] task2=0 -> (task2'=1); |
|||
[p2_mult] task2=0 -> (task2'=2); |
|||
[p1_mult] task3=0&task1=3 -> (task3'=1); |
|||
[p2_mult] task3=0&task1=3 -> (task3'=2); |
|||
[p1_add] task4=0&task1=3&task2=3 -> (task4'=1); |
|||
[p2_add] task4=0&task1=3&task2=3 -> (task4'=2); |
|||
[p1_mult] task5=0&task3=3 -> (task5'=1); |
|||
[p2_mult] task5=0&task3=3 -> (task5'=2); |
|||
[p1_add] task6=0&task4=3&task5=3 -> (task6'=1); |
|||
[p2_add] task6=0&task4=3&task5=3 -> (task6'=2); |
|||
[p1_done] task1=1 -> (task1'=3); |
|||
[p1_done] task2=1 -> (task2'=3); |
|||
[p1_done] task3=1 -> (task3'=3); |
|||
[p1_done] task4=1 -> (task4'=3); |
|||
[p1_done] task5=1 -> (task5'=3); |
|||
[p1_done] task6=1 -> (task6'=3); |
|||
[p2_done] task1=2 -> (task1'=3); |
|||
[p2_done] task2=2 -> (task2'=3); |
|||
[p2_done] task3=2 -> (task3'=3); |
|||
[p2_done] task4=2 -> (task4'=3); |
|||
[p2_done] task5=2 -> (task5'=3); |
|||
[p2_done] task6=2 -> (task6'=3); |
|||
[time] true -> 1.0 : true; |
|||
|
|||
endmodule |
|||
|
|||
module P1 |
|||
|
|||
p1 : [0..3]; |
|||
c1 : [0..2]; |
|||
x1 : [0..4*K+1]; |
|||
|
|||
[p1_add] (p1=0) -> (p1'=1) & (x1'=0); |
|||
[] (p1=1)&(x1=1*K)&(c1=0) -> 1/3 : (p1'=3) & (x1'=0) & (c1'=0) + 2/3 : (c1'=1) & (x1'=0); |
|||
[] (p1=1)&(x1=1*K)&(c1=1) -> 1/2 : (p1'=3) & (x1'=0) & (c1'=0) + 1/2 : (c1'=2) & (x1'=0); |
|||
[p1_done] (p1=1)&(x1=1*K)&(c1=2) -> (p1'=0) & (x1'=0) & (c1'=0); |
|||
[p1_mult] (p1=0) -> (p1'=2) & (x1'=0); |
|||
[] (p1=2)&(x1=2*K)&(c1=0) -> 1/3 : (p1'=3) & (x1'=0) & (c1'=0) + 2/3 : (c1'=1) & (x1'=0); |
|||
[] (p1=2)&(x1=1*K)&(c1=1) -> 1/2 : (p1'=3) & (x1'=0) & (c1'=0) + 1/2 : (c1'=2) & (x1'=0); |
|||
[p1_done] (p1=2)&(x1=1*K)&(c1=2) -> (p1'=0) & (x1'=0) & (c1'=0); |
|||
[p1_done] (p1=3) -> (p1'=0); |
|||
[time] (p1=1=>x1+1<=1*K)&((p1=2&c1=0)=>x1+1<=2*K)&((p1=2&c1>0)=>x1+1<=1*K)&(p1=3=>x1+1<=0) -> 1.0 : (x1'=min(x1+1,4*K+1)); |
|||
|
|||
endmodule |
|||
|
|||
module P2 |
|||
|
|||
p2 : [0..3]; |
|||
c2 : [0..2]; |
|||
x2 : [0..6*K+1]; |
|||
|
|||
[p2_add] (p2=0) -> (p2'=1) & (x2'=0); |
|||
[] (p2=1)&(x2=4*K)&(c2=0) -> 1/3 : (p2'=3) & (x2'=0) & (c2'=0) + 2/3 : (c2'=1) & (x2'=0); |
|||
[] (p2=1)&(x2=1)&(c2=1) -> 1/2 : (p2'=3) & (x2'=0) & (c2'=0) + 1/2 : (c2'=2) & (x2'=0); |
|||
[p2_done] (p2=1)&(x2=1)&(c2=2) -> (p2'=0) & (x2'=0) & (c2'=0); |
|||
[p2_mult] (p2=0) -> (p2'=2) & (x2'=0); |
|||
[] (p2=2)&(x2=6*K)&(c2=0) -> 1/3 : (p2'=3) & (x2'=0) & (c2'=0) + 2/3 : (c2'=1) & (x2'=0); |
|||
[] (p2=2)&(x2=1)&(c2=1) -> 1/2 : (p2'=3) & (x2'=0) & (c2'=0) + 1/2 : (c2'=2) & (x2'=0); |
|||
[p2_done] (p2=2)&(x2=1)&(c2=2) -> (p2'=0) & (x2'=0) & (c2'=0); |
|||
[p2_done] (p2=3) -> (p2'=0); |
|||
[time] ((p2=1&c2=0)=>x2+1<=4*K)&((p2=1&c2>0)=>x2+1<=1)&((p2=2&c2=0)=>x2+1<=6*K)&((p2=2&c2>0)=>x2+1<=1)&(p2=3=>x2+1<=0) -> 1.0 : (x2'=min(x2+1,6*K+1)); |
|||
|
|||
endmodule |
|||
|
|||
rewards "time" |
|||
|
|||
[time] true : 1/K; |
|||
|
|||
endrewards |
|||
|
|||
rewards "energy" |
|||
|
|||
[time] p1=0 : 10/(1000*K); |
|||
[time] p1>0 : 90/(1000*K); |
|||
[time] p2=0 : 20/(1000*K); |
|||
[time] p2>0 : 30/(1000*K); |
|||
|
|||
endrewards |
@ -0,0 +1,288 @@ |
|||
mdp |
|||
|
|||
// parameters |
|||
const int n_resources = 3; |
|||
const int n_tasks = 2; |
|||
const int n_sensors = 3; |
|||
|
|||
|
|||
// sensor resources |
|||
const int resource1=1; |
|||
const int resource2=2; |
|||
const int resource3=3; |
|||
|
|||
// network configuration |
|||
const int e12=1; |
|||
const int e13=1; |
|||
|
|||
const int e21=e12; |
|||
const int e23=1; |
|||
|
|||
const int e31=e13; |
|||
const int e32=e23; |
|||
|
|||
|
|||
|
|||
|
|||
// agent is committed to some team |
|||
formula committed = (m1_t1+m1_t2) > 0; |
|||
|
|||
// formulae to compute team sizes |
|||
formula team_size_t1 = m1_t1+m2_t1+m3_t1; |
|||
formula team_size_t2 = m1_t2+m2_t2+m3_t2; |
|||
|
|||
// formulae to check whether the agent can join the team |
|||
formula can_join_t1 = e12*m2_t1 + e13*m3_t1 > 0; |
|||
formula can_join_t2 = e12*m2_t2 + e13*m3_t2 > 0; |
|||
|
|||
// formulae to check whether agent has the resource required by the task |
|||
formula has_resource_t1 = ( (t1_r1=1&resource1=1) | (t1_r2=1&resource1=2) | (t1_r3=1&resource1=3) ); |
|||
formula has_resource_t2 = ( (t2_r1=1&resource1=1) | (t2_r2=1&resource1=2) | (t2_r3=1&resource1=3) ); |
|||
|
|||
// formulae to check whether the resource of an agent has been already filled in the team |
|||
formula resource_filled_t1 = (m2_t1=1 & resource1=resource2) | (m3_t1=1 & resource1=resource3); |
|||
formula resource_filled_t2 = (m2_t2=1 & resource1=resource2) | (m3_t2=1 & resource1=resource3); |
|||
|
|||
// formula to compute team initiation probability (assuming each agent has at least one connection) |
|||
formula IP = (e12*(1-((m2_t1+m2_t2)=0?0:1))+e13*(1-((m3_t1+m3_t2)=0?0:1))) / (e12+e13); |
|||
|
|||
|
|||
module controller // schedules the algorithm |
|||
|
|||
// algorithm status |
|||
status : [0..6]; |
|||
|
|||
// task resource indicator variables |
|||
t1_r1 : [0..1]; |
|||
t1_r2 : [0..1]; |
|||
t1_r3 : [0..1]; |
|||
|
|||
t2_r1 : [0..1]; |
|||
t2_r2 : [0..1]; |
|||
t2_r3 : [0..1]; |
|||
|
|||
// schedule placeholders |
|||
turn1 : [0..n_sensors]; |
|||
turn2 : [0..n_sensors]; |
|||
turn3 : [0..n_sensors]; |
|||
|
|||
// selecting schedule uniformly at random |
|||
[] status=0 -> 1/6 : (turn1'=1) & (turn2'=2) & (turn3'=3) & (status'=1) |
|||
+ 1/6 : (turn1'=1) & (turn2'=3) & (turn3'=2) & (status'=1) |
|||
+ 1/6 : (turn1'=2) & (turn2'=1) & (turn3'=3) & (status'=1) |
|||
+ 1/6 : (turn1'=2) & (turn2'=3) & (turn3'=1) & (status'=1) |
|||
+ 1/6 : (turn1'=3) & (turn2'=1) & (turn3'=2) & (status'=1) |
|||
+ 1/6 : (turn1'=3) & (turn2'=2) & (turn3'=1) & (status'=1); |
|||
|
|||
|
|||
// initialising non-empty tasks uniformly at random |
|||
[] status=1 -> 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=0) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=0) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=0) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=0) & (t2_r2'=1) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=0) & (t2_r3'=1) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=0) & (status'=2) |
|||
+ 1/49 : (t1_r1'=1) & (t1_r2'=1) & (t1_r3'=1) & (t2_r1'=1) & (t2_r2'=1) & (t2_r3'=1) & (status'=2); |
|||
|
|||
// executing the schedule |
|||
|
|||
// 1st round |
|||
[str1] status=2 & turn1=1 -> (status'=2); |
|||
[fin1] status=2 & turn1=1 -> (status'=3); |
|||
[str2] status=2 & turn1=2 -> (status'=2); |
|||
[fin2] status=2 & turn1=2 -> (status'=3); |
|||
[str3] status=2 & turn1=3 -> (status'=2); |
|||
[fin3] status=2 & turn1=3 -> (status'=3); |
|||
|
|||
// 2nd round |
|||
[str1] status=3 & turn2=1 -> (status'=3); |
|||
[fin1] status=3 & turn2=1 -> (status'=4); |
|||
[str2] status=3 & turn2=2 -> (status'=3); |
|||
[fin2] status=3 & turn2=2 -> (status'=4); |
|||
[str3] status=3 & turn2=3 -> (status'=3); |
|||
[fin3] status=3 & turn2=3 -> (status'=4); |
|||
|
|||
// 3rd round |
|||
[str1] status=4 & turn3=1 -> (status'=4); |
|||
[fin1] status=4 & turn3=1 -> (status'=5); |
|||
[str2] status=4 & turn3=2 -> (status'=4); |
|||
[fin2] status=4 & turn3=2 -> (status'=5); |
|||
[str3] status=4 & turn3=3 -> (status'=4); |
|||
[fin3] status=4 & turn3=3 -> (status'=5); |
|||
|
|||
[] status=5 -> (status'=6); |
|||
|
|||
[] status=6 -> true; |
|||
|
|||
endmodule |
|||
|
|||
module sensor1 |
|||
|
|||
state1 : [0..1]; |
|||
|
|||
// team membership indicators |
|||
m1_t1 : [0..1]; |
|||
m1_t2 : [0..1]; |
|||
|
|||
// starting turn, selecting order of tasks |
|||
[str1] state1=0 -> (state1'=1); |
|||
|
|||
// if there is no team and has required skill - initiating the team |
|||
[] state1=1 & !committed & team_size_t1=0 & has_resource_t1 -> (m1_t1'=1); |
|||
[] state1=1 & !committed & team_size_t2=0 & has_resource_t2 -> (m1_t2'=1); |
|||
|
|||
// if team already exists and one of the neighbours is in it - joining the team |
|||
[] state1=1 & !committed & team_size_t1>0 & can_join_t1 & has_resource_t1 & !resource_filled_t1 -> (m1_t1'=1); |
|||
[] state1=1 & !committed & team_size_t2>0 & can_join_t2 & has_resource_t2 & !resource_filled_t2 -> (m1_t2'=1); |
|||
|
|||
[fin1] state1>0 -> (state1'=0); |
|||
|
|||
endmodule |
|||
|
|||
module sensor2 = sensor1 |
|||
[ |
|||
state1=state2, |
|||
|
|||
str1=str2, |
|||
fin1=fin2, |
|||
|
|||
m1_t1=m2_t1, |
|||
m1_t2=m2_t2, |
|||
|
|||
m2_t1=m1_t1, |
|||
m2_t2=m1_t2, |
|||
|
|||
resource1=resource2, |
|||
resource2=resource1, |
|||
|
|||
e12=e21, |
|||
e13=e23, |
|||
e14=e24, |
|||
e15=e25, |
|||
|
|||
e21=e12, |
|||
e23=e13, |
|||
e24=e14, |
|||
e25=e15 |
|||
] |
|||
endmodule |
|||
|
|||
module sensor3 = sensor1 |
|||
[ |
|||
state1=state3, |
|||
|
|||
str1=str3, |
|||
fin1=fin3, |
|||
|
|||
m1_t1=m3_t1, |
|||
m1_t2=m3_t2, |
|||
m3_t1=m1_t1, |
|||
m3_t2=m1_t2, |
|||
|
|||
resource1=resource3, |
|||
resource3=resource1, |
|||
|
|||
e12=e32, |
|||
e13=e31, |
|||
e14=e34, |
|||
e15=e35, |
|||
|
|||
e31=e13, |
|||
e32=e12, |
|||
e34=e14, |
|||
e35=e15 |
|||
] |
|||
endmodule |
|||
|
|||
|
|||
|
|||
|
|||
// labels and formulae for property specification |
|||
formula finished = (status=5); |
|||
label "end" = (status=6); |
|||
|
|||
|
|||
formula task1_completed = finished |
|||
& ((t1_r1=1)=>((m1_t1=1&resource1=1)|(m2_t1=1&resource2=1)|(m3_t1=1&resource3=1))) |
|||
& ((t1_r2=1)=>((m1_t1=1&resource1=2)|(m2_t1=1&resource2=2)|(m3_t1=1&resource3=2))) |
|||
& ((t1_r3=1)=>((m1_t1=1&resource1=3)|(m2_t1=1&resource2=3)|(m3_t1=1&resource3=3))); |
|||
|
|||
formula task2_completed = finished |
|||
& ((t2_r1=1)=>((m1_t2=1&resource1=1)|(m2_t2=1&resource2=1)|(m3_t2=1&resource3=1))) |
|||
& ((t2_r2=1)=>((m1_t2=1&resource1=2)|(m2_t2=1&resource2=2)|(m3_t2=1&resource3=2))) |
|||
& ((t2_r3=1)=>((m1_t2=1&resource1=3)|(m2_t2=1&resource2=3)|(m3_t2=1&resource3=3))); |
|||
|
|||
|
|||
|
|||
formula agent1_joins_successful_team = (task1_completed & m1_t1=1) | (task2_completed & m1_t2=1); |
|||
formula agent1_joins_successful_team_of_1 = (task1_completed & m1_t1=1 & team_size_t1=1) | (task2_completed & m1_t2=1 & team_size_t2=1); |
|||
formula agent1_joins_successful_team_of_2 = (task1_completed & m1_t1=1 & team_size_t1=2) | (task2_completed & m1_t2=1 & team_size_t2=2); |
|||
formula agent1_joins_successful_team_of_3 = (task1_completed & m1_t1=1 & team_size_t1=3) | (task2_completed & m1_t2=1 & team_size_t2=3); |
|||
|
|||
formula agent2_joins_successful_team = (task1_completed & m2_t1=1) | (task2_completed & m2_t2=1); |
|||
formula agent2_joins_successful_team_of_1 = (task1_completed & m2_t1=1 & team_size_t1=1) | (task2_completed & m2_t2=1 & team_size_t2=1); |
|||
formula agent2_joins_successful_team_of_2 = (task1_completed & m2_t1=1 & team_size_t1=2) | (task2_completed & m2_t2=1 & team_size_t2=2); |
|||
formula agent2_joins_successful_team_of_3 = (task1_completed & m2_t1=1 & team_size_t1=3) | (task2_completed & m2_t2=1 & team_size_t2=3); |
|||
|
|||
formula agent3_joins_successful_team = (task1_completed & m3_t1=1) | (task2_completed & m3_t2=1); |
|||
formula agent3_joins_successful_team_of_1 = (task1_completed & m3_t1=1 & team_size_t1=1) | (task2_completed & m3_t2=1 & team_size_t2=1); |
|||
formula agent3_joins_successful_team_of_2 = (task1_completed & m3_t1=1 & team_size_t1=2) | (task2_completed & m3_t2=1 & team_size_t2=2); |
|||
formula agent3_joins_successful_team_of_3 = (task1_completed & m3_t1=1 & team_size_t1=3) | (task2_completed & m3_t2=1 & team_size_t2=3); |
|||
|
|||
// rewards |
|||
rewards "w_1_total" |
|||
[] agent1_joins_successful_team : 1; |
|||
[] agent2_joins_successful_team : 1; |
|||
[] agent3_joins_successful_team : 1; |
|||
endrewards |
|||
|
|||
rewards "w_2_total" |
|||
[] task1_completed : 1; |
|||
[] task2_completed : 1; |
|||
endrewards |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,153 @@ |
|||
// IPv4: PTA model with digitial clocks |
|||
// multi-objective model of the host |
|||
// gxn/dxp 28/09/09 |
|||
|
|||
mdp |
|||
|
|||
//------------------------------------------------------------- |
|||
// VARIABLES |
|||
const int N=20; // number of abstract hosts |
|||
const int K=4; // number of probes to send |
|||
|
|||
// PROBABILITIES |
|||
const double old = N/65024; // probability pick an ip address being used |
|||
//const double old = 0.5; // probability pick an ip address being used |
|||
const double new = (1-old); // probability pick a new ip address |
|||
|
|||
// TIMING CONSTANTS |
|||
const int CONSEC = 2; // time interval between sending consecutive probles |
|||
const int TRANSTIME = 1; // upper bound on transmission time delay |
|||
const int LONGWAIT = 60; // minimum time delay after a high number of address collisions |
|||
const int DEFEND = 10; |
|||
|
|||
const int TIME_MAX_X = 60; // max value of clock x |
|||
const int TIME_MAX_Y = 10; // max value of clock y |
|||
const int TIME_MAX_Z = 1; // max value of clock z |
|||
|
|||
// OTHER CONSTANTS |
|||
const int MAXCOLL = 10; // maximum number of collisions before long wait |
|||
const int M=1; // time between sending and receiving a message |
|||
|
|||
|
|||
//------------------------------------------------------------- |
|||
// CONCRETE HOST |
|||
module host0 |
|||
|
|||
x : [0..TIME_MAX_X]; // first clock of the host |
|||
y : [0..TIME_MAX_Y]; // second clock of the host |
|||
|
|||
coll : [0..MAXCOLL]; // number of address collisions |
|||
probes : [0..K]; // counter (number of probes sent) |
|||
mess : [0..1]; // need to send a message or not |
|||
defend : [0..1]; // defend (if =1, try to defend IP address) |
|||
|
|||
ip : [1..2]; // ip address (1 - in use & 2 - fresh) |
|||
|
|||
l : [0..4] init 1; // location |
|||
// 0 : RECONFIGURE |
|||
// 1 : RANDOM |
|||
// 2 : WAITSP |
|||
// 3 : WAITSG |
|||
// 4 : USE |
|||
|
|||
// RECONFIGURE |
|||
[reset] l=0 -> (l'=1); |
|||
|
|||
// RANDOM (choose IP address) |
|||
[rec0] (l=1) -> true; // get message (ignore since have no ip address) |
|||
[rec1] (l=1) -> true; // get message (ignore since have no ip address) |
|||
// small number of collisions (choose straight away) |
|||
[] l=1 & coll<MAXCOLL -> 1/3*old : (l'=2) & (ip'=1) & (x'=0) |
|||
+ 1/3*old : (l'=2) & (ip'=1) & (x'=1) |
|||
+ 1/3*old : (l'=2) & (ip'=1) & (x'=2) |
|||
+ 1/3*new : (l'=2) & (ip'=2) & (x'=0) |
|||
+ 1/3*new : (l'=2) & (ip'=2) & (x'=1) |
|||
+ 1/3*new : (l'=2) & (ip'=2) & (x'=2); |
|||
// large number of collisions: (wait for LONGWAIT) |
|||
[time] l=1 & coll=MAXCOLL & x<LONGWAIT -> (x'=min(x+1,TIME_MAX_X)); |
|||
[] l=1 & coll=MAXCOLL & x=LONGWAIT -> 1/3*old : (l'=2) & (ip'=1) & (x'=0) |
|||
+ 1/3*old : (l'=2) & (ip'=1) & (x'=1) |
|||
+ 1/3*old : (l'=2) & (ip'=1) & (x'=2) |
|||
+ 1/3*new : (l'=2) & (ip'=2) & (x'=0) |
|||
+ 1/3*new : (l'=2) & (ip'=2) & (x'=1) |
|||
+ 1/3*new : (l'=2) & (ip'=2) & (x'=2); |
|||
|
|||
// WAITSP |
|||
// let time pass |
|||
[time] l=2 & x<2 -> (x'=min(x+1,2)); |
|||
// send probe |
|||
[send1] l=2 & ip=1 & x=2 & probes<K -> (x'=0) & (probes'=probes+1); |
|||
[send2] l=2 & ip=2 & x=2 & probes<K -> (x'=0) & (probes'=probes+1); |
|||
// sent K probes and waited 2 seconds |
|||
[] l=2 & x=2 & probes=K -> (l'=3) & (probes'=0) & (coll'=0) & (x'=0); |
|||
// get message and ip does not match: ignore |
|||
[rec0] l=2 & ip!=0 -> (l'=l); |
|||
[rec1] l=2 & ip!=1 -> (l'=l); |
|||
// get a message with matching ip: reconfigure |
|||
[rec1] l=2 & ip=1 -> (l'=0) & (coll'=min(coll+1,MAXCOLL)) & (x'=0) & (probes'=0); |
|||
|
|||
// WAITSG (sends two gratuitious arp probes) |
|||
// time passage |
|||
[time] l=3 & mess=0 & defend=0 & x<CONSEC -> (x'=min(x+1,TIME_MAX_X)); |
|||
[time] l=3 & mess=0 & defend=1 & x<CONSEC -> (x'=min(x+1,TIME_MAX_X)) & (y'=min(y+1,DEFEND)); |
|||
|
|||
// receive message and same ip: defend |
|||
[rec1] l=3 & mess=0 & ip=1 & (defend=0 | y>=DEFEND) -> (defend'=1) & (mess'=1) & (y'=0); |
|||
// receive message and same ip: defer |
|||
[rec1] l=3 & mess=0 & ip=1 & (defend=0 | y<DEFEND) -> (l'=0) & (probes'=0) & (defend'=0) & (x'=0) & (y'=0); |
|||
// receive message and different ip |
|||
[rec0] l=3 & mess=0 & ip!=0 -> (l'=l); |
|||
[rec1] l=3 & mess=0 & ip!=1 -> (l'=l); |
|||
|
|||
|
|||
// send probe reply or message for defence |
|||
[send1] l=3 & ip=1 & mess=1 -> (mess'=0); |
|||
[send2] l=3 & ip=2 & mess=1 -> (mess'=0); |
|||
// send first gratuitous arp message |
|||
[send1] l=3 & ip=1 & mess=0 & x=CONSEC & probes<1 -> (x'=0) & (probes'=probes+1); |
|||
[send2] l=3 & ip=2 & mess=0 & x=CONSEC & probes<1 -> (x'=0) & (probes'=probes+1); |
|||
// send second gratuitous arp message (move to use) |
|||
[send1] l=3 & ip=1 & mess=0 & x=CONSEC & probes=1 -> (l'=4) & (x'=0) & (y'=0) & (probes'=0); |
|||
[send2] l=3 & ip=2 & mess=0 & x=CONSEC & probes=1 -> (l'=4) & (x'=0) & (y'=0) & (probes'=0); |
|||
|
|||
// USE (only interested in reaching this state so do not need to add anything here) |
|||
[] l=4 -> true; |
|||
|
|||
endmodule |
|||
|
|||
//------------------------------------------------------------- |
|||
// error automaton for the environment assumption |
|||
// do not get a reply when K probes are sent |
|||
|
|||
module env_error4 |
|||
|
|||
env : [0..1]; // 0 active and 1 done |
|||
k : [0..4]; // counts the number of messages sent |
|||
c1 : [0..M+1]; // time since first message |
|||
c2 : [0..M+1]; // time since second message |
|||
c3 : [0..M+1]; // time since third message |
|||
c4 : [0..M+1]; // time since fourth message |
|||
error : [0..1]; |
|||
|
|||
// message with new ip address arrives so done |
|||
[send2] error=0 & env=0 -> (env'=1); |
|||
// message with old ip address arrives so count |
|||
[send1] error=0 & env=0 -> (k'=min(k+1,K)); |
|||
// time passgae so update relevant clocks |
|||
[time] error=0 & env=0 & k=0 -> true; |
|||
[time] error=0 & env=0 & k=1 & min(c1,c2,c3,c4)<M -> (c1'=min(c1+1,M+1)); |
|||
[time] error=0 & env=0 & k=2 & min(c1,c2,c3,c4)<M -> (c1'=min(c1+1,M+1)) & (c2'=min(c2+1,M+1)); |
|||
[time] error=0 & env=0 & k=3 & min(c1,c2,c3,c4)<M -> (c1'=min(c1+1,M+1)) & (c2'=min(c2+1,M+1)) & (c3'=min(c3+1,M+1)); |
|||
[time] error=0 & env=0 & k=4 & min(c1,c2,c3,c4)<M -> (c1'=min(c1+1,M+1)) & (c2'=min(c2+1,M+1)) & (c3'=min(c3+1,M+1)) & (c4'=min(c4+1,M+1)); |
|||
// all clocks reached their bound so an error |
|||
[time] error=0 & env=0 & min(c1,c2,c3,c4)=M -> (error'=1); |
|||
// send a reply (then done) |
|||
[rec1] error=0 & env=0 & k>0 & min(c1,c2,c3,c4)<=M -> (env'=1); |
|||
// finished so any action can be performed |
|||
[time] error=1 | env=1 -> true; |
|||
[send1] error=1 | env=1 -> true; |
|||
[send2] error=1 | env=1 -> true; |
|||
[send2] error=1 | env=1 -> true; |
|||
[rec1] error=1 | env=1 -> true; |
|||
|
|||
endmodule |
@ -1,20 +0,0 @@ |
|||
|
|||
mdp |
|||
|
|||
module module1 |
|||
|
|||
// local state |
|||
s : [0..2] init 0; |
|||
|
|||
[A] s=0 -> 0.6 : (s'=1) + 0.4 : (s'=2); |
|||
[B] s=0 -> 0.3 : (s'=0) + 0.7 : (s'=1); |
|||
[C] s=0 -> 0.2 : (s'=0) + 0.8 : (s'=2); |
|||
[D] s=1 -> 0.25 : (s'=0) + 0.75 : (s'=2); |
|||
[] s=2 -> 1 : (s'=s); |
|||
endmodule |
|||
|
|||
rewards "rew" |
|||
[A] true : 10; |
|||
[D] true : 4; |
|||
endrewards |
|||
|
@ -1,20 +0,0 @@ |
|||
|
|||
mdp |
|||
|
|||
module module1 |
|||
|
|||
s : [0..2] init 0; |
|||
|
|||
[A] s=0 -> 1 : (s'=1); |
|||
[B] s=0 -> 1 : (s'=2); |
|||
[C] s=1 -> 1 : true; |
|||
[D] s=1 -> 1 : (s'=2); |
|||
[E] s=2 -> 1 : true; |
|||
endmodule |
|||
|
|||
rewards "rew" |
|||
[A] true : 10; |
|||
[C] true : 3; |
|||
[E] true : 1; |
|||
endrewards |
|||
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue