|
@ -88,330 +88,6 @@ namespace storm { |
|
|
|
|
|
|
|
|
//TODO: move this |
|
|
//TODO: move this |
|
|
|
|
|
|
|
|
typedef struct FoxGlynn |
|
|
|
|
|
{ |
|
|
|
|
|
int left; |
|
|
|
|
|
int right; |
|
|
|
|
|
double total_weight; |
|
|
|
|
|
double *weights; |
|
|
|
|
|
} FoxGlynn; |
|
|
|
|
|
|
|
|
|
|
|
static std::vector<double> foxGlynnProb(double lambdaT, int N, double precision){ |
|
|
|
|
|
|
|
|
|
|
|
FoxGlynn* fg = NULL; |
|
|
|
|
|
if(!fox_glynn(lambdaT, DBL_MIN, DBL_MAX, precision, &fg)) { |
|
|
|
|
|
printf("ERROR: fox-glynn failed\n"); |
|
|
|
|
|
return std::vector<double>{}; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
long double sumOfPoissonProbs = 0.0; |
|
|
|
|
|
std::vector<double> poisson_p(N,0.0); |
|
|
|
|
|
unsigned long iter_num; |
|
|
|
|
|
|
|
|
|
|
|
std::cout << "fg left " << fg->left << " fh right " << fg->right <<"\n"; |
|
|
|
|
|
//for(int i=fg->left; i<=fg->right; i++) { |
|
|
|
|
|
for (int i = 0; i<N ; i++){ |
|
|
|
|
|
poisson_p[i] = fg->weights[i-fg->left]/fg->total_weight; |
|
|
|
|
|
sumOfPoissonProbs+=poisson_p[i]; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
for(int i=fg->left-1; i>=0; i--) { |
|
|
|
|
|
poisson_p[i] = poisson_p[i+1]*((i+1)/(lambdaT)); |
|
|
|
|
|
sumOfPoissonProbs+=poisson_p[i]; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
iter_num = fg->right; |
|
|
|
|
|
|
|
|
|
|
|
freeFG(fg); |
|
|
|
|
|
|
|
|
|
|
|
return poisson_p; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static bool finder(const int m, const double lambda, const double tau, const double omega, |
|
|
|
|
|
const double epsilon, double * pw_m, FoxGlynn *pFG) |
|
|
|
|
|
{ |
|
|
|
|
|
/*The pi constant*/ |
|
|
|
|
|
static const double pi = 3.14159265358979323846264; |
|
|
|
|
|
static const double lambda_25 = 25.0; |
|
|
|
|
|
static const double lambda_400 = 40; |
|
|
|
|
|
|
|
|
|
|
|
const double sqrt_2_pi = sqrt( 2.0 * pi ); |
|
|
|
|
|
const double sqrt_2 = sqrt(2.0); |
|
|
|
|
|
const double sqrt_lambda = sqrt(lambda); |
|
|
|
|
|
double lambda_max, k, k_rtp = HUGE_VAL, k_prime, c_m_inf, result, al, dkl, bl; |
|
|
|
|
|
|
|
|
|
|
|
/*Simple bad cases, when we quit*/ |
|
|
|
|
|
if( lambda == 0.0 ) |
|
|
|
|
|
{ |
|
|
|
|
|
printf("ERROR: Fox-Glynn: lambda = 0, terminating the algorithm\n"); |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
/* The requested error level must not be smaller than the minimum machine precision |
|
|
|
|
|
(needed to guarantee the convergence of the error conditions) */ |
|
|
|
|
|
if( epsilon < tau) |
|
|
|
|
|
{ |
|
|
|
|
|
printf("ERROR: Fox-Glynn: epsilon < tau, invalid error level, terminating the algorithm\n"); |
|
|
|
|
|
printf("epsilon %f, tau %f\n",epsilon,tau); |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
/* zero is used as left truncation point for lambda <= 25 */ |
|
|
|
|
|
pFG->left = 0; |
|
|
|
|
|
lambda_max = lambda; |
|
|
|
|
|
|
|
|
|
|
|
/* for lambda below 25 the exponential can be smaller than tau */ |
|
|
|
|
|
/* if that is the case we expect underflows and warn the user */ |
|
|
|
|
|
if( 0.0 < lambda && lambda <= lambda_25 ) |
|
|
|
|
|
{ |
|
|
|
|
|
if( exp( -lambda ) <= tau ) |
|
|
|
|
|
{ |
|
|
|
|
|
printf("ERROR: Fox-Glynn: 0 < lambda < 25, underflow. The results are UNRELIABLE.\n"); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
bl = (1.0 + 1.0/lambda) * exp(1.0 / (8.0 * lambda)); |
|
|
|
|
|
|
|
|
|
|
|
/****Compute pFG->right truncation point****/ |
|
|
|
|
|
/*According to Fox-Glynn, if lambda < 400 we should take lambda = 400, |
|
|
|
|
|
otherwise use the original value. This is for computing the right truncation point*/ |
|
|
|
|
|
if(lambda < lambda_400) |
|
|
|
|
|
lambda_max = lambda_400; |
|
|
|
|
|
k = 4; |
|
|
|
|
|
al = (1.0+1.0/lambda_max) * exp(1.0/16.0) * sqrt_2; |
|
|
|
|
|
dkl = exp(-2.0/9.0 * (k * sqrt(2.0 * lambda_max) + 1.5 )); |
|
|
|
|
|
dkl = 1.0 / (1.0 - dkl); |
|
|
|
|
|
/* find right truncation point */ |
|
|
|
|
|
|
|
|
|
|
|
/* This loop is a modification to the original Fox-Glynn paper. |
|
|
|
|
|
The search for the right truncation point is only terminated by |
|
|
|
|
|
the error condition and not by the stop index from the FG paper. |
|
|
|
|
|
This can yield more accurate results if neccesary.*/ |
|
|
|
|
|
while((epsilon/2.0) < ((al * dkl * exp(-(k*k)/2.0))/(k*sqrt_2_pi))) |
|
|
|
|
|
{ |
|
|
|
|
|
k++; |
|
|
|
|
|
dkl = exp(-2.0/9.0 * (k * sqrt_2 * sqrt(lambda_max) + 1.5 )); |
|
|
|
|
|
dkl = 1.0 / (1.0 - dkl); |
|
|
|
|
|
} |
|
|
|
|
|
k_rtp = k; |
|
|
|
|
|
pFG->right = (int)ceil(m + k_rtp * sqrt_2 * sqrt(lambda_max) + 1.5 ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****Compute pFG->left truncation point****/ |
|
|
|
|
|
/* compute the left truncation point for lambda > 25 */ |
|
|
|
|
|
/* for lambda <= 25 we use zero as left truncation point */ |
|
|
|
|
|
if(lambda > lambda_25) |
|
|
|
|
|
{ |
|
|
|
|
|
/*Start looking for the left truncation point*/ |
|
|
|
|
|
/* start search at k=4 (taken from original Fox-Glynn paper */ |
|
|
|
|
|
k = 4; |
|
|
|
|
|
/* increase the left truncation point as long as we fulfill the error condition */ |
|
|
|
|
|
|
|
|
|
|
|
/* This loop is a modification to the original Fox-Glynn paper. |
|
|
|
|
|
The search for the left truncation point is only terminated by |
|
|
|
|
|
the error condition and not by the stop index from the FG paper. |
|
|
|
|
|
This can yield more accurate results if neccesary.*/ |
|
|
|
|
|
while((epsilon/2.0) < ((bl * exp(-(k*k)/2.0))/(k * sqrt_2_pi))) |
|
|
|
|
|
k++; |
|
|
|
|
|
/*Finally the left truncation point is found*/ |
|
|
|
|
|
pFG->left = (int)floor(m - k*sqrt(lambda)- 1.5 ); |
|
|
|
|
|
/* for small lambda the above calculation can yield negative truncation points, crop them here */ |
|
|
|
|
|
if(pFG->left < 0) |
|
|
|
|
|
pFG->left = 0; |
|
|
|
|
|
/* perform underflow check */ |
|
|
|
|
|
k_prime = k + 3.0 / (2.0 * sqrt_lambda); |
|
|
|
|
|
/*We take the c_m_inf = 0.02935 / sqrt( m ), as for lambda >= 25 |
|
|
|
|
|
c_m = 1 / ( sqrt( 2.0 * pi * m ) ) * exp( m - lambda - 1 / ( 12.0 * m ) ) => c_m_inf*/ |
|
|
|
|
|
c_m_inf = 0.02935 / sqrt((double) m); |
|
|
|
|
|
result = 0.0; |
|
|
|
|
|
if( 0.0 < k_prime && k_prime <= sqrt_lambda / 2.0 ) |
|
|
|
|
|
{ |
|
|
|
|
|
result = c_m_inf * exp( - pow(k_prime,2.0) / 2.0 - pow(k_prime, 3.0) / (3.0 * sqrt_lambda) ); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
if( k_prime <= sqrt( m + 1.0 ) / m ) |
|
|
|
|
|
{ |
|
|
|
|
|
double result_1 = c_m_inf * pow( |
|
|
|
|
|
1.0 - k_prime / sqrt((double) (m + 1)), |
|
|
|
|
|
k_prime * sqrt((double) (m + 1))); |
|
|
|
|
|
double result_2 = exp( - lambda ); |
|
|
|
|
|
/*Take the maximum*/ |
|
|
|
|
|
result = ( result_1 > result_2 ? result_1 : result_2); |
|
|
|
|
|
} |
|
|
|
|
|
else |
|
|
|
|
|
{ |
|
|
|
|
|
/*NOTE: It will be an underflow error*/; |
|
|
|
|
|
printf("ERROR: Fox-Glynn: lambda >= 25, underflow. The results are UNRELIABLE.\n"); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
if ( result * omega / ( 1.0e+10 * ( pFG->right - pFG->left ) ) <= tau ) |
|
|
|
|
|
{ |
|
|
|
|
|
printf("ERROR: Fox-Glynn: lambda >= 25, underflow. The results are UNRELIABLE.\n"); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*We still have to perform an underflow check for the right truncation point when lambda >= 400*/ |
|
|
|
|
|
if( lambda >= lambda_400 ) |
|
|
|
|
|
{ |
|
|
|
|
|
k_prime = k_rtp * sqrt_2 + 3.0 / (2.0 * sqrt_lambda); |
|
|
|
|
|
/*We take the c_m_inf = 0.02935 / sqrt( m ), as for lambda >= 25 |
|
|
|
|
|
c_m = 1 / ( sqrt( 2.0 * pi * m ) ) * exp( m - lambda - 1 / ( 12.0 * m ) ) => c_m_inf*/ |
|
|
|
|
|
c_m_inf = 0.02935 / sqrt((double) m); |
|
|
|
|
|
result = c_m_inf * exp( - pow( k_prime + 1.0 , 2.0 ) / 2.0 ); |
|
|
|
|
|
if( result * omega / ( 1.0e+10 * ( pFG->right - pFG->left ) ) <= tau) |
|
|
|
|
|
{ |
|
|
|
|
|
printf("ERROR: Fox-Glynn: lambda >= 400, underflow. The results are UNRELIABLE.\n"); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
/*Time to set the initial value for weights*/ |
|
|
|
|
|
*pw_m = omega / ( 1.0e+10 * ( pFG->right - pFG->left ) ); |
|
|
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************************************************** |
|
|
|
|
|
Name : weighter |
|
|
|
|
|
Role : The WEIGHTER function from the Fox-Glynn algorithm |
|
|
|
|
|
@param : double lambda: (rate of uniformization)*(mission time) |
|
|
|
|
|
@param : double tau: underflow |
|
|
|
|
|
@param : double omega: overflow |
|
|
|
|
|
@param : double epsilon: error bound |
|
|
|
|
|
@param : FoxGlynn *: return by reference |
|
|
|
|
|
@return : TRUE if everything is fine, otherwise FALSE. |
|
|
|
|
|
This is the F parameter of Fox-Glynn finder function. |
|
|
|
|
|
remark : |
|
|
|
|
|
******************************************************************************/ |
|
|
|
|
|
static bool weighter(const double lambda, const double tau, const double omega, const double epsilon, FoxGlynn *pFG) |
|
|
|
|
|
{ |
|
|
|
|
|
static const double pi = 3.14159265358979323846264; |
|
|
|
|
|
static const double lambda_25 = 25.0; |
|
|
|
|
|
static const double lambda_400 = 40; |
|
|
|
|
|
/*The magic m point*/ |
|
|
|
|
|
const int m = (int)floor(lambda); |
|
|
|
|
|
double w_m = 0; |
|
|
|
|
|
int j, s, t; |
|
|
|
|
|
|
|
|
|
|
|
if( ! finder( m, lambda, tau, omega, epsilon, &w_m, pFG ) ) |
|
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
|
|
/*Allocate space for weights*/ |
|
|
|
|
|
pFG->weights = (double *) calloc((size_t) (pFG->right - pFG->left + 1), |
|
|
|
|
|
sizeof(double)); |
|
|
|
|
|
/*Set an initial weight*/ |
|
|
|
|
|
pFG->weights[ m - pFG->left ] = w_m; |
|
|
|
|
|
|
|
|
|
|
|
/*Fill the left side of the array*/ |
|
|
|
|
|
for( j = m; j > pFG->left; j-- ) |
|
|
|
|
|
pFG->weights[ ( j - pFG->left ) - 1 ] = ( j / lambda ) * pFG->weights[ j - pFG->left ]; |
|
|
|
|
|
|
|
|
|
|
|
/*Fill the right side of the array, have two cases lambda < 400 & lambda >= 400*/ |
|
|
|
|
|
if( lambda < lambda_400 ) |
|
|
|
|
|
{ |
|
|
|
|
|
/*Perform the underflow check, according to Fox-Glynn*/ |
|
|
|
|
|
if( pFG->right > 600 ) |
|
|
|
|
|
{ |
|
|
|
|
|
printf("ERROR: Fox-Glynn: pFG->right > 600, underflow is possible\n"); |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
/*Compute weights*/ |
|
|
|
|
|
for( j = m; j < pFG->right; j++ ) |
|
|
|
|
|
{ |
|
|
|
|
|
double q = lambda / ( j + 1 ); |
|
|
|
|
|
if( pFG->weights[ j - pFG->left ] > tau / q ) |
|
|
|
|
|
{ |
|
|
|
|
|
pFG->weights[ ( j - pFG->left ) + 1 ] = q * pFG->weights[ j - pFG->left ]; |
|
|
|
|
|
}else{ |
|
|
|
|
|
pFG->right = j; |
|
|
|
|
|
break; /*It's time to compute W*/ |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
}else{ |
|
|
|
|
|
/*Compute weights*/ |
|
|
|
|
|
for( j = m; j < pFG->right; j++ ) |
|
|
|
|
|
pFG->weights[ ( j - pFG->left ) + 1 ] = ( lambda / ( j + 1 ) ) * pFG->weights[ j - pFG->left ]; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*It is time to compute the normalization weight W*/ |
|
|
|
|
|
pFG->total_weight = 0.0; |
|
|
|
|
|
s = pFG->left; |
|
|
|
|
|
t = pFG->right; |
|
|
|
|
|
|
|
|
|
|
|
while( s < t ) |
|
|
|
|
|
{ |
|
|
|
|
|
if( pFG->weights[ s - pFG->left ] <= pFG->weights[ t - pFG->left ] ) |
|
|
|
|
|
{ |
|
|
|
|
|
pFG->total_weight += pFG->weights[ s - pFG->left ]; |
|
|
|
|
|
s++; |
|
|
|
|
|
}else{ |
|
|
|
|
|
pFG->total_weight += pFG->weights[ t - pFG->left ]; |
|
|
|
|
|
t--; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
pFG->total_weight += pFG->weights[ s - pFG->left ]; |
|
|
|
|
|
|
|
|
|
|
|
/* printf("Fox-Glynn: ltp = %d, rtp = %d, w = %10.15le \n", pFG->left, pFG->right, pFG->total_weight); */ |
|
|
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************************************************** |
|
|
|
|
|
Name : fox_glynn |
|
|
|
|
|
Role : get poisson probabilities. |
|
|
|
|
|
@param : double lambda: (rate of uniformization)*(mission time) |
|
|
|
|
|
@param : double tau: underflow |
|
|
|
|
|
@param : double omega: overflow |
|
|
|
|
|
@param : double epsilon: error bound |
|
|
|
|
|
@param : FoxGlynn **: return a new FoxGlynn structure by reference |
|
|
|
|
|
@return : TRUE if it worked fine, otherwise false |
|
|
|
|
|
remark : |
|
|
|
|
|
******************************************************************************/ |
|
|
|
|
|
static bool fox_glynn(const double lambda, const double tau, const double omega, const double epsilon, FoxGlynn **ppFG) |
|
|
|
|
|
{ |
|
|
|
|
|
/* printf("Fox-Glynn: lambda = %3.3le, epsilon = %1.8le\n",lambda, epsilon); */ |
|
|
|
|
|
|
|
|
|
|
|
*ppFG = (FoxGlynn *) calloc((size_t) 1, sizeof(FoxGlynn)); |
|
|
|
|
|
(*ppFG)->weights = NULL; |
|
|
|
|
|
|
|
|
|
|
|
return weighter(lambda, tau, omega, epsilon, *ppFG); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/** |
|
|
|
|
|
* Fries the memory allocated for the FoxGlynn structure |
|
|
|
|
|
* @param fg the structure to free |
|
|
|
|
|
*/ |
|
|
|
|
|
static void freeFG(FoxGlynn * fg) |
|
|
|
|
|
{ |
|
|
|
|
|
if( fg ){ |
|
|
|
|
|
if( fg->weights ) |
|
|
|
|
|
free(fg->weights); |
|
|
|
|
|
free(fg); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*! |
|
|
|
|
|
* Computes the poission-distribution |
|
|
|
|
|
* |
|
|
|
|
|
* |
|
|
|
|
|
* @param parameter lambda to use |
|
|
|
|
|
* @param point i |
|
|
|
|
|
* TODO: replace with Fox-Lynn |
|
|
|
|
|
* @return the probability |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! |
|
|
|
|
|
* Computes the poission-distribution |
|
|
|
|
|
* |
|
|
|
|
|
* |
|
|
|
|
|
* @param parameter lambda to use |
|
|
|
|
|
* @param point i |
|
|
|
|
|
* TODO: replace with Fox-glynn |
|
|
|
|
|
* @return the probability |
|
|
|
|
|
*/ |
|
|
|
|
|
template <typename ValueType> |
|
|
|
|
|
static ValueType poisson(ValueType lambda, uint64_t i); |
|
|
|
|
|
|
|
|
|
|
|
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type=0> |
|
|
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type=0> |
|
|
static uint64_t trajans(storm::storage::SparseMatrix<ValueType> const& TransitionMatrix, uint64_t node, std::vector<uint64_t>& disc, std::vector<uint64_t>& finish, uint64_t * counter); |
|
|
static uint64_t trajans(storm::storage::SparseMatrix<ValueType> const& TransitionMatrix, uint64_t node, std::vector<uint64_t>& disc, std::vector<uint64_t>& finish, uint64_t * counter); |
|
|