Browse Source

further work on creating helper classes for model checking tasks

Former-commit-id: 12cd17fb26
main
dehnert 10 years ago
parent
commit
9d138d86f7
  1. 6
      src/builder/ExplicitPrismModelBuilder.cpp
  2. 639
      src/modelchecker/csl/SparseCtmcCslModelChecker.cpp
  3. 61
      src/modelchecker/csl/SparseCtmcCslModelChecker.h
  4. 2
      src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp
  5. 0
      src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp
  6. 0
      src/modelchecker/csl/helper/HybridCtmcCslHelper.h
  7. 648
      src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp
  8. 63
      src/modelchecker/csl/helper/SparseCtmcCslHelper.h
  9. 254
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp
  10. 14
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h
  11. 21
      src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp
  12. 2
      src/modelchecker/prctl/HybridMdpPrctlModelChecker.h
  13. 3
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp
  14. 7
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h
  15. 33
      src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
  16. 241
      src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp
  17. 38
      src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.h
  18. 24
      src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp
  19. 16
      src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h
  20. 20
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp
  21. 5
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h
  22. 4
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
  23. 4
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h

6
src/builder/ExplicitPrismModelBuilder.cpp

@ -173,9 +173,9 @@ namespace storm {
} else {
rewardModelName = "";
}
rewardModels.emplace(rewardModelName, rewardModel.hasStateRewards() ? std::move(modelComponents.stateRewards) : boost::optional<std::vector<ValueType>>(),
boost::optional<std::vector<ValueType>>(),
rewardModel.hasTransitionRewards() ? std::move(modelComponents.transitionRewardMatrix) : boost::optional<storm::storage::SparseMatrix<ValueType>>());
rewardModels.emplace(rewardModelName, storm::models::sparse::StandardRewardModel<ValueType>(rewardModel.hasStateRewards() ? std::move(modelComponents.stateRewards) : boost::optional<std::vector<ValueType>>(),
boost::optional<std::vector<ValueType>>(),
rewardModel.hasTransitionRewards() ? std::move(modelComponents.transitionRewardMatrix) : boost::optional<storm::storage::SparseMatrix<ValueType>>()));
}
switch (program.getModelType()) {

639
src/modelchecker/csl/SparseCtmcCslModelChecker.cpp

@ -1,19 +1,16 @@
#include "src/modelchecker/csl/SparseCtmcCslModelChecker.h"
#include <vector>
#include "src/modelchecker/csl/helper/SparseCtmcCslHelper.h"
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/utility/solver.h"
#include "src/utility/numerical.h"
#include "src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/NotImplementedException.h"
@ -51,15 +48,16 @@ namespace storm {
upperBound = pathFormula.getDiscreteTimeBound();
}
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), this->getModel().getExitRateVector(), qualitative, lowerBound, upperBound)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeBoundedUntilProbabilities(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), this->getModel().getExitRateVector(), qualitative, lowerBound, upperBound, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = SparseDtmcPrctlModelChecker<SparseCtmcModelType>::computeNextProbabilitiesHelper(this->computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeNextProbabilities(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), subResult.getTruthValuesVector(), *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template <typename SparseCtmcModelType>
@ -68,404 +66,29 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeUntilProbabilitiesHelper(this->computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory)));
}
template <typename SparseCtmcModelType>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const {
// If the time bounds are [0, inf], we rather call untimed reachability.
storm::utility::ConstantsComparator<ValueType> comparator;
if (comparator.isZero(lowerBound) && comparator.isInfinity(upperBound)) {
return this->computeUntilProbabilitiesHelper(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), phiStates, psiStates, qualitative, *this->linearEquationSolverFactory);
}
// From this point on, we know that we have to solve a more complicated problem [t, t'] with either t != 0
// or t' != inf.
// Create the result vector.
std::vector<ValueType> result;
// If we identify the states that have probability 0 of reaching the target states, we can exclude them from the
// further computations.
storm::storage::SparseMatrix<ValueType> backwardTransitions = this->getModel().getBackwardTransitions();
storm::storage::BitVector statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates);
STORM_LOG_INFO("Found " << statesWithProbabilityGreater0.getNumberOfSetBits() << " states with probability greater 0.");
storm::storage::BitVector statesWithProbabilityGreater0NonPsi = statesWithProbabilityGreater0 & ~psiStates;
STORM_LOG_INFO("Found " << statesWithProbabilityGreater0NonPsi.getNumberOfSetBits() << " 'maybe' states.");
if (!statesWithProbabilityGreater0NonPsi.empty()) {
if (comparator.isZero(upperBound)) {
// In this case, the interval is of the form [0, 0].
result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
} else {
if (comparator.isZero(lowerBound)) {
// In this case, the interval is of the form [0, t].
// Note that this excludes [0, inf] since this is untimed reachability and we considered this case earlier.
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = 0;
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Finally compute the transient probabilities.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = this->computeTransientProbabilities(uniformizedMatrix, &b, upperBound, uniformizationRate, values, *this->linearEquationSolverFactory);
result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0NonPsi, subresult);
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
} else if (comparator.isInfinity(upperBound)) {
// In this case, the interval is of the form [t, inf] with t != 0.
// Start by computing the (unbounded) reachability probabilities of reaching psi states while
// staying in phi states.
result = this->computeUntilProbabilitiesHelper(this->getModel().getTransitionMatrix(), backwardTransitions, phiStates, psiStates, qualitative, *this->linearEquationSolverFactory);
// Determine the set of states that must be considered further.
storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates;
std::vector<ValueType> subResult(relevantStates.getNumberOfSetBits());
storm::utility::vector::selectVectorValues(subResult, relevantStates, result);
ValueType uniformizationRate = 0;
for (auto const& state : relevantStates) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), relevantStates, uniformizationRate, exitRates);
// Compute the transient probabilities.
subResult = this->computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, subResult, *this->linearEquationSolverFactory);
// Fill in the correct values.
storm::utility::vector::setVectorValues(result, ~relevantStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, relevantStates, subResult);
} else {
// In this case, the interval is of the form [t, t'] with t != 0 and t' != inf.
if (lowerBound != upperBound) {
// In this case, the interval is of the form [t, t'] with t != 0, t' != inf and t != t'.
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the (first) uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Start by computing the transient probabilities of reaching a psi state in time t' - t.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(uniformizedMatrix, &b, upperBound - lowerBound, uniformizationRate, values, *this->linearEquationSolverFactory);
storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates;
std::vector<ValueType> newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, statesWithProbabilityGreater0NonPsi % relevantStates, subresult);
storm::utility::vector::setVectorValues(newSubresult, psiStates % relevantStates, storm::utility::one<ValueType>());
// Then compute the transient probabilities of being in such a state after t time units. For this,
// we must re-uniformize the CTMC, so we need to compute the second uniformized matrix.
uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : relevantStates) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Finally, we compute the second set of transient probabilities.
uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), relevantStates, uniformizationRate, exitRates);
newSubresult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory);
// Fill in the correct values.
result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, ~relevantStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, relevantStates, newSubresult);
} else {
// In this case, the interval is of the form [t, t] with t != 0, t != inf.
std::vector<ValueType> newSubresult = std::vector<ValueType>(statesWithProbabilityGreater0.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, psiStates % statesWithProbabilityGreater0, storm::utility::one<ValueType>());
// Then compute the transient probabilities of being in such a state after t time units. For this,
// we must re-uniformize the CTMC, so we need to compute the second uniformized matrix.
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : statesWithProbabilityGreater0) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Finally, we compute the second set of transient probabilities.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), statesWithProbabilityGreater0, uniformizationRate, exitRates);
newSubresult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory);
// Fill in the correct values.
result = std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, ~statesWithProbabilityGreater0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, newSubresult);
}
}
}
}
return result;
}
template <typename SparseCtmcModelType>
storm::storage::SparseMatrix<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates) {
STORM_LOG_DEBUG("Computing uniformized matrix using uniformization rate " << uniformizationRate << ".");
STORM_LOG_DEBUG("Keeping " << maybeStates.getNumberOfSetBits() << " rows.");
// Create the submatrix that only contains the states with a positive probability (including the
// psi states) and reserve space for elements on the diagonal.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = transitionMatrix.getSubmatrix(false, maybeStates, maybeStates, true);
// Now we need to perform the actual uniformization. That is, all entries need to be divided by
// the uniformization rate, and the diagonal needs to be set to the negative exit rate of the
// state plus the self-loop rate and then increased by one.
uint_fast64_t currentRow = 0;
for (auto const& state : maybeStates) {
for (auto& element : uniformizedMatrix.getRow(currentRow)) {
if (element.getColumn() == currentRow) {
element.setValue((element.getValue() - exitRates[state]) / uniformizationRate + storm::utility::one<ValueType>());
} else {
element.setValue(element.getValue() / uniformizationRate);
}
}
++currentRow;
}
return uniformizedMatrix;
}
template <typename SparseCtmcModelType>
template<bool computeCumulativeReward>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
ValueType lambda = timeBound * uniformizationRate;
// If no time can pass, the current values are the result.
if (lambda == storm::utility::zero<ValueType>()) {
return values;
}
// Use Fox-Glynn to get the truncation points and the weights.
std::tuple<uint_fast64_t, uint_fast64_t, ValueType, std::vector<ValueType>> foxGlynnResult = storm::utility::numerical::getFoxGlynnCutoff(lambda, 1e-300, 1e+300, storm::settings::generalSettings().getPrecision() / 8.0);
STORM_LOG_DEBUG("Fox-Glynn cutoff points: left=" << std::get<0>(foxGlynnResult) << ", right=" << std::get<1>(foxGlynnResult));
// Scale the weights so they add up to one.
for (auto& element : std::get<3>(foxGlynnResult)) {
element /= std::get<2>(foxGlynnResult);
}
// If the cumulative reward is to be computed, we need to adjust the weights.
if (computeCumulativeReward) {
ValueType sum = storm::utility::zero<ValueType>();
for (auto& element : std::get<3>(foxGlynnResult)) {
sum += element;
element = (1 - sum) / uniformizationRate;
}
}
STORM_LOG_DEBUG("Starting iterations with " << uniformizedMatrix.getRowCount() << " x " << uniformizedMatrix.getColumnCount() << " matrix.");
// Initialize result.
std::vector<ValueType> result;
uint_fast64_t startingIteration = std::get<0>(foxGlynnResult);
if (startingIteration == 0) {
result = values;
storm::utility::vector::scaleVectorInPlace(result, std::get<3>(foxGlynnResult)[0]);
std::function<ValueType(ValueType const&, ValueType const&)> addAndScale = [&foxGlynnResult] (ValueType const& a, ValueType const& b) { return a + std::get<3>(foxGlynnResult)[0] * b; };
if (addVector != nullptr) {
storm::utility::vector::applyPointwise(result, *addVector, result, addAndScale);
}
++startingIteration;
} else {
if (computeCumulativeReward) {
result = std::vector<ValueType>(values.size());
std::function<ValueType (ValueType const&)> scaleWithUniformizationRate = [&uniformizationRate] (ValueType const& a) -> ValueType { return a / uniformizationRate; };
storm::utility::vector::applyPointwise(values, result, scaleWithUniformizationRate);
} else {
result = std::vector<ValueType>(values.size());
}
}
std::vector<ValueType> multiplicationResult(result.size());
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(uniformizedMatrix);
if (!computeCumulativeReward && std::get<0>(foxGlynnResult) > 1) {
// Perform the matrix-vector multiplications (without adding).
solver->performMatrixVectorMultiplication(values, addVector, std::get<0>(foxGlynnResult) - 1, &multiplicationResult);
} else if (computeCumulativeReward) {
std::function<ValueType(ValueType const&, ValueType const&)> addAndScale = [&uniformizationRate] (ValueType const& a, ValueType const& b) { return a + b / uniformizationRate; };
// For the iterations below the left truncation point, we need to add and scale the result with the uniformization rate.
for (uint_fast64_t index = 1; index < startingIteration; ++index) {
solver->performMatrixVectorMultiplication(values, nullptr, 1, &multiplicationResult);
storm::utility::vector::applyPointwise(result, values, result, addAndScale);
}
}
// For the indices that fall in between the truncation points, we need to perform the matrix-vector
// multiplication, scale and add the result.
ValueType weight = 0;
std::function<ValueType(ValueType const&, ValueType const&)> addAndScale = [&weight] (ValueType const& a, ValueType const& b) { return a + weight * b; };
for (uint_fast64_t index = startingIteration; index <= std::get<1>(foxGlynnResult); ++index) {
solver->performMatrixVectorMultiplication(values, addVector, 1, &multiplicationResult);
weight = std::get<3>(foxGlynnResult)[index - std::get<0>(foxGlynnResult)];
storm::utility::vector::applyPointwise(result, values, result, addAndScale);
}
return result;
}
template <typename SparseCtmcModelType>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlModelChecker<SparseCtmcModelType>::computeUntilProbabilitiesHelper(transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, linearEquationSolverFactory);
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeUntilProbabilities(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRateVector(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardPathFormula.getContinuousTimeBound())));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeInstantaneousRewards(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getContinuousTimeBound(), *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template <typename SparseCtmcModelType>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeInstantaneousRewardsHelper(double timeBound) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(this->getModel().hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the this->getModel().
std::vector<ValueType> result(this->getModel().getStateRewardVector());
// If the time-bound is not zero, we need to perform a transient analysis.
if (timeBound > 0) {
ValueType uniformizationRate = 0;
for (auto const& rate : this->getModel().getExitRateVector()) {
uniformizationRate = std::max(uniformizationRate, rate);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), storm::storage::BitVector(this->getModel().getNumberOfStates(), true), uniformizationRate, this->getModel().getExitRateVector());
result = this->computeTransientProbabilities(uniformizedMatrix, nullptr, timeBound, uniformizationRate, result, *this->linearEquationSolverFactory);
}
return result;
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardPathFormula.getContinuousTimeBound())));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeCumulativeRewards(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getContinuousTimeBound(), *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template <typename SparseCtmcModelType>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeCumulativeRewardsHelper(double timeBound) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(this->getModel().hasStateRewards() || this->getModel().hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// If the time bound is zero, the result is the constant zero vector.
if (timeBound == 0) {
return std::vector<ValueType>(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
}
// Otherwise, we need to perform some computations.
// Start with the uniformization.
ValueType uniformizationRate = 0;
for (auto const& rate : this->getModel().getExitRateVector()) {
uniformizationRate = std::max(uniformizationRate, rate);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), storm::storage::BitVector(this->getModel().getNumberOfStates(), true), uniformizationRate, this->getModel().getExitRateVector());
// Compute the total state reward vector.
std::vector<ValueType> totalRewardVector;
if (this->getModel().hasTransitionRewards()) {
totalRewardVector = this->getModel().getTransitionMatrix().getPointwiseProductRowSumVector(this->getModel().getTransitionRewardMatrix());
if (this->getModel().hasStateRewards()) {
storm::utility::vector::addVectors(totalRewardVector, this->getModel().getStateRewardVector(), totalRewardVector);
}
} else {
totalRewardVector = std::vector<ValueType>(this->getModel().getStateRewardVector());
}
// Finally, compute the transient probabilities.
return this->computeTransientProbabilities<true>(uniformizedMatrix, nullptr, timeBound, uniformizationRate, totalRewardVector, *this->linearEquationSolverFactory);
}
template <typename SparseCtmcModelType>
storm::storage::SparseMatrix<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
// Turn the rates into probabilities by scaling each row with the exit rate of the state.
storm::storage::SparseMatrix<ValueType> result(rateMatrix);
for (uint_fast64_t row = 0; row < result.getRowCount(); ++row) {
for (auto& entry : result.getRow(row)) {
entry.setValue(entry.getValue() / exitRates[row]);
}
}
return result;
}
template <typename SparseCtmcModelType>
storm::storage::SparseMatrix<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<ValueType> generatorMatrix(rateMatrix, true);
// Place the negative exit rate on the diagonal.
for (uint_fast64_t row = 0; row < generatorMatrix.getRowCount(); ++row) {
for (auto& entry : generatorMatrix.getRow(row)) {
if (entry.getColumn() == row) {
entry.setValue(-exitRates[row]);
}
}
}
return generatorMatrix;
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
storm::storage::SparseMatrix<ValueType> probabilityMatrix = computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector());
boost::optional<std::vector<ValueType>> modifiedStateRewardVector;
if (this->getModel().hasStateRewards()) {
modifiedStateRewardVector = std::vector<ValueType>(this->getModel().getStateRewardVector());
typename std::vector<ValueType>::const_iterator it2 = this->getModel().getExitRateVector().begin();
for (typename std::vector<ValueType>::iterator it1 = modifiedStateRewardVector.get().begin(), ite1 = modifiedStateRewardVector.get().end(); it1 != ite1; ++it1, ++it2) {
*it1 /= *it2;
}
}
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(SparseDtmcPrctlModelChecker<ValueType>::computeReachabilityRewardsHelper(probabilityMatrix, modifiedStateRewardVector, this->getModel().getOptionalTransitionRewardMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), *linearEquationSolverFactory, qualitative)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeReachabilityRewards(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRateVector(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template <typename SparseCtmcModelType>
@ -473,234 +96,10 @@ namespace storm {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
storm::storage::SparseMatrix<ValueType> probabilityMatrix = this->computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector());
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(computeLongRunAverageHelper(probabilityMatrix, subResult.getTruthValuesVector(), &this->getModel().getExitRateVector(), qualitative, *linearEquationSolverFactory)));
}
template <typename SparseCtmcModelType>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numOfStates = transitionMatrix.getRowCount();
if (psiStates.empty()) {
return std::vector<ValueType>(numOfStates, storm::utility::zero<ValueType>());
}
// Likewise, if all bits are set, we can avoid the computation.
if (psiStates.full()) {
return std::vector<ValueType>(numOfStates, storm::utility::one<ValueType>());
}
// Start by decomposing the DTMC into its BSCCs.
storm::storage::StronglyConnectedComponentDecomposition<double> bsccDecomposition(transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowCount(), true), false, true);
STORM_LOG_DEBUG("Found " << bsccDecomposition.size() << " BSCCs.");
// Get some data members for convenience.
ValueType one = storm::utility::one<ValueType>();
ValueType zero = storm::utility::zero<ValueType>();
// Prepare the vector holding the LRA values for each of the BSCCs.
std::vector<ValueType> bsccLra(bsccDecomposition.size(), zero);
// First we check which states are in BSCCs.
storm::storage::BitVector statesInBsccs(numOfStates);
storm::storage::BitVector firstStatesInBsccs(numOfStates);
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
// Gather information for later use.
bool first = true;
for (auto const& state : bscc) {
statesInBsccs.set(state);
if (first) {
firstStatesInBsccs.set(state);
}
first = false;
}
}
storm::storage::BitVector statesNotInBsccs = ~statesInBsccs;
STORM_LOG_DEBUG("Found " << statesInBsccs.getNumberOfSetBits() << " states in BSCCs.");
// Prepare a vector holding the index within all states that are in BSCCs for every state.
std::vector<uint_fast64_t> indexInStatesInBsccs;
// Prepare a vector that maps the index within the set of all states in BSCCs to the index of the containing BSCC.
std::vector<uint_fast64_t> stateToBsccIndexMap;
if (!statesInBsccs.empty()) {
firstStatesInBsccs = firstStatesInBsccs % statesInBsccs;
// Then we construct an equation system that yields the steady state probabilities for all states in BSCCs.
storm::storage::SparseMatrix<ValueType> bsccEquationSystem = transitionMatrix.getSubmatrix(false, statesInBsccs, statesInBsccs, true);
// Since in the fix point equation, we need to multiply the vector from the left, we convert this to a
// multiplication from the right by transposing the system.
bsccEquationSystem = bsccEquationSystem.transpose(false, true);
// Create an auxiliary structure that makes it easy to look up the indices within the set of BSCC states.
uint_fast64_t lastIndex = 0;
uint_fast64_t currentNumberOfSetBits = 0;
indexInStatesInBsccs.reserve(transitionMatrix.getRowCount());
for (auto index : statesInBsccs) {
while (lastIndex <= index) {
indexInStatesInBsccs.push_back(currentNumberOfSetBits);
++lastIndex;
}
++currentNumberOfSetBits;
}
stateToBsccIndexMap.resize(statesInBsccs.getNumberOfSetBits());
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
for (auto const& state : bscc) {
stateToBsccIndexMap[indexInStatesInBsccs[state]] = currentBsccIndex;
}
}
// Now build the final equation system matrix, the initial guess and the right-hand side in one go.
std::vector<ValueType> bsccEquationSystemRightSide(bsccEquationSystem.getColumnCount(), zero);
storm::storage::SparseMatrixBuilder<ValueType> builder;
for (uint_fast64_t row = 0; row < bsccEquationSystem.getRowCount(); ++row) {
// If the current row is the first one belonging to a BSCC, we substitute it by the constraint that the
// values for states of this BSCC must sum to one. However, in order to have a non-zero value on the
// diagonal, we add the constraint of the BSCC that produces a 1 on the diagonal.
if (firstStatesInBsccs.get(row)) {
uint_fast64_t requiredBscc = stateToBsccIndexMap[row];
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[requiredBscc];
for (auto const& state : bscc) {
builder.addNextValue(row, indexInStatesInBsccs[state], one);
}
bsccEquationSystemRightSide[row] = one;
} else {
// Otherwise, we copy the row, and subtract 1 from the diagonal.
for (auto& entry : bsccEquationSystem.getRow(row)) {
if (entry.getColumn() == row) {
builder.addNextValue(row, entry.getColumn(), entry.getValue() - one);
} else {
builder.addNextValue(row, entry.getColumn(), entry.getValue());
}
}
}
}
// Create the initial guess for the LRAs. We take a uniform distribution over all states in a BSCC.
std::vector<ValueType> bsccEquationSystemSolution(bsccEquationSystem.getColumnCount(), zero);
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
bsccEquationSystemSolution[indexInStatesInBsccs[state]] = one / bscc.size();
}
}
bsccEquationSystem = builder.build();
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(bsccEquationSystem);
solver->solveEquationSystem(bsccEquationSystemSolution, bsccEquationSystemRightSide);
}
// If exit rates were given, we need to 'fix' the results to also account for the timing behaviour.
if (exitRateVector != nullptr) {
std::vector<ValueType> bsccTotalValue(bsccDecomposition.size(), zero);
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++stateIter) {
bsccTotalValue[stateToBsccIndexMap[indexInStatesInBsccs[*stateIter]]] += bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] * (one / (*exitRateVector)[*stateIter]);
}
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++stateIter) {
bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] = (bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] * (one / (*exitRateVector)[*stateIter])) / bsccTotalValue[stateToBsccIndexMap[indexInStatesInBsccs[*stateIter]]];
}
}
// Calculate LRA Value for each BSCC from steady state distribution in BSCCs.
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
if (psiStates.get(state)) {
bsccLra[stateToBsccIndexMap[indexInStatesInBsccs[state]]] += bsccEquationSystemSolution[indexInStatesInBsccs[state]];
}
}
}
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
STORM_LOG_DEBUG("Found LRA " << bsccLra[bsccIndex] << " for BSCC " << bsccIndex << ".");
}
} else {
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
// At this point, all BSCCs are known to contain exactly one state, which is why we can set all values
// directly (based on whether or not the contained state is a psi state).
if (psiStates.get(*bscc.begin())) {
bsccLra[bsccIndex] = 1;
}
}
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
STORM_LOG_DEBUG("Found LRA " << bsccLra[bsccIndex] << " for BSCC " << bsccIndex << ".");
}
}
std::vector<ValueType> rewardSolution;
if (!statesNotInBsccs.empty()) {
// Calculate LRA for states not in bsccs as expected reachability rewards.
// Target states are states in bsccs, transition reward is the lra of the bscc for each transition into a
// bscc and 0 otherwise. This corresponds to the sum of LRAs in BSCC weighted by the reachability probability
// of the BSCC.
std::vector<ValueType> rewardRightSide;
rewardRightSide.reserve(statesNotInBsccs.getNumberOfSetBits());
for (auto state : statesNotInBsccs) {
ValueType reward = zero;
for (auto entry : transitionMatrix.getRow(state)) {
if (statesInBsccs.get(entry.getColumn())) {
reward += entry.getValue() * bsccLra[stateToBsccIndexMap[indexInStatesInBsccs[entry.getColumn()]]];
}
}
rewardRightSide.push_back(reward);
}
storm::storage::SparseMatrix<ValueType> rewardEquationSystemMatrix = transitionMatrix.getSubmatrix(false, statesNotInBsccs, statesNotInBsccs, true);
rewardEquationSystemMatrix.convertToEquationSystem();
rewardSolution = std::vector<ValueType>(rewardEquationSystemMatrix.getColumnCount(), one);
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(rewardEquationSystemMatrix);
solver->solveEquationSystem(rewardSolution, rewardRightSide);
}
}
// Fill the result vector.
std::vector<ValueType> result(numOfStates);
auto rewardSolutionIter = rewardSolution.begin();
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
result[state] = bsccLra[bsccIndex];
}
}
for (auto state : statesNotInBsccs) {
STORM_LOG_ASSERT(rewardSolutionIter != rewardSolution.end(), "Too few elements in solution.");
// Take the value from the reward computation. Since the n-th state not in any bscc is the n-th
// entry in rewardSolution we can just take the next value from the iterator.
result[state] = *rewardSolutionIter;
++rewardSolutionIter;
}
return result;
}
storm::storage::SparseMatrix<ValueType> probabilityMatrix = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector());
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(probabilityMatrix, subResult.getTruthValuesVector(), &this->getModel().getExitRateVector(), qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
// Explicitly instantiate the model checker.
template class SparseCtmcCslModelChecker<storm::models::sparse::Ctmc<double>>;

61
src/modelchecker/csl/SparseCtmcCslModelChecker.h

@ -2,20 +2,14 @@
#define STORM_MODELCHECKER_SPARSECTMCCSLMODELCHECKER_H_
#include "src/modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "src/models/sparse/Ctmc.h"
#include "src/storage/dd/DdType.h"
#include "src/utility/solver.h"
#include "src/solver/LinearEquationSolver.h"
namespace storm {
namespace modelchecker {
template<storm::dd::DdType DdType, typename ValueType>
class HybridCtmcCslModelChecker;
template<typename SparseDtmcModelType>
class SparseDtmcPrctlModelChecker;
template<class SparseCtmcModelType>
class SparseCtmcCslModelChecker : public SparsePropositionalModelChecker<SparseCtmcModelType> {
public:
@ -36,57 +30,6 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
private:
std::vector<ValueType> computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const;
static std::vector<ValueType> computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
std::vector<ValueType> computeInstantaneousRewardsHelper(RewardModelType const& rewardModel, double timeBound) const;
std::vector<ValueType> computeCumulativeRewardsHelper(RewardModelType const& rewardModel, double timeBound) const;
static std::vector<ValueType> computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
/*!
* Computes the matrix representing the transitions of the uniformized CTMC.
*
* @param transitionMatrix The matrix to uniformize.
* @param maybeStates The states that need to be considered.
* @param uniformizationRate The rate to be used for uniformization.
* @param exitRates The exit rates of all states.
* @return The uniformized matrix.
*/
static storm::storage::SparseMatrix<ValueType> computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates);
/*!
* Computes the transient probabilities for lambda time steps.
*
* @param uniformizedMatrix The uniformized transition matrix.
* @param addVector A vector that is added in each step as a possible compensation for removing absorbing states
* with a non-zero initial value. If this is not supposed to be used, it can be set to nullptr.
* @param timeBound The time bound to use.
* @param uniformizationRate The used uniformization rate.
* @param values A vector mapping each state to an initial probability.
* @param linearEquationSolverFactory The factory to use when instantiating new linear equation solvers.
* @param useMixedPoissonProbabilities If set to true, instead of taking the poisson probabilities, mixed
* poisson probabilities are used.
* @return The vector of transient probabilities.
*/
template<bool useMixedPoissonProbabilities = false>
static std::vector<ValueType> computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
/*!
* Converts the given rate-matrix into a time-abstract probability matrix.
*
* @param rateMatrix The rate matrix.
* @param exitRates The exit rate vector.
* @return The ransition matrix of the embedded DTMC.
*/
static storm::storage::SparseMatrix<ValueType> computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates);
/*!
* Converts the given rate-matrix into the generator matrix.
*
* @param rateMatrix The rate matrix.
* @param exitRates The exit rate vector.
* @return The generator matrix.
*/
static storm::storage::SparseMatrix<ValueType> computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates);
// An object that is used for solving linear equations and performing matrix-vector multiplication.
std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>> linearEquationSolverFactory;
};

2
src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp

@ -570,6 +570,6 @@ namespace storm {
return result;
}
template class SparseMarkovAutomatonCslModelChecker<double>;
template class SparseMarkovAutomatonCslModelChecker<storm::models::sparse::MarkovAutomaton<double>>;
}
}

0
src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp

0
src/modelchecker/csl/helper/HybridCtmcCslHelper.h

648
src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp

@ -0,0 +1,648 @@
#include "src/modelchecker/csl/helper/SparseCtmcCslHelper.h"
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/utility/numerical.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
uint_fast64_t numberOfStates = rateMatrix.getRowCount();
// If the time bounds are [0, inf], we rather call untimed reachability.
storm::utility::ConstantsComparator<ValueType> comparator;
if (comparator.isZero(lowerBound) && comparator.isInfinity(upperBound)) {
return computeUntilProbabilities(rateMatrix, backwardTransitions, exitRates, phiStates, psiStates, qualitative, linearEquationSolverFactory);
}
// From this point on, we know that we have to solve a more complicated problem [t, t'] with either t != 0
// or t' != inf.
// Create the result vector.
std::vector<ValueType> result;
// If we identify the states that have probability 0 of reaching the target states, we can exclude them from the
// further computations.
storm::storage::BitVector statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates);
STORM_LOG_INFO("Found " << statesWithProbabilityGreater0.getNumberOfSetBits() << " states with probability greater 0.");
storm::storage::BitVector statesWithProbabilityGreater0NonPsi = statesWithProbabilityGreater0 & ~psiStates;
STORM_LOG_INFO("Found " << statesWithProbabilityGreater0NonPsi.getNumberOfSetBits() << " 'maybe' states.");
if (!statesWithProbabilityGreater0NonPsi.empty()) {
if (comparator.isZero(upperBound)) {
// In this case, the interval is of the form [0, 0].
result = std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
} else {
if (comparator.isZero(lowerBound)) {
// In this case, the interval is of the form [0, t].
// Note that this excludes [0, inf] since this is untimed reachability and we considered this case earlier.
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = 0;
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = rateMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Finally compute the transient probabilities.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(uniformizedMatrix, &b, upperBound, uniformizationRate, values, linearEquationSolverFactory);
result = std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0NonPsi, subresult);
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
} else if (comparator.isInfinity(upperBound)) {
// In this case, the interval is of the form [t, inf] with t != 0.
// Start by computing the (unbounded) reachability probabilities of reaching psi states while
// staying in phi states.
result = computeUntilProbabilities(rateMatrix, backwardTransitions, exitRates, phiStates, psiStates, qualitative, linearEquationSolverFactory);
// Determine the set of states that must be considered further.
storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates;
std::vector<ValueType> subResult(relevantStates.getNumberOfSetBits());
storm::utility::vector::selectVectorValues(subResult, relevantStates, result);
ValueType uniformizationRate = 0;
for (auto const& state : relevantStates) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, relevantStates, uniformizationRate, exitRates);
// Compute the transient probabilities.
subResult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, subResult, linearEquationSolverFactory);
// Fill in the correct values.
storm::utility::vector::setVectorValues(result, ~relevantStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, relevantStates, subResult);
} else {
// In this case, the interval is of the form [t, t'] with t != 0 and t' != inf.
if (lowerBound != upperBound) {
// In this case, the interval is of the form [t, t'] with t != 0, t' != inf and t != t'.
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the (first) uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = rateMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Start by computing the transient probabilities of reaching a psi state in time t' - t.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(uniformizedMatrix, &b, upperBound - lowerBound, uniformizationRate, values, linearEquationSolverFactory);
storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates;
std::vector<ValueType> newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, statesWithProbabilityGreater0NonPsi % relevantStates, subresult);
storm::utility::vector::setVectorValues(newSubresult, psiStates % relevantStates, storm::utility::one<ValueType>());
// Then compute the transient probabilities of being in such a state after t time units. For this,
// we must re-uniformize the CTMC, so we need to compute the second uniformized matrix.
uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : relevantStates) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Finally, we compute the second set of transient probabilities.
uniformizedMatrix = computeUniformizedMatrix(rateMatrix, relevantStates, uniformizationRate, exitRates);
newSubresult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, linearEquationSolverFactory);
// Fill in the correct values.
result = std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, ~relevantStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, relevantStates, newSubresult);
} else {
// In this case, the interval is of the form [t, t] with t != 0, t != inf.
std::vector<ValueType> newSubresult = std::vector<ValueType>(statesWithProbabilityGreater0.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, psiStates % statesWithProbabilityGreater0, storm::utility::one<ValueType>());
// Then compute the transient probabilities of being in such a state after t time units. For this,
// we must re-uniformize the CTMC, so we need to compute the second uniformized matrix.
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : statesWithProbabilityGreater0) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Finally, we compute the second set of transient probabilities.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0, uniformizationRate, exitRates);
newSubresult = computeTransientProbabilities(uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, linearEquationSolverFactory);
// Fill in the correct values.
result = std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, ~statesWithProbabilityGreater0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0, newSubresult);
}
}
}
}
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(computeProbabilityMatrix(rateMatrix, exitRateVector), backwardTransitions, phiStates, psiStates, qualitative, linearEquationSolverFactory);
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(computeProbabilityMatrix(rateMatrix, exitRateVector), nextStates, linearEquationSolverFactory);
}
template <typename ValueType, typename RewardModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates) {
STORM_LOG_DEBUG("Computing uniformized matrix using uniformization rate " << uniformizationRate << ".");
STORM_LOG_DEBUG("Keeping " << maybeStates.getNumberOfSetBits() << " rows.");
// Create the submatrix that only contains the states with a positive probability (including the
// psi states) and reserve space for elements on the diagonal.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = rateMatrix.getSubmatrix(false, maybeStates, maybeStates, true);
// Now we need to perform the actual uniformization. That is, all entries need to be divided by
// the uniformization rate, and the diagonal needs to be set to the negative exit rate of the
// state plus the self-loop rate and then increased by one.
uint_fast64_t currentRow = 0;
for (auto const& state : maybeStates) {
for (auto& element : uniformizedMatrix.getRow(currentRow)) {
if (element.getColumn() == currentRow) {
element.setValue((element.getValue() - exitRates[state]) / uniformizationRate + storm::utility::one<ValueType>());
} else {
element.setValue(element.getValue() / uniformizationRate);
}
}
++currentRow;
}
return uniformizedMatrix;
}
template <typename ValueType, typename RewardModelType>
template<bool computeCumulativeReward>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
ValueType lambda = timeBound * uniformizationRate;
// If no time can pass, the current values are the result.
if (lambda == storm::utility::zero<ValueType>()) {
return values;
}
// Use Fox-Glynn to get the truncation points and the weights.
std::tuple<uint_fast64_t, uint_fast64_t, ValueType, std::vector<ValueType>> foxGlynnResult = storm::utility::numerical::getFoxGlynnCutoff(lambda, 1e-300, 1e+300, storm::settings::generalSettings().getPrecision() / 8.0);
STORM_LOG_DEBUG("Fox-Glynn cutoff points: left=" << std::get<0>(foxGlynnResult) << ", right=" << std::get<1>(foxGlynnResult));
// Scale the weights so they add up to one.
for (auto& element : std::get<3>(foxGlynnResult)) {
element /= std::get<2>(foxGlynnResult);
}
// If the cumulative reward is to be computed, we need to adjust the weights.
if (computeCumulativeReward) {
ValueType sum = storm::utility::zero<ValueType>();
for (auto& element : std::get<3>(foxGlynnResult)) {
sum += element;
element = (1 - sum) / uniformizationRate;
}
}
STORM_LOG_DEBUG("Starting iterations with " << uniformizedMatrix.getRowCount() << " x " << uniformizedMatrix.getColumnCount() << " matrix.");
// Initialize result.
std::vector<ValueType> result;
uint_fast64_t startingIteration = std::get<0>(foxGlynnResult);
if (startingIteration == 0) {
result = values;
storm::utility::vector::scaleVectorInPlace(result, std::get<3>(foxGlynnResult)[0]);
std::function<ValueType(ValueType const&, ValueType const&)> addAndScale = [&foxGlynnResult] (ValueType const& a, ValueType const& b) { return a + std::get<3>(foxGlynnResult)[0] * b; };
if (addVector != nullptr) {
storm::utility::vector::applyPointwise(result, *addVector, result, addAndScale);
}
++startingIteration;
} else {
if (computeCumulativeReward) {
result = std::vector<ValueType>(values.size());
std::function<ValueType (ValueType const&)> scaleWithUniformizationRate = [&uniformizationRate] (ValueType const& a) -> ValueType { return a / uniformizationRate; };
storm::utility::vector::applyPointwise(values, result, scaleWithUniformizationRate);
} else {
result = std::vector<ValueType>(values.size());
}
}
std::vector<ValueType> multiplicationResult(result.size());
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(uniformizedMatrix);
if (!computeCumulativeReward && std::get<0>(foxGlynnResult) > 1) {
// Perform the matrix-vector multiplications (without adding).
solver->performMatrixVectorMultiplication(values, addVector, std::get<0>(foxGlynnResult) - 1, &multiplicationResult);
} else if (computeCumulativeReward) {
std::function<ValueType(ValueType const&, ValueType const&)> addAndScale = [&uniformizationRate] (ValueType const& a, ValueType const& b) { return a + b / uniformizationRate; };
// For the iterations below the left truncation point, we need to add and scale the result with the uniformization rate.
for (uint_fast64_t index = 1; index < startingIteration; ++index) {
solver->performMatrixVectorMultiplication(values, nullptr, 1, &multiplicationResult);
storm::utility::vector::applyPointwise(result, values, result, addAndScale);
}
}
// For the indices that fall in between the truncation points, we need to perform the matrix-vector
// multiplication, scale and add the result.
ValueType weight = 0;
std::function<ValueType(ValueType const&, ValueType const&)> addAndScale = [&weight] (ValueType const& a, ValueType const& b) { return a + weight * b; };
for (uint_fast64_t index = startingIteration; index <= std::get<1>(foxGlynnResult); ++index) {
solver->performMatrixVectorMultiplication(values, addVector, 1, &multiplicationResult);
weight = std::get<3>(foxGlynnResult)[index - std::get<0>(foxGlynnResult)];
storm::utility::vector::applyPointwise(result, values, result, addAndScale);
}
return result;
}
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
uint_fast64_t numberOfStates = rateMatrix.getRowCount();
// Initialize result to state rewards of the this->getModel().
std::vector<ValueType> result(rewardModel.getStateRewardVector());
// If the time-bound is not zero, we need to perform a transient analysis.
if (timeBound > 0) {
ValueType uniformizationRate = 0;
for (auto const& rate : exitRateVector) {
uniformizationRate = std::max(uniformizationRate, rate);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, storm::storage::BitVector(numberOfStates, true), uniformizationRate, exitRateVector);
result = computeTransientProbabilities(uniformizedMatrix, nullptr, timeBound, uniformizationRate, result, linearEquationSolverFactory);
}
return result;
}
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
uint_fast64_t numberOfStates = rateMatrix.getRowCount();
// If the time bound is zero, the result is the constant zero vector.
if (timeBound == 0) {
return std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
}
// Otherwise, we need to perform some computations.
// Start with the uniformization.
ValueType uniformizationRate = 0;
for (auto const& rate : exitRateVector) {
uniformizationRate = std::max(uniformizationRate, rate);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, storm::storage::BitVector(numberOfStates, true), uniformizationRate, exitRateVector);
// Compute the total state reward vector.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(uniformizedMatrix);
// Finally, compute the transient probabilities.
return computeTransientProbabilities<true>(uniformizedMatrix, nullptr, timeBound, uniformizationRate, totalRewardVector, linearEquationSolverFactory);
}
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
storm::storage::SparseMatrix<ValueType> probabilityMatrix = computeProbabilityMatrix(rateMatrix, exitRateVector);
std::vector<ValueType> totalRewardVector;
if (rewardModel.hasStateRewards()) {
totalRewardVector = rewardModel.getStateRewardVector();
typename std::vector<ValueType>::const_iterator it2 = exitRateVector.begin();
for (typename std::vector<ValueType>::iterator it1 = totalRewardVector.begin(), ite1 = totalRewardVector.end(); it1 != ite1; ++it1, ++it2) {
*it1 /= *it2;
}
if (rewardModel.hasStateActionRewards()) {
storm::utility::vector::addVectors(totalRewardVector, rewardModel.getStateActionRewardVector(), totalRewardVector);
}
if (rewardModel.hasTransitionRewards()) {
storm::utility::vector::addVectors(totalRewardVector, probabilityMatrix.getPointwiseProductRowSumVector(rewardModel.getTransitionRewardMatrix()), totalRewardVector);
}
} else if (rewardModel.hasTransitionRewards()) {
totalRewardVector = probabilityMatrix.getPointwiseProductRowSumVector(rewardModel.getTransitionRewardMatrix());
if (rewardModel.hasStateActionRewards()) {
storm::utility::vector::addVectors(totalRewardVector, rewardModel.getStateActionRewardVector(), totalRewardVector);
}
} else {
totalRewardVector = rewardModel.getStateActionRewardVector();
}
return storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeReachabilityRewards(probabilityMatrix, backwardTransitions, totalRewardVector, targetStates, qualitative, linearEquationSolverFactory);
}
template <typename ValueType, typename RewardModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
// Turn the rates into probabilities by scaling each row with the exit rate of the state.
storm::storage::SparseMatrix<ValueType> result(rateMatrix);
for (uint_fast64_t row = 0; row < result.getRowCount(); ++row) {
for (auto& entry : result.getRow(row)) {
entry.setValue(entry.getValue() / exitRates[row]);
}
}
return result;
}
template <typename ValueType, typename RewardModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<ValueType> generatorMatrix(rateMatrix, true);
// Place the negative exit rate on the diagonal.
for (uint_fast64_t row = 0; row < generatorMatrix.getRowCount(); ++row) {
for (auto& entry : generatorMatrix.getRow(row)) {
if (entry.getColumn() == row) {
entry.setValue(-exitRates[row]);
}
}
}
return generatorMatrix;
}
template <typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numberOfStates = probabilityMatrix.getRowCount();
if (psiStates.empty()) {
return std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
}
// Likewise, if all bits are set, we can avoid the computation.
if (psiStates.full()) {
return std::vector<ValueType>(numberOfStates, storm::utility::one<ValueType>());
}
// Start by decomposing the DTMC into its BSCCs.
storm::storage::StronglyConnectedComponentDecomposition<double> bsccDecomposition(probabilityMatrix, storm::storage::BitVector(probabilityMatrix.getRowCount(), true), false, true);
STORM_LOG_DEBUG("Found " << bsccDecomposition.size() << " BSCCs.");
// Get some data members for convenience.
ValueType one = storm::utility::one<ValueType>();
ValueType zero = storm::utility::zero<ValueType>();
// Prepare the vector holding the LRA values for each of the BSCCs.
std::vector<ValueType> bsccLra(bsccDecomposition.size(), zero);
// First we check which states are in BSCCs.
storm::storage::BitVector statesInBsccs(numberOfStates);
storm::storage::BitVector firstStatesInBsccs(numberOfStates);
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
// Gather information for later use.
bool first = true;
for (auto const& state : bscc) {
statesInBsccs.set(state);
if (first) {
firstStatesInBsccs.set(state);
}
first = false;
}
}
storm::storage::BitVector statesNotInBsccs = ~statesInBsccs;
STORM_LOG_DEBUG("Found " << statesInBsccs.getNumberOfSetBits() << " states in BSCCs.");
// Prepare a vector holding the index within all states that are in BSCCs for every state.
std::vector<uint_fast64_t> indexInStatesInBsccs;
// Prepare a vector that maps the index within the set of all states in BSCCs to the index of the containing BSCC.
std::vector<uint_fast64_t> stateToBsccIndexMap;
if (!statesInBsccs.empty()) {
firstStatesInBsccs = firstStatesInBsccs % statesInBsccs;
// Then we construct an equation system that yields the steady state probabilities for all states in BSCCs.
storm::storage::SparseMatrix<ValueType> bsccEquationSystem = probabilityMatrix.getSubmatrix(false, statesInBsccs, statesInBsccs, true);
// Since in the fix point equation, we need to multiply the vector from the left, we convert this to a
// multiplication from the right by transposing the system.
bsccEquationSystem = bsccEquationSystem.transpose(false, true);
// Create an auxiliary structure that makes it easy to look up the indices within the set of BSCC states.
uint_fast64_t lastIndex = 0;
uint_fast64_t currentNumberOfSetBits = 0;
indexInStatesInBsccs.reserve(probabilityMatrix.getRowCount());
for (auto index : statesInBsccs) {
while (lastIndex <= index) {
indexInStatesInBsccs.push_back(currentNumberOfSetBits);
++lastIndex;
}
++currentNumberOfSetBits;
}
stateToBsccIndexMap.resize(statesInBsccs.getNumberOfSetBits());
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
for (auto const& state : bscc) {
stateToBsccIndexMap[indexInStatesInBsccs[state]] = currentBsccIndex;
}
}
// Now build the final equation system matrix, the initial guess and the right-hand side in one go.
std::vector<ValueType> bsccEquationSystemRightSide(bsccEquationSystem.getColumnCount(), zero);
storm::storage::SparseMatrixBuilder<ValueType> builder;
for (uint_fast64_t row = 0; row < bsccEquationSystem.getRowCount(); ++row) {
// If the current row is the first one belonging to a BSCC, we substitute it by the constraint that the
// values for states of this BSCC must sum to one. However, in order to have a non-zero value on the
// diagonal, we add the constraint of the BSCC that produces a 1 on the diagonal.
if (firstStatesInBsccs.get(row)) {
uint_fast64_t requiredBscc = stateToBsccIndexMap[row];
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[requiredBscc];
for (auto const& state : bscc) {
builder.addNextValue(row, indexInStatesInBsccs[state], one);
}
bsccEquationSystemRightSide[row] = one;
} else {
// Otherwise, we copy the row, and subtract 1 from the diagonal.
for (auto& entry : bsccEquationSystem.getRow(row)) {
if (entry.getColumn() == row) {
builder.addNextValue(row, entry.getColumn(), entry.getValue() - one);
} else {
builder.addNextValue(row, entry.getColumn(), entry.getValue());
}
}
}
}
// Create the initial guess for the LRAs. We take a uniform distribution over all states in a BSCC.
std::vector<ValueType> bsccEquationSystemSolution(bsccEquationSystem.getColumnCount(), zero);
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
bsccEquationSystemSolution[indexInStatesInBsccs[state]] = one / bscc.size();
}
}
bsccEquationSystem = builder.build();
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(bsccEquationSystem);
solver->solveEquationSystem(bsccEquationSystemSolution, bsccEquationSystemRightSide);
}
// If exit rates were given, we need to 'fix' the results to also account for the timing behaviour.
if (exitRateVector != nullptr) {
std::vector<ValueType> bsccTotalValue(bsccDecomposition.size(), zero);
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++stateIter) {
bsccTotalValue[stateToBsccIndexMap[indexInStatesInBsccs[*stateIter]]] += bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] * (one / (*exitRateVector)[*stateIter]);
}
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++stateIter) {
bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] = (bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] * (one / (*exitRateVector)[*stateIter])) / bsccTotalValue[stateToBsccIndexMap[indexInStatesInBsccs[*stateIter]]];
}
}
// Calculate LRA Value for each BSCC from steady state distribution in BSCCs.
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
if (psiStates.get(state)) {
bsccLra[stateToBsccIndexMap[indexInStatesInBsccs[state]]] += bsccEquationSystemSolution[indexInStatesInBsccs[state]];
}
}
}
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
STORM_LOG_DEBUG("Found LRA " << bsccLra[bsccIndex] << " for BSCC " << bsccIndex << ".");
}
} else {
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
// At this point, all BSCCs are known to contain exactly one state, which is why we can set all values
// directly (based on whether or not the contained state is a psi state).
if (psiStates.get(*bscc.begin())) {
bsccLra[bsccIndex] = 1;
}
}
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
STORM_LOG_DEBUG("Found LRA " << bsccLra[bsccIndex] << " for BSCC " << bsccIndex << ".");
}
}
std::vector<ValueType> rewardSolution;
if (!statesNotInBsccs.empty()) {
// Calculate LRA for states not in bsccs as expected reachability rewards.
// Target states are states in bsccs, transition reward is the lra of the bscc for each transition into a
// bscc and 0 otherwise. This corresponds to the sum of LRAs in BSCC weighted by the reachability probability
// of the BSCC.
std::vector<ValueType> rewardRightSide;
rewardRightSide.reserve(statesNotInBsccs.getNumberOfSetBits());
for (auto state : statesNotInBsccs) {
ValueType reward = zero;
for (auto entry : probabilityMatrix.getRow(state)) {
if (statesInBsccs.get(entry.getColumn())) {
reward += entry.getValue() * bsccLra[stateToBsccIndexMap[indexInStatesInBsccs[entry.getColumn()]]];
}
}
rewardRightSide.push_back(reward);
}
storm::storage::SparseMatrix<ValueType> rewardEquationSystemMatrix = probabilityMatrix.getSubmatrix(false, statesNotInBsccs, statesNotInBsccs, true);
rewardEquationSystemMatrix.convertToEquationSystem();
rewardSolution = std::vector<ValueType>(rewardEquationSystemMatrix.getColumnCount(), one);
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(rewardEquationSystemMatrix);
solver->solveEquationSystem(rewardSolution, rewardRightSide);
}
}
// Fill the result vector.
std::vector<ValueType> result(numberOfStates);
auto rewardSolutionIter = rewardSolution.begin();
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
result[state] = bsccLra[bsccIndex];
}
}
for (auto state : statesNotInBsccs) {
STORM_LOG_ASSERT(rewardSolutionIter != rewardSolution.end(), "Too few elements in solution.");
// Take the value from the reward computation. Since the n-th state not in any bscc is the n-th
// entry in rewardSolution we can just take the next value from the iterator.
result[state] = *rewardSolutionIter;
++rewardSolutionIter;
}
return result;
}
template class SparseCtmcCslHelper<double>;
}
}
}

63
src/modelchecker/csl/helper/SparseCtmcCslHelper.h

@ -1,11 +1,8 @@
#ifndef STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_
#include <vector>
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/SparseMatrix.h"
#include "src/storage/BitVector.h"
#include "src/utility/solver.h"
@ -16,8 +13,66 @@ namespace storm {
template <typename ValueType, typename RewardModelType = storm::models::sparse::StandardRewardModel<ValueType>>
class SparseCtmcCslHelper {
public:
static std::vector<ValueType> computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
}
static std::vector<ValueType> computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, double timeBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
/*!
* Computes the matrix representing the transitions of the uniformized CTMC.
*
* @param transitionMatrix The matrix to uniformize.
* @param maybeStates The states that need to be considered.
* @param uniformizationRate The rate to be used for uniformization.
* @param exitRates The exit rates of all states.
* @return The uniformized matrix.
*/
static storm::storage::SparseMatrix<ValueType> computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates);
/*!
* Computes the transient probabilities for lambda time steps.
*
* @param uniformizedMatrix The uniformized transition matrix.
* @param addVector A vector that is added in each step as a possible compensation for removing absorbing states
* with a non-zero initial value. If this is not supposed to be used, it can be set to nullptr.
* @param timeBound The time bound to use.
* @param uniformizationRate The used uniformization rate.
* @param values A vector mapping each state to an initial probability.
* @param linearEquationSolverFactory The factory to use when instantiating new linear equation solvers.
* @param useMixedPoissonProbabilities If set to true, instead of taking the poisson probabilities, mixed
* poisson probabilities are used.
* @return The vector of transient probabilities.
*/
template<bool useMixedPoissonProbabilities = false>
static std::vector<ValueType> computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
/*!
* Converts the given rate-matrix into a time-abstract probability matrix.
*
* @param rateMatrix The rate matrix.
* @param exitRates The exit rate vector.
* @return The ransition matrix of the embedded DTMC.
*/
static storm::storage::SparseMatrix<ValueType> computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates);
/*!
* Converts the given rate-matrix into the generator matrix.
*
* @param rateMatrix The rate matrix.
* @param exitRates The exit rate vector.
* @return The generator matrix.
*/
static storm::storage::SparseMatrix<ValueType> computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates);
};
}
}
}

254
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp

@ -1,5 +1,7 @@
#include "src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h"
#include "src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h"
#include "src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.h"
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/storage/dd/CuddOdd.h"
@ -29,88 +31,23 @@ namespace storm {
bool HybridDtmcPrctlModelChecker<DdType, ValueType>::canHandle(storm::logic::Formula const& formula) const {
return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula();
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01 = storm::utility::graph::performProb01(model, transitionMatrix, phiStates, psiStates);
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
// Perform some logging.
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5)));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
subvector = subvector.sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations and solve the equation system.
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.template toVector<ValueType>(odd);
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
solver->solveEquationSystem(x, b);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd()));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>();
SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeUntilProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
return storm::modelchecker::helper::HybridDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector())));
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return result.sumAbstract(model.getColumnVariables());
return storm::modelchecker::helper::HybridDtmcPrctlHelper<DdType, ValueType>::computeNextProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector());
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
@ -118,185 +55,28 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>();
SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeBoundedUntilProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return storm::modelchecker::helper::HybridDtmcPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(model, transitionMatrix.notZero(), phiStates, psiStates, stepBound);
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
// If there are maybe states, we need to perform matrix-vector multiplications.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.template toVector<ValueType>(odd);
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
solver->performMatrixVectorMultiplication(x, &b, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd()));
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeCumulativeRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero();
if (model.hasTransitionRewards()) {
totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables());
}
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Create the solution vector.
std::vector<ValueType> x(model.getNumberOfStates(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(odd, odd);
std::vector<ValueType> b = totalRewardVector.template toVector<ValueType>(odd);
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(x, &b, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
return storm::modelchecker::helper::HybridDtmcPrctlHelper<DdType, ValueType>::computeCumulativeRewards(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeInstantaneousRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Create the solution vector (and initialize it to the state rewards of the model).
std::vector<ValueType> x = model.getStateRewardVector().template toVector<ValueType>(odd);
// Translate the symbolic matrix to its explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(odd, odd);
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(x, nullptr, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
return storm::modelchecker::helper::HybridDtmcPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeReachabilityRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative);
return storm::modelchecker::helper::HybridDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates);
infinityStates = !infinityStates && model.getReachableStates();
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>())));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero();
if (transitionRewardMatrix) {
subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
}
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.template toVector<ValueType>(odd);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
solver->solveEquationSystem(x, b);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>())));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
storm::models::symbolic::Dtmc<DdType> const& HybridDtmcPrctlModelChecker<DdType, ValueType>::getModel() const {
return this->template getModelAs<storm::models::symbolic::Dtmc<DdType>>();
@ -312,7 +92,7 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> explicitProbabilityMatrix = this->getModel().getTransitionMatrix().toMatrix(odd, odd);
std::vector<ValueType> result = SparseDtmcPrctlModelChecker<ValueType>::computeLongRunAverageHelper(explicitProbabilityMatrix, subResult.getTruthValuesVector().toVector(odd), qualitative, *this->linearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeLongRunAverage(explicitProbabilityMatrix, subResult.getTruthValuesVector().toVector(odd), qualitative, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().getAddZero(), this->getModel().getReachableStates(), std::move(odd), std::move(result)));
}

14
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h

@ -2,19 +2,17 @@
#define STORM_MODELCHECKER_HYBRIDDTMCPRCTLMODELCHECKER_H_
#include "src/modelchecker/propositional/SymbolicPropositionalModelChecker.h"
#include "src/models/symbolic/Dtmc.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
template<storm::dd::DdType DdType, typename ValueType>
class HybridCtmcCslModelChecker;
template<storm::dd::DdType DdType, typename ValueType>
class HybridDtmcPrctlModelChecker : public SymbolicPropositionalModelChecker<DdType> {
public:
friend class HybridCtmcCslModelChecker<DdType, ValueType>;
explicit HybridDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model);
explicit HybridDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory);
@ -32,14 +30,6 @@ namespace storm {
storm::models::symbolic::Dtmc<DdType> const& getModel() const override;
private:
// The methods that perform the actual checking.
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeNextProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeCumulativeRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeInstantaneousRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative);
// An object that is used for retrieving linear equation solvers.
std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>> linearEquationSolverFactory;
};

21
src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp

@ -1,13 +1,14 @@
#include "src/modelchecker/prctl/HybridMdpPrctlModelChecker.h"
#include "src/storage/dd/CuddOdd.h"
#include "src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h"
#include "src/utility/macros.h"
#include "src/utility/graph.h"
#include "src/storage/dd/CuddOdd.h"
#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/modelchecker/results/HybridQuantitativeCheckResult.h"
#include "src/utility/macros.h"
#include "src/utility/graph.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
@ -36,7 +37,7 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>();
SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
return storm::modelchecker::helper::HybridMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
@ -44,7 +45,7 @@ namespace storm {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector())));
return storm::modelchecker::helper::HybridMdpPrctlHelper<DdType, ValueType>::computeNextProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector());
}
template<storm::dd::DdType DdType, typename ValueType>
@ -55,21 +56,21 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>();
SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeBoundedUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return storm::modelchecker::helper::HybridMdpPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeCumulativeRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return storm::modelchecker::helper::HybridMdpPrctlHelper<DdType, ValueType>::computeCumulativeRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeInstantaneousRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return storm::modelchecker::helper::HybridMdpPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
@ -77,7 +78,7 @@ namespace storm {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative);
return storm::modelchecker::helper::HybridMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>

2
src/modelchecker/prctl/HybridMdpPrctlModelChecker.h

@ -2,7 +2,9 @@
#define STORM_MODELCHECKER_HYBRIDMDPPRCTLMODELCHECKER_H_
#include "src/modelchecker/propositional/SymbolicPropositionalModelChecker.h"
#include "src/models/symbolic/Mdp.h"
#include "src/utility/solver.h"
namespace storm {

3
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp

@ -9,6 +9,7 @@
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/modelchecker/csl/helper/SparseCtmcCslHelper.h"
namespace storm {
namespace modelchecker {
@ -83,7 +84,7 @@ namespace storm {
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(this->getModel().getTransitionMatrix(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), nullptr, qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}

7
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h

@ -9,17 +9,12 @@
namespace storm {
namespace modelchecker {
template<storm::dd::DdType DdType, typename ValueType>
class HybridDtmcPrctlModelChecker;
template<class SparseDtmcModelType>
class SparseDtmcPrctlModelChecker : public SparsePropositionalModelChecker<SparseDtmcModelType> {
public:
typedef typename SparseDtmcModelType::ValueType ValueType;
typedef typename SparseDtmcModelType::RewardModelType RewardModelType;
friend class HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, ValueType>;
explicit SparseDtmcPrctlModelChecker(SparseDtmcModelType const& model);
explicit SparseDtmcPrctlModelChecker(SparseDtmcModelType const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory);

33
src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp

@ -1,8 +1,5 @@
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include <vector>
#include <memory>
#include "src/utility/constants.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
@ -11,6 +8,8 @@
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h"
#include "src/solver/LpSolver.h"
#include "src/exceptions/InvalidStateException.h"
@ -22,12 +21,12 @@
namespace storm {
namespace modelchecker {
template<typename SparseMdpModelType>
SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model) : SparsePropositionalModelChecker<SparseMdpModelType>(model), MinMaxLinearEquationSolverFactory(new storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>()) {
SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model) : SparsePropositionalModelChecker<SparseMdpModelType>(model), minMaxLinearEquationSolverFactory(new storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>()) {
// Intentionally left empty.
}
template<typename SparseMdpModelType>
SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>>&& MinMaxLinearEquationSolverFactory) : SparsePropositionalModelChecker<SparseMdpModelType>(model), MinMaxLinearEquationSolverFactory(std::move(MinMaxLinearEquationSolverFactory)) {
SparseMdpPrctlModelChecker<SparseMdpModelType>::SparseMdpPrctlModelChecker(SparseMdpModelType const& model, std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>>&& minMaxLinearEquationSolverFactory) : SparsePropositionalModelChecker<SparseMdpModelType>(model), minMaxLinearEquationSolverFactory(std::move(minMaxLinearEquationSolverFactory)) {
// Intentionally left empty.
}
@ -43,8 +42,8 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound())));
return result;
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeBoundedUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
@ -52,7 +51,8 @@ namespace storm {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector())));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeNextProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
@ -62,21 +62,24 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), *MinMaxLinearEquationSolverFactory, qualitative)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getDiscreteTimeBound())));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeCumulativeRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getDiscreteTimeBound())));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeInstantaneousRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
@ -84,17 +87,17 @@ namespace storm {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), *this->MinMaxLinearEquationSolverFactory, qualitative)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeLongRunAverageHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector(), qualitative)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeLongRunAverage(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template class SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>>;

241
src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp

@ -0,0 +1,241 @@
#include "src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.h"
#include "src/utility/graph.h"
#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/modelchecker/results/HybridQuantitativeCheckResult.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01 = storm::utility::graph::performProb01(model, transitionMatrix, phiStates, psiStates);
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
// Perform some logging.
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5)));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
subvector = subvector.sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations and solve the equation system.
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.template toVector<ValueType>(odd);
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
solver->solveEquationSystem(x, b);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd()));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeNextProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result.sumAbstract(model.getColumnVariables())));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(model, transitionMatrix.notZero(), phiStates, psiStates, stepBound);
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
// If there are maybe states, we need to perform matrix-vector multiplications.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.template toVector<ValueType>(odd);
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
solver->performMatrixVectorMultiplication(x, &b, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd()));
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Create the solution vector (and initialize it to the state rewards of the model).
std::vector<ValueType> x = model.getStateRewardVector().template toVector<ValueType>(odd);
// Translate the symbolic matrix to its explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(odd, odd);
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(x, nullptr, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeCumulativeRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero();
if (model.hasTransitionRewards()) {
totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables());
}
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Create the solution vector.
std::vector<ValueType> x(model.getNumberOfStates(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(odd, odd);
std::vector<ValueType> b = totalRewardVector.template toVector<ValueType>(odd);
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(x, &b, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates);
infinityStates = !infinityStates && model.getReachableStates();
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>())));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero();
if (transitionRewardMatrix) {
subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
}
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.template toVector<ValueType>(odd);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitSubmatrix);
solver->solveEquationSystem(x, b);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>())));
}
}
}
template class HybridDtmcPrctlHelper<storm::dd::DdType::CUDD, double>;
}
}
}

38
src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.h

@ -0,0 +1,38 @@
#ifndef STORM_MODELCHECKER_HYBRID_DTMC_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_HYBRID_DTMC_PRCTL_MODELCHECKER_HELPER_H_
#include "src/models/symbolic/NondeterministicModel.h"
#include "src/storage/dd/Add.h"
#include "src/storage/dd/Bdd.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
// Forward-declare result class.
class CheckResult;
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
class HybridDtmcPrctlHelper {
public:
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeNextProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeCumulativeRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeReachabilityRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
};
}
}
}
#endif /* STORM_MODELCHECKER_HYBRID_DTMC_PRCTL_MODELCHECKER_HELPER_H_ */

24
src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp

@ -1,11 +1,19 @@
#include "src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h"
#include "src/utility/graph.h"
#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/modelchecker/results/HybridQuantitativeCheckResult.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::unique_ptr<CheckResult> HybridMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01;
@ -69,13 +77,13 @@ namespace storm {
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> HybridMdpPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
std::unique_ptr<CheckResult> HybridMdpPrctlHelper<DdType, ValueType>::computeNextProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return result.sumAbstract(model.getColumnVariables());
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result.sumAbstract(model.getColumnVariables())));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::unique_ptr<CheckResult> HybridMdpPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0;
@ -126,7 +134,7 @@ namespace storm {
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::unique_ptr<CheckResult> HybridMdpPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -148,7 +156,7 @@ namespace storm {
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::unique_ptr<CheckResult> HybridMdpPrctlHelper<DdType, ValueType>::computeCumulativeRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -177,7 +185,7 @@ namespace storm {
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) {
std::unique_ptr<CheckResult> HybridMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -243,6 +251,8 @@ namespace storm {
}
}
}
template class HybridMdpPrctlHelper<storm::dd::DdType::CUDD, double>;
}
}
}

16
src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h

@ -1,7 +1,7 @@
#ifndef STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_
#ifndef STORM_MODELCHECKER_HYBRID_MDP_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_HYBRID_MDP_PRCTL_MODELCHECKER_HELPER_H_
#include "src/models/symbolic/Model.h"
#include "src/models/symbolic/NondeterministicModel.h"
#include "src/storage/dd/Add.h"
#include "src/storage/dd/Bdd.h"
@ -10,6 +10,9 @@
namespace storm {
namespace modelchecker {
// Forward-declare result class.
class CheckResult;
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
@ -17,7 +20,7 @@ namespace storm {
public:
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeNextProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeNextProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
@ -26,9 +29,10 @@ namespace storm {
static std::unique_ptr<CheckResult> computeInstantaneousRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeReachabilityRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
}
};
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_ */
#endif /* STORM_MODELCHECKER_HYBRID_MDP_PRCTL_MODELCHECKER_HELPER_H_ */

20
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp

@ -142,6 +142,22 @@ namespace storm {
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return computeReachabilityRewards(transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) { return rewardModel.getTotalRewardVector(numberOfRows, transitionMatrix, maybeStates); }, targetStates, qualitative, linearEquationSolverFactory);
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& totalStateRewardVector, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return computeReachabilityRewards(transitionMatrix, backwardTransitions,
[&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) {
std::vector<ValueType> result(numberOfRows);
storm::utility::vector::selectVectorValues(result, maybeStates, totalStateRewardVector);
return result;
},
targetStates, qualitative, linearEquationSolverFactory);
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType> const&(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
@ -174,7 +190,7 @@ namespace storm {
std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>());
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b = rewardModel.getTotalRewardVector(submatrix.getRowCount(), transitionMatrix, maybeStates);
std::vector<ValueType> b = totalStateRewardVectorGetter(submatrix.getRowCount(), transitionMatrix, maybeStates);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
@ -189,7 +205,7 @@ namespace storm {
return result;
}
template class SparseDtmcPrctlHelper<double>;
}
}

5
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h

@ -29,7 +29,12 @@ namespace storm {
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& totalStateRewardVector, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
private:
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType> const&(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
};
}

4
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp

@ -115,7 +115,7 @@ namespace storm {
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -129,7 +129,7 @@ namespace storm {
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");

4
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h

@ -26,9 +26,9 @@ namespace storm {
static std::vector<ValueType> computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& MinMaxLinearEquationSolverFactory, bool qualitative);
static std::vector<ValueType> computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeInstantaneousRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeCumulativeRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);

Loading…
Cancel
Save