Browse Source

fixed some tests that were failing because of (now) proper bottom state computation

Former-commit-id: ecc8dfb065
tempestpy_adaptions
dehnert 9 years ago
parent
commit
9878c1bdc3
  1. 18
      src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp
  2. 20
      src/utility/graph.h
  3. 32
      test/functional/utility/GraphTest.cpp

18
src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

@ -101,14 +101,28 @@ namespace storm {
targetStates |= game.getBottomStates();
}
transitionMatrixBdd.template toAdd<ValueType>().exportToDot("transbdd.dot");
// Start by computing the states with probability 0/1 when player 2 minimizes.
storm::utility::graph::GameProb01Result<Type> prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, true);
storm::utility::graph::GameProb01Result<Type> prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, true);
storm::utility::graph::GameProb01Result<Type> prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, false);
// Now compute the states with probability 0/1 when player 2 maximizes.
storm::utility::graph::GameProb01Result<Type> prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, true);
storm::utility::graph::GameProb01Result<Type> prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, false);
storm::utility::graph::GameProb01Result<Type> prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, true);
// STORM_LOG_ASSERT(prob0Min.hasPlayer1Strategy(), "Unable to proceed without strategy.");
STORM_LOG_ASSERT(prob0Min.hasPlayer2Strategy(), "Unable to proceed without strategy.");
STORM_LOG_ASSERT(prob1Max.hasPlayer1Strategy(), "Unable to proceed without strategy.");
STORM_LOG_ASSERT(prob1Max.hasPlayer2Strategy(), "Unable to proceed without strategy.");
// prob0Min.getPlayer1Strategy().template toAdd<ValueType>().exportToDot("prob0_min_pl1_strat.dot");
prob0Min.getPlayer2Strategy().template toAdd<ValueType>().exportToDot("prob0_min_pl2_strat.dot");
prob1Max.getPlayer1Strategy().template toAdd<ValueType>().exportToDot("prob1_max_pl1_strat.dot");
prob1Max.getPlayer2Strategy().template toAdd<ValueType>().exportToDot("prob1_max_pl2_strat.dot");
STORM_LOG_DEBUG("Min: " << prob0Min.states.getNonZeroCount() << " no states, " << prob1Min.states.getNonZeroCount() << " yes states.");
STORM_LOG_DEBUG("Max: " << prob0Max.states.getNonZeroCount() << " no states, " << prob1Max.states.getNonZeroCount() << " yes states.");

20
src/utility/graph.h

@ -528,6 +528,26 @@ namespace storm {
// Intentionally left empty.
}
bool hasPlayer1Strategy() const {
return static_cast<bool>(player1Strategy);
}
storm::dd::Bdd<Type> const& getPlayer1Strategy() {
return player1Strategy.get();
}
bool hasPlayer2Strategy() const {
return static_cast<bool>(player2Strategy);
}
storm::dd::Bdd<Type> const& getPlayer2Strategy() {
return player2Strategy.get();
}
storm::dd::Bdd<Type> const& getStates() const {
return states;
}
storm::dd::Bdd<Type> states;
boost::optional<storm::dd::Bdd<Type>> player1Strategy;
boost::optional<storm::dd::Bdd<Type>> player2Strategy;

32
test/functional/utility/GraphTest.cpp

@ -215,30 +215,30 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
storm::dd::Bdd<storm::dd::DdType::CUDD> targetStates = game.getStates(initialPredicates[0], true);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(1, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(1, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(1, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(1, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(0, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(0, result.states.getNonZeroCount());
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(2, result.states.getNonZeroCount());
EXPECT_EQ(3, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
@ -249,7 +249,7 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
targetStates = game.getStates(initialPredicates[0], true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(0, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
@ -259,32 +259,32 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
// Proceed by checking whether they select exactly one action in each state.
storm::dd::Add<storm::dd::DdType::CUDD, double> stateDistributionsUnderStrategies = (game.getTransitionMatrix() * result.player1Strategy.get().template toAdd<double>() * result.player2Strategy.get().template toAdd<double>()).sumAbstract(game.getColumnVariables());;
EXPECT_EQ(0, stateDistributionsUnderStrategies.getNonZeroCount());
EXPECT_EQ(2, stateDistributionsUnderStrategies.getNonZeroCount());
// Check that the number of distributions per state is one (or zero in the case where there are no prob0 states).
storm::dd::Add<storm::dd::DdType::CUDD> stateDistributionCount = stateDistributionsUnderStrategies.sumAbstract(game.getNondeterminismVariables());
EXPECT_EQ(0, stateDistributionCount.getMax());
EXPECT_EQ(1, stateDistributionCount.getMax());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(3, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(0, result.states.getNonZeroCount());
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(3, result.states.getNonZeroCount());
EXPECT_EQ(4, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(0, result.states.getNonZeroCount());
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
EXPECT_EQ(3, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(0, result.states.getNonZeroCount());
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
EXPECT_EQ(3, result.states.getNonZeroCount());
EXPECT_EQ(4, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
@ -294,7 +294,7 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
// Proceed by checking whether they select exactly one action in each state.
stateDistributionsUnderStrategies = (game.getTransitionMatrix() * result.player1Strategy.get().template toAdd<double>() * result.player2Strategy.get().template toAdd<double>()).sumAbstract(game.getColumnVariables());
EXPECT_EQ(3, stateDistributionsUnderStrategies.getNonZeroCount());
EXPECT_EQ(4, stateDistributionsUnderStrategies.getNonZeroCount());
// Check that the number of distributions per state is one (or zero in the case where there are no prob1 states).
stateDistributionCount = stateDistributionsUnderStrategies.sumAbstract(game.getNondeterminismVariables());
Loading…
Cancel
Save