Browse Source

Implementations, implementations.

Former-commit-id: e203636fac
tempestpy_adaptions
PBerger 11 years ago
parent
commit
9388cd158c
  1. 10
      CMakeLists.txt
  2. 130
      resources/cudaForStorm/srcCuda/basicValueIteration.cu
  3. 3
      resources/cudaForStorm/srcCuda/basicValueIteration.h

10
CMakeLists.txt

@ -32,7 +32,7 @@ option(ENABLE_INTELTBB "Sets whether the Intel TBB is available." OFF)
option(STORM_USE_COTIRE "Sets whether Cotire should be used (for building precompiled headers)." OFF)
option(LINK_LIBCXXABI "Sets whether libc++abi should be linked." OFF)
option(USE_LIBCXX "Sets whether the standard library is libc++." OFF)
option(ENABLE_CUDAFORSTORM "Sets whether StoRM is built with its CUDA extension." OFF)
option(STORM_USE_CUDAFORSTORM "Sets whether StoRM is built with its CUDA extension." OFF)
set(GUROBI_ROOT "" CACHE STRING "The root directory of Gurobi (if available).")
set(Z3_ROOT "" CACHE STRING "The root directory of Z3 (if available).")
set(ADDITIONAL_INCLUDE_DIRS "" CACHE STRING "Additional directories added to the include directories.")
@ -180,7 +180,7 @@ endif()
set(STORM_CPP_GLPK_DEF "define")
# CUDA Defines
if (ENABLE_CUDAFORSTORM)
if (STORM_USE_CUDAFORSTORM)
set(STORM_CPP_CUDAFORSTORM_DEF "define")
else()
set(STORM_CPP_CUDAFORSTORM_DEF "undef")
@ -289,7 +289,7 @@ endif()
if (ENABLE_Z3)
link_directories("${Z3_ROOT}/bin")
endif()
if (ENABLE_CUDAFORSTORM)
if (STORM_USE_CUDAFORSTORM)
link_directories("${PROJECT_SOURCE_DIR}/build/cudaForStorm/lib")
endif()
if ((NOT Boost_LIBRARY_DIRS) OR ("${Boost_LIBRARY_DIRS}" STREQUAL ""))
@ -328,14 +328,14 @@ target_link_libraries(storm-performance-tests ${Boost_LIBRARIES})
## CUDA For Storm
##
#############################################################
if (ENABLE_CUDAFORSTORM)
if (STORM_USE_CUDAFORSTORM)
message (STATUS "StoRM - Linking with CudaForStorm")
include_directories("${PROJECT_BINARY_DIR}/cudaForStorm/include")
include_directories("${PROJECT_SOURCE_DIR}/resources/cudaForStorm")
target_link_libraries(storm cudaForStorm)
target_link_libraries(storm-functional-tests cudaForStorm)
target_link_libraries(storm-performance-tests cudaForStorm)
endif(ENABLE_CUDAFORSTORM)
endif(STORM_USE_CUDAFORSTORM)
#############################################################
##

130
resources/cudaForStorm/srcCuda/basicValueIteration.cu

@ -15,8 +15,136 @@ void cudaForStormTestFunction(int a, int b) {
std::cout << "Cuda for Storm: a + b = " << (a+b) << std::endl;
}
void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<uint_fast64_t> const& matrixColumnIndices, std::vector<double> const& matrixValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) {
void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<std::pair<uint_fast64_t, double>> columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) {
if (sizeof(double) != sizeof(uint_fast64_t)) {
std::cout << "FATAL ERROR - Internal Sizes of Double and uint_fast64_t do NOT match, CUDA acceleration not possible!" << std::endl;
return;
}
uint_fast64_t* device_matrixRowIndices = nullptr;
uint_fast64_t* device_matrixColIndicesAndValues = nullptr;
double* device_x = nullptr;
double* device_b = nullptr;
double* device_multiplyResult = nullptr;
uint_fast64_t* device_nondeterministicChoiceIndices = nullptr;
cudaError_t cudaMallocResult;
cudaMallocResult = cudaMalloc<uint_fast64_t>(&device_matrixRowIndices, matrixRowIndices.size());
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<uint_fast64_t>(&device_matrixColIndicesAndValues, columnIndicesAndValues.size() * 2);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<double>(&device_x, x.size());
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<double>(&device_b, b.size());
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<double>(&device_multiplyResult, b.size());
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
cudaMallocResult = cudaMalloc<uint_fast64_t>(&device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.size());
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(uint_fast64_t) * matrixRowIndices.size(), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(uint_fast64_t) * columnIndicesAndValues.size()) + (sizeof(double) * columnIndicesAndValues.size()), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(double) * x.size(), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(double) * b.size(), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(uint_fast64_t) * nondeterministicChoiceIndices.size(), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// Data is on device, start Kernel
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
}
device_b = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
}
device_multiplyResult = nullptr;
}
if (device_nondeterministicChoiceIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl;
}
device_nondeterministicChoiceIndices = nullptr;
}
}
/*

3
resources/cudaForStorm/srcCuda/basicValueIteration.h

@ -1,8 +1,9 @@
#include <cstdint>
#include <vector>
#include <utility>
// Library exports
#include "cudaForStorm_Export.h"
cudaForStorm_EXPORT void cudaForStormTestFunction(int a, int b);
cudaForStorm_EXPORT void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<uint_fast64_t> const& matrixColumnIndices, std::vector<double> const& matrixValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices);
cudaForStorm_EXPORT void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<std::pair<uint_fast64_t, double>> columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices);
|||||||
100:0
Loading…
Cancel
Save