Browse Source

quantiles: Further improved the implementation as in the paper

tempestpy_adaptions
Tim Quatmann 6 years ago
parent
commit
8ae9a6f5d6
  1. 9
      src/storm/modelchecker/prctl/helper/rewardbounded/CostLimitClosure.cpp
  2. 1
      src/storm/modelchecker/prctl/helper/rewardbounded/CostLimitClosure.h
  3. 53
      src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp
  4. 18
      src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h
  5. 17
      src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.cpp
  6. 8
      src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.h
  7. 578
      src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.cpp
  8. 17
      src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h

9
src/storm/modelchecker/prctl/helper/rewardbounded/CostLimitClosure.cpp

@ -88,6 +88,14 @@ namespace storm {
return false;
}
bool CostLimitClosure::containsUpwardClosure(CostLimits const& costLimits) const {
CostLimits infinityProjection(costLimits);
for (auto const& dim : downwardDimensions) {
infinityProjection[dim] = CostLimit::infinity();
}
return contains(infinityProjection);
}
bool CostLimitClosure::dominates(CostLimits const& lhs, CostLimits const& rhs) const {
for (uint64_t i = 0; i < lhs.size(); ++i) {
if (downwardDimensions.get(i)) {
@ -103,7 +111,6 @@ namespace storm {
return true;
}
std::vector<CostLimits> CostLimitClosure::getDominatingCostLimits(CostLimits const& costLimits) const {
std::vector<CostLimits> result;
for (auto const &b : generator) {

1
src/storm/modelchecker/prctl/helper/rewardbounded/CostLimitClosure.h

@ -36,6 +36,7 @@ namespace storm {
explicit CostLimitClosure(storm::storage::BitVector const& downwardDimensions);
bool insert(CostLimits const& costLimits);
bool contains(CostLimits const& costLimits) const;
bool containsUpwardClosure(CostLimits const& costLimits) const;
bool dominates(CostLimits const& lhs, CostLimits const& rhs) const;
std::vector<CostLimits> getDominatingCostLimits(CostLimits const& costLimits) const;
GeneratorType const& getGenerator() const;

53
src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp

@ -278,7 +278,8 @@ namespace storm {
STORM_LOG_THROW(SingleObjectiveMode, storm::exceptions::NotSupportedException, "Letting lower bounds approach infinity is only supported in single objective mode."); // It most likely also works with multiple objectives with the same shape. However, we haven't checked this yet.
STORM_LOG_THROW(objectives.front().formula->isProbabilityOperatorFormula(), storm::exceptions::NotSupportedException, "Letting lower bounds approach infinity is only supported for probability operator formulas");
auto const& probabilityOperatorFormula = objectives.front().formula->asProbabilityOperatorFormula();
STORM_LOG_THROW(probabilityOperatorFormula.getSubformula().isBoundedUntilFormula() && probabilityOperatorFormula.hasOptimalityType() && storm::solver::maximize(probabilityOperatorFormula.getOptimalityType()), storm::exceptions::NotSupportedException, "Letting lower bounds approach infinity is only supported for maximizing bounded until probabilities.");
STORM_LOG_THROW(probabilityOperatorFormula.getSubformula().isBoundedUntilFormula(), storm::exceptions::NotSupportedException, "Letting lower bounds approach infinity is only supported for bounded until probabilities.");
STORM_LOG_THROW(!model.isNondeterministicModel() || (probabilityOperatorFormula.hasOptimalityType() && storm::solver::maximize(probabilityOperatorFormula.getOptimalityType())), storm::exceptions::NotSupportedException, "Letting lower bounds approach infinity is only supported for maximizing bounded until probabilities.");
STORM_LOG_THROW(upperBoundedDimensions.empty() || !probabilityOperatorFormula.getSubformula().asBoundedUntilFormula().hasMultiDimensionalSubformulas(), storm::exceptions::NotSupportedException, "Letting lower bounds approach infinity is only supported if the formula has either only lower bounds or if it has a single goal state."); // This would fail because the upper bounded dimension(s) might be satisfied already. One should erase epoch steps in the epoch model (after applying the goal-unfolding).
storm::storage::BitVector choicesWithoutUpperBoundedStep(model.getNumberOfChoices(), true);
@ -373,7 +374,6 @@ namespace storm {
template<typename ValueType, bool SingleObjectiveMode>
EpochModel<ValueType, SingleObjectiveMode>& MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setCurrentEpoch(Epoch const& epoch) {
STORM_LOG_DEBUG("Setting model for epoch " << epochManager.toString(epoch));
STORM_LOG_THROW(getProb1Objectives().empty(), storm::exceptions::InvalidOperationException, "The objective " << objectives[*getProb1Objectives().begin()].formula << " is satisfied already in the initial state(s). This special case can not be handled by the reward unfolding."); // This case should have been handled 'from the outside'
// Check if we need to update the current epoch class
if (!currentEpoch || !epochManager.compareEpochClass(epoch, currentEpoch.get())) {
@ -669,6 +669,20 @@ namespace storm {
storm::utility::vector::addScaledVector(solution, solutionToAdd, scalingFactor);
}
template<typename ValueType, bool SingleObjectiveMode>
template<bool SO, typename std::enable_if<SO, int>::type>
void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setSolutionEntry(SolutionType& solution, uint64_t objIndex, ValueType const& value) const {
STORM_LOG_ASSERT(objIndex == 0, "Invalid objective index in single objective mode");
solution = value;
}
template<typename ValueType, bool SingleObjectiveMode>
template<bool SO, typename std::enable_if<!SO, int>::type>
void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setSolutionEntry(SolutionType& solution, uint64_t objIndex, ValueType const& value) const {
STORM_LOG_ASSERT(objIndex < solution.size(), "Invalid objective index " << objIndex << ".");
solution[objIndex] = value;
}
template<typename ValueType, bool SingleObjectiveMode>
template<bool SO, typename std::enable_if<SO, int>::type>
std::string MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::solutionToString(SolutionType const& solution) const {
@ -858,21 +872,39 @@ namespace storm {
template<typename ValueType, bool SingleObjectiveMode>
typename MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::SolutionType const& MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getStateSolution(EpochSolution const& epochSolution, uint64_t const& productState) {
STORM_LOG_ASSERT(productState < epochSolution.productStateToSolutionVectorMap->size(), "Requested solution at an unexisting product state.");
STORM_LOG_ASSERT((*epochSolution.productStateToSolutionVectorMap)[productState] < epochSolution.solutions.size(), "Requested solution for epoch at a state for which no solution was stored.");
STORM_LOG_ASSERT(getProb1Objectives().empty(), "One of the objectives is already satisfied in the initial state. This special case is not handled."); // This case should have been handled 'from the outside'
STORM_LOG_ASSERT((*epochSolution.productStateToSolutionVectorMap)[productState] < epochSolution.solutions.size(), "Requested solution for epoch at product state " << productState << " for which no solution was stored.");
return epochSolution.solutions[(*epochSolution.productStateToSolutionVectorMap)[productState]];
}
template<typename ValueType, bool SingleObjectiveMode>
typename MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::SolutionType const& MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getInitialStateResult(Epoch const& epoch) {
typename MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::SolutionType MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getInitialStateResult(Epoch const& epoch) {
STORM_LOG_ASSERT(model.getInitialStates().getNumberOfSetBits() == 1, "The model has multiple initial states.");
return getStateSolution(epoch, productModel->getInitialProductState(*model.getInitialStates().begin(), model.getInitialStates()));
return getInitialStateResult(epoch, *model.getInitialStates().begin());
}
template<typename ValueType, bool SingleObjectiveMode>
typename MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::SolutionType const& MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getInitialStateResult(Epoch const& epoch, uint64_t initialStateIndex) {
typename MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::SolutionType MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getInitialStateResult(Epoch const& epoch, uint64_t initialStateIndex) {
STORM_LOG_ASSERT(model.getInitialStates().get(initialStateIndex), "The given model state is not an initial state.");
return getStateSolution(epoch, productModel->getInitialProductState(initialStateIndex, model.getInitialStates()));
auto result = getStateSolution(epoch, productModel->getInitialProductState(initialStateIndex, model.getInitialStates(), epochManager.getEpochClass(epoch)));
for (uint64_t objIndex = 0; objIndex < objectives.size(); ++objIndex) {
if (productModel->getProb1InitialStates(objIndex) && productModel->getProb1InitialStates(objIndex)->get(initialStateIndex)) {
// Check whether the objective can actually hold in this epoch
bool objectiveHolds = true;
for (auto const& dim : objectiveDimensions[objIndex]) {
if (dimensions[dim].boundType == DimensionBoundType::LowerBound && !epochManager.isBottomDimension(epoch, dim)) {
objectiveHolds = false;
} else if (dimensions[dim].boundType == DimensionBoundType::UpperBound && epochManager.isBottomDimension(epoch, dim)) {
objectiveHolds = false;
}
STORM_LOG_ASSERT(dimensions[dim].boundType != DimensionBoundType::LowerBoundInfinity, "Unexpected bound type at this point.");
}
if (objectiveHolds) {
setSolutionEntry(result, objIndex, storm::utility::one<ValueType>());
}
}
}
return result;
}
template<typename ValueType, bool SingleObjectiveMode>
@ -885,11 +917,6 @@ namespace storm {
return dimensions.at(dim);
}
template<typename ValueType, bool SingleObjectiveMode>
storm::storage::BitVector const& MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getProb1Objectives() const {
return productModel->getProb1Objectives();
}
template class MultiDimensionalRewardUnfolding<double, true>;
template class MultiDimensionalRewardUnfolding<double, false>;
template class MultiDimensionalRewardUnfolding<storm::RationalNumber, true>;

18
src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h

@ -72,18 +72,12 @@ namespace storm {
boost::optional<ValueType> getLowerObjectiveBound(uint64_t objectiveIndex = 0);
void setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions);
SolutionType const& getInitialStateResult(Epoch const& epoch); // Assumes that the initial state is unique
SolutionType const& getInitialStateResult(Epoch const& epoch, uint64_t initialStateIndex);
SolutionType getInitialStateResult(Epoch const& epoch); // Assumes that the initial state is unique
SolutionType getInitialStateResult(Epoch const& epoch, uint64_t initialStateIndex);
EpochManager const& getEpochManager() const;
Dimension<ValueType> const& getDimension(uint64_t dim) const;
/*!
* Returns objectives that are always satisfied (i.e., have probability one) in all initial states.
* These objectives can not be handled by this as they can not be translated into expected rewards.
*/
storm::storage::BitVector const& getProb1Objectives() const;
private:
void setCurrentEpochClass(Epoch const& epoch);
@ -105,6 +99,14 @@ namespace storm {
template<bool SO = SingleObjectiveMode, typename std::enable_if<!SO, int>::type = 0>
void addScaledSolution(SolutionType& solution, SolutionType const& solutionToAdd, ValueType const& scalingFactor) const;
template<bool SO = SingleObjectiveMode, typename std::enable_if<SO, int>::type = 0>
void setSolutionEntry(SolutionType& solution, uint64_t objIndex, ValueType const& value) const;
template<bool SO = SingleObjectiveMode, typename std::enable_if<!SO, int>::type = 0>
void setSolutionEntry(SolutionType& solution, uint64_t objIndex, ValueType const& value) const;
template<bool SO = SingleObjectiveMode, typename std::enable_if<SO, int>::type = 0>
std::string solutionToString(SolutionType const& solution) const;
template<bool SO = SingleObjectiveMode, typename std::enable_if<!SO, int>::type = 0>

17
src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.cpp

@ -21,7 +21,7 @@ namespace storm {
namespace rewardbounded {
template<typename ValueType>
ProductModel<ValueType>::ProductModel(storm::models::sparse::Model<ValueType> const& model, std::vector<storm::modelchecker::multiobjective::Objective<ValueType>> const& objectives, std::vector<Dimension<ValueType>> const& dimensions, std::vector<storm::storage::BitVector> const& objectiveDimensions, EpochManager const& epochManager, std::vector<Epoch> const& originalModelSteps) : dimensions(dimensions), objectiveDimensions(objectiveDimensions), epochManager(epochManager), memoryStateManager(dimensions.size()), prob1Objectives(objectives.size(), false) {
ProductModel<ValueType>::ProductModel(storm::models::sparse::Model<ValueType> const& model, std::vector<storm::modelchecker::multiobjective::Objective<ValueType>> const& objectives, std::vector<Dimension<ValueType>> const& dimensions, std::vector<storm::storage::BitVector> const& objectiveDimensions, EpochManager const& epochManager, std::vector<Epoch> const& originalModelSteps) : dimensions(dimensions), objectiveDimensions(objectiveDimensions), epochManager(epochManager), memoryStateManager(dimensions.size()), prob1InitialStates(objectives.size(), boost::none) {
for (uint64_t dim = 0; dim < dimensions.size(); ++dim) {
if (!dimensions[dim].memoryLabel) {
@ -167,10 +167,9 @@ namespace storm {
if (memStateBV.full()) {
storm::storage::BitVector initialTransitionStates = model.getInitialStates() & transitionStates;
// At this point we can check whether there is an initial state that already satisfies all subObjectives.
// Such a situation can not be reduced (easily) to an expected reward computation.
if (memStatePrimeBV.empty() && !initialTransitionStates.empty() && !objectiveContainsLowerBound && !initialTransitionStates.isDisjointFrom(constraintStates)) {
STORM_LOG_THROW(model.getInitialStates() == initialTransitionStates, storm::exceptions::NotSupportedException, "The objective " << *objectives[objIndex].formula << " is already satisfied in an initial state. This special case is not supported.");
prob1Objectives.set(objIndex, true);
// Such a situation can not be reduced (easily) to an expected reward computation and thus requires special treatment
if (memStatePrimeBV.empty() && !initialTransitionStates.empty()) {
prob1InitialStates[objIndex] = initialTransitionStates;
}
for (auto const& initState : initialTransitionStates) {
@ -331,11 +330,11 @@ namespace storm {
}
template<typename ValueType>
uint64_t ProductModel<ValueType>::getInitialProductState(uint64_t const& initialModelState, storm::storage::BitVector const& initialModelStates) const {
uint64_t ProductModel<ValueType>::getInitialProductState(uint64_t const& initialModelState, storm::storage::BitVector const& initialModelStates, EpochClass const& epochClass) const {
auto productInitStateIt = getProduct().getInitialStates().begin();
productInitStateIt += initialModelStates.getNumberOfSetBitsBeforeIndex(initialModelState);
STORM_LOG_ASSERT(getModelState(*productInitStateIt) == initialModelState, "Could not find the corresponding initial state in the product model.");
return transformProductState(*productInitStateIt, epochManager.getEpochClass(epochManager.getZeroEpoch()), memoryStateManager.getInitialMemoryState());
return transformProductState(*productInitStateIt, epochClass, memoryStateManager.getInitialMemoryState());
}
template<typename ValueType>
@ -649,8 +648,8 @@ namespace storm {
}
template<typename ValueType>
storm::storage::BitVector const& ProductModel<ValueType>::getProb1Objectives() {
return prob1Objectives;
boost::optional<storm::storage::BitVector> const& ProductModel<ValueType>::getProb1InitialStates(uint64_t objectiveIndex) const {
return prob1InitialStates[objectiveIndex];
}
template class ProductModel<double>;

8
src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.h

@ -33,7 +33,7 @@ namespace storm {
bool productStateExists(uint64_t const& modelState, uint64_t const& memoryState) const;
uint64_t getProductState(uint64_t const& modelState, uint64_t const& memoryState) const;
uint64_t getInitialProductState(uint64_t const& initialModelState, storm::storage::BitVector const& initialModelStates) const;
uint64_t getInitialProductState(uint64_t const& initialModelState, storm::storage::BitVector const& initialModelStates, EpochClass const& epochClass) const;
uint64_t getModelState(uint64_t const& productState) const;
MemoryState getMemoryState(uint64_t const& productState) const;
MemoryStateManager const& getMemoryStateManager() const;
@ -47,8 +47,8 @@ namespace storm {
MemoryState transformMemoryState(MemoryState const& memoryState, EpochClass const& epochClass, MemoryState const& predecessorMemoryState) const;
uint64_t transformProductState(uint64_t const& productState, EpochClass const& epochClass, MemoryState const& predecessorMemoryState) const;
// returns objectives that have probability one, already in the initial state.
storm::storage::BitVector const& getProb1Objectives();
/// returns the initial states (with respect to the original model) that already satisfy the given objective with probability one, assuming that the cost bounds at the current epoch allow for the objective to be satisfied.
boost::optional<storm::storage::BitVector> const& getProb1InitialStates(uint64_t objectiveIndex) const;
private:
@ -77,7 +77,7 @@ namespace storm {
std::vector<uint64_t> productToModelStateMap;
std::vector<MemoryState> productToMemoryStateMap;
std::vector<uint64_t> choiceToStateMap;
storm::storage::BitVector prob1Objectives; /// Objectives that are already satisfied in the initial state
std::vector<boost::optional<storm::storage::BitVector>> prob1InitialStates; /// For each objective the set of initial states that already satisfy the objective
};
}
}

578
src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.cpp

@ -29,27 +29,44 @@ namespace storm {
template<typename ModelType>
QuantileHelper<ModelType>::QuantileHelper(ModelType const& model, storm::logic::QuantileFormula const& quantileFormula) : model(model), quantileFormula(quantileFormula) {
// Intentionally left empty
// Do all kinds of sanity check.
std::set<storm::expressions::Variable> quantileVariables;
for (auto const& quantileVariable : quantileFormula.getBoundVariables()) {
STORM_LOG_THROW(quantileVariables.count(quantileVariable.second) == 0, storm::exceptions::NotSupportedException, "Quantile formula considers the same bound variable twice.");
quantileVariables.insert(quantileVariable.second);
}
STORM_LOG_THROW(quantileFormula.getSubformula().isProbabilityOperatorFormula(), storm::exceptions::NotSupportedException, "Quantile formula needs probability operator inside. The formula " << quantileFormula << " is not supported.");
auto const& probOpFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula();
STORM_LOG_THROW(probOpFormula.getBound().comparisonType == storm::logic::ComparisonType::Greater || probOpFormula.getBound().comparisonType == storm::logic::ComparisonType::LessEqual, storm::exceptions::NotSupportedException, "Probability operator inside quantile formula needs to have bound > or <=.");
STORM_LOG_THROW(probOpFormula.hasBound(), storm::exceptions::InvalidOperationException, "Probability operator inside quantile formula needs to have a bound.");
STORM_LOG_THROW(!model.isNondeterministicModel() || probOpFormula.hasOptimalityType(), storm::exceptions::InvalidOperationException, "Probability operator inside quantile formula needs to have an optimality type.");
STORM_LOG_WARN_COND(probOpFormula.getBound().comparisonType == storm::logic::ComparisonType::Greater || probOpFormula.getBound().comparisonType == storm::logic::ComparisonType::LessEqual, "Probability operator inside quantile formula needs to have bound > or <=. The specified comparison type might lead to non-termination."); // This has to do with letting bound variables approach infinity, e.g., Pr>0.7 [F "goal"] holds iff Pr>0.7 [F<=B "goal"] holds for some B.
bool lowerBounded = storm::logic::isLowerBound(probOpFormula.getBound().comparisonType);
STORM_LOG_THROW(probOpFormula.getSubformula().isBoundedUntilFormula(), storm::exceptions::NotSupportedException, "Quantile formula needs bounded until probability operator formula as subformula. The formula " << quantileFormula << " is not supported.");
auto const& boundedUntilFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula();
auto const& boundedUntilFormula = probOpFormula.getSubformula().asBoundedUntilFormula();
std::set<storm::expressions::Variable> boundVariables;
for (uint64_t dim = 0; dim < boundedUntilFormula.getDimension(); ++dim) {
storm::expressions::Expression boundExpression;
if (boundedUntilFormula.hasUpperBound(dim)) {
STORM_LOG_THROW(!boundedUntilFormula.hasLowerBound(dim), storm::exceptions::NotSupportedException, "Interval bounds are not supported within quantile formulas.");
STORM_LOG_THROW(!boundedUntilFormula.isUpperBoundStrict(dim), storm::exceptions::NotSupportedException, "Only non-strict upper reward bounds are supported for quantiles.");
boundExpression = boundedUntilFormula.getUpperBound(dim);
} else if (boundedUntilFormula.hasLowerBound(dim)) {
STORM_LOG_THROW(!boundedUntilFormula.isLowerBoundStrict(dim), storm::exceptions::NotSupportedException, "Only non-strict lower reward bounds are supported for quantiles.");
boundExpression = boundedUntilFormula.getLowerBound(dim);
}
if (boundExpression.isInitialized() && boundExpression.containsVariables()) {
STORM_LOG_THROW(boundExpression.isVariable(), storm::exceptions::NotSupportedException, "Non-trivial bound expressions such as '" << boundExpression << "' are not supported. Either specify a constant or a quantile variable.");
storm::expressions::Variable const& boundVariable = boundExpression.getBaseExpression().asVariableExpression().getVariable();
STORM_LOG_THROW(boundVariables.count(boundVariable) == 0, storm::exceptions::NotSupportedException, "Variable " << boundExpression << " occurs at multiple reward bounds.");
boundVariables.insert(boundVariable);
STORM_LOG_THROW(quantileVariables.count(boundVariable) == 1, storm::exceptions::NotSupportedException, "The formula contains undefined constant '" << boundExpression << "'.");
}
}
// Only > and <= are supported for upper bounds. This is to make sure that Pr>0.7 [F "goal"] holds iff Pr>0.7 [F<=B "goal"] holds for some B.
// Only >= and < are supported for lower bounds. (EC construction..)
// TODO
// Fix precision increasing
// Multiple quantile formulas in the same file yield constants def clash
// Bounds are either constants or variables that are declared in the quantile formula.
// Prop op has optimality type
// No Prmin with lower cost bounds: Ec construction fails. In single obj we would do 1-Prmax[F "nonRewOrNonGoalEC"] but this invalidates other lower/upper cost bounds.
/* Todo: Current assumptions:
* Subformula is always prob operator with bounded until
* Each bound variable occurs at most once (change this?)
* cost bounds are assumed to be always non-strict (the epochs returned by the reward unfolding assume strict lower and non-strict upper cost bounds, though...)
* 'reasonable' quantile (e.g. not quantile(max B, Pmax>0.5 [F <=B G]) (we could also filter out these things early on)
*/
// ignore optimization direction for quantile variables
}
enum class BoundTransformation {
@ -58,7 +75,7 @@ namespace storm {
GreaterEqualZero,
LessEqualZero
};
std::shared_ptr<storm::logic::ProbabilityOperatorFormula> transformBoundedUntilOperator(storm::logic::ProbabilityOperatorFormula const& boundedUntilOperator, std::vector<BoundTransformation> const& transformations) {
std::shared_ptr<storm::logic::ProbabilityOperatorFormula> transformBoundedUntilOperator(storm::logic::ProbabilityOperatorFormula const& boundedUntilOperator, std::vector<BoundTransformation> const& transformations, bool complementQuery = false) {
auto const& origBoundedUntil = boundedUntilOperator.getSubformula().asBoundedUntilFormula();
STORM_LOG_ASSERT(transformations.size() == origBoundedUntil.getDimension(), "Tried to replace the bound of a dimension that is higher than the number of dimensions of the formula.");
std::vector<std::shared_ptr<storm::logic::Formula const>> leftSubformulas, rightSubformulas;
@ -107,7 +124,11 @@ namespace storm {
} else {
newBoundedUntil = std::make_shared<storm::logic::BoundedUntilFormula>(origBoundedUntil.getLeftSubformula().asSharedPointer(), origBoundedUntil.getRightSubformula().asSharedPointer(), lowerBounds, upperBounds, timeBoundReferences);
}
return std::make_shared<storm::logic::ProbabilityOperatorFormula>(newBoundedUntil, boundedUntilOperator.getOperatorInformation());
storm::logic::OperatorInformation newOpInfo(boundedUntilOperator.getOperatorInformation().optimalityType, boundedUntilOperator.getBound());
if (complementQuery) {
newOpInfo.bound->comparisonType = storm::logic::invert(newOpInfo.bound->comparisonType);
}
return std::make_shared<storm::logic::ProbabilityOperatorFormula>(newBoundedUntil, newOpInfo);
}
/// Increases the precision of solver results
@ -174,55 +195,26 @@ namespace storm {
}
template<typename ModelType>
storm::storage::BitVector QuantileHelper<ModelType>::getDimensionsForVariable(storm::expressions::Variable const& var) const {
auto const& boundedUntil = quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula();
storm::storage::BitVector result(boundedUntil.getDimension(), false);
for (uint64_t dim = 0; dim < boundedUntil.getDimension(); ++dim) {
if (boundedUntil.hasLowerBound(dim) && boundedUntil.getLowerBound(dim).isVariable() && boundedUntil.getLowerBound(dim).getBaseExpression().asVariableExpression().getVariable() == var) {
result.set(dim, true);
}
if (boundedUntil.hasUpperBound(dim) && boundedUntil.getUpperBound(dim).isVariable() && boundedUntil.getUpperBound(dim).getBaseExpression().asVariableExpression().getVariable() == var) {
result.set(dim, true);
}
}
return result;
}
template<typename ModelType>
std::vector<std::vector<typename ModelType::ValueType>> QuantileHelper<ModelType>::computeQuantile(Environment const& env) const {
std::vector<std::vector<typename ModelType::ValueType>> QuantileHelper<ModelType>::computeQuantile(Environment const& env) {
numCheckedEpochs = 0;
numPrecisionRefinements = 0;
cachedSubQueryResults.clear();
std::vector<std::vector<ValueType>> result;
Environment envCpy = env; // It might be necessary to increase the precision during the computation
numCheckedEpochs = 0; numPrecisionRefinements = 0;
if (getOpenDimensions().getNumberOfSetBits() == 1) {
uint64_t dimension = *getOpenDimensions().begin();
bool zeroSatisfiesFormula = checkLimitValue(envCpy, storm::storage::BitVector(getDimension(), false));
bool infSatisfiesFormula = checkLimitValue(envCpy, getOpenDimensions());
if (zeroSatisfiesFormula != infSatisfiesFormula) {
while (true) {
auto quantileRes = computeQuantileForDimension(envCpy, dimension);
if (quantileRes) {
result = {{storm::utility::convertNumber<ValueType>(quantileRes->first) * quantileRes->second}};
break;
}
increasePrecision(envCpy);
++numPrecisionRefinements;
}
} else if (zeroSatisfiesFormula) {
// thus also infSatisfiesFormula is true, i.e., all bound values satisfy the formula
if (storm::solver::minimize(getOptimizationDirForDimension(dimension))) {
result = {{ storm::utility::zero<ValueType>() }};
// Call the internal recursive function
auto internalResult = computeQuantile(envCpy, getOpenDimensions(), false);
// Translate the result by applying the scaling factors.
for (auto const& costLimits : internalResult.first.getGenerator()) {
std::vector<ValueType> resultPoint(costLimits.size());
storm::utility::vector::applyPointwise<CostLimit, ValueType, ValueType>(costLimits, internalResult.second, resultPoint, [](CostLimit const& costLimit, ValueType const& factor) -> ValueType {
if (costLimit.isInfinity()) {
return storm::utility::infinity<ValueType>();
} else {
result = {{ storm::utility::infinity<ValueType>()}};
}
} else {
// i.e., no bound value satisfies the formula
result = {{}};
}
} else if (getOpenDimensions().getNumberOfSetBits() == 2) {
result = computeTwoDimensionalQuantile(envCpy);
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "The quantile formula considers " << getOpenDimensions().getNumberOfSetBits() << " open dimensions. Only one- or two-dimensional quantiles are supported.");
return storm::utility::convertNumber<ValueType>(costLimit.get()) * factor;
}});
result.push_back(resultPoint);
}
if (storm::settings::getModule<storm::settings::modules::CoreSettings>().isShowStatisticsSet()) {
std::cout << "Number of checked epochs: " << numCheckedEpochs << std::endl;
@ -231,20 +223,26 @@ namespace storm {
return result;
}
template<typename ModelType>
std::pair<CostLimitClosure, std::vector<typename QuantileHelper<ModelType>::ValueType>> QuantileHelper<ModelType>::computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions) const {
// Todo: ask the cache first
auto boundedUntilOp = transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), std::vector<BoundTransformation>(getDimension(), BoundTransformation::None));
std::pair<CostLimitClosure, std::vector<typename QuantileHelper<ModelType>::ValueType>> QuantileHelper<ModelType>::computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions, bool complementaryQuery) {
STORM_LOG_ASSERT(consideredDimensions.isSubsetOf(getOpenDimensions()), "Considered dimensions for a quantile query should be a subset of the set of dimensions without a fixed bound.");
storm::storage::BitVector cacheKey = consideredDimensions;
cacheKey.resize(cacheKey.size() + 1, complementaryQuery);
auto cacheIt = cachedSubQueryResults.find(cacheKey);
if (cacheIt != cachedSubQueryResults.end()) {
return cacheIt->second;
}
auto boundedUntilOp = transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), std::vector<BoundTransformation>(getDimension(), BoundTransformation::None), complementaryQuery);
std::set<storm::expressions::Variable> infinityVariables;
storm::storage::BitVector lowerBoundedDimensions(getDimension());
storm::storage::BitVector downwardClosedDimensions(getDimension());
bool hasLowerValueBound = storm::logic::isLowerBound(boundedUntilOp->getComparisonType());
for (auto const& d : getOpenDimensions()) {
if (consideredDimensions.get(d)) {
bool hasLowerCostBound = boundedUntilOp->getSubformula().asBoundedUntilFormula().hasLowerBound(d);
lowerBoundedDimensions.set(d, hasLowerCostBound);
bool hasLowerValueBound = storm::logic::isLowerBound(boundedUntilOp->getComparisonType());
downwardClosedDimensions.set(d, hasLowerCostBound == hasLowerValueBound);
} else {
infinityVariables.insert(getVariableForDimension(d));
@ -253,23 +251,57 @@ namespace storm {
downwardClosedDimensions = downwardClosedDimensions % consideredDimensions;
CostLimitClosure satCostLimits(downwardClosedDimensions), unsatCostLimits(~downwardClosedDimensions);
// Initialize the (un)sat cost limits to guarantee termination
bool onlyUpperCostBounds = lowerBoundedDimensions.empty();
bool onlyLowerCostBounds = lowerBoundedDimensions == consideredDimensions;
if (onlyUpperCostBounds || onlyLowerCostBounds) {
for (auto const& k : consideredDimensions) {
storm::storage::BitVector subQueryDimensions = consideredDimensions;
subQueryDimensions.set(k, false);
bool subQueryComplement = complementaryQuery != ((onlyUpperCostBounds && hasLowerValueBound) || (onlyLowerCostBounds && !hasLowerValueBound));
auto subQueryResult = computeQuantile(env, subQueryDimensions, subQueryComplement);
for (auto const& subQueryCostLimit : subQueryResult.first.getGenerator()) {
CostLimits initPoint;
uint64_t i = 0;
for (auto const& dim : consideredDimensions) {
if (dim == k) {
initPoint.push_back(CostLimit::infinity());
} else {
initPoint.push_back(subQueryCostLimit[i]);
++i;
}
}
if (subQueryComplement) {
unsatCostLimits.insert(initPoint);
} else {
satCostLimits.insert(initPoint);
}
}
}
} else {
STORM_LOG_WARN("Quantile formula considers mixtures of upper and lower reward-bounds. Termination is not guaranteed.");
}
// Loop until the goal precision is reached.
STORM_LOG_DEBUG("Computing quantile for dimensions: " << consideredDimensions);
while (true) {
// initialize Reward unfolding and data that will be needed for each epoch
// initialize reward unfolding and data that will be needed for each epoch
MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(model, boundedUntilOp, infinityVariables);
if (computeQuantile(env, consideredDimensions, lowerBoundedDimensions, satCostLimits, unsatCostLimits, rewardUnfolding)) {
if (computeQuantile(env, consideredDimensions, *boundedUntilOp, lowerBoundedDimensions, satCostLimits, unsatCostLimits, rewardUnfolding)) {
std::vector<ValueType> scalingFactors;
for (auto const& dim : consideredDimensions) {
scalingFactors.push_back(rewardUnfolding.getDimension(dim).scalingFactor);
}
return {satCostLimits, scalingFactors};
std::pair<CostLimitClosure, std::vector<ValueType>> result(satCostLimits, scalingFactors);
cachedSubQueryResults.emplace(cacheKey, result);
return result;
}
STORM_LOG_WARN("Restarting quantile computation due to insufficient precision.");
++numPrecisionRefinements;
increasePrecision(env);
}
}
bool getNextCandidateCostLimit(CostLimit const& maxCostLimit, CostLimits& current) {
if (maxCostLimit.get() == 0) {
return false;
@ -296,12 +328,6 @@ namespace storm {
return true;
}
bool unionContainsAllCostLimits(CostLimitClosure const& lhs, CostLimitClosure const& rhs) {
// TODO
assert(false);
}
bool translateEpochToCostLimits(EpochManager::Epoch const& epoch, EpochManager::Epoch const& startEpoch,storm::storage::BitVector const& consideredDimensions, storm::storage::BitVector const& lowerBoundedDimensions, EpochManager const& epochManager, CostLimits& epochAsCostLimits) {
for (uint64_t dim = 0; dim < consideredDimensions.size(); ++dim) {
if (consideredDimensions.get(dim)) {
@ -331,9 +357,8 @@ namespace storm {
return true;
}
template<typename ModelType>
bool QuantileHelper<ModelType>::computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions, storm::storage::BitVector const& lowerBoundedDimensions, CostLimitClosure& satCostLimits, CostLimitClosure& unsatCostLimits, MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding) const {
bool QuantileHelper<ModelType>::computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions, storm::logic::ProbabilityOperatorFormula const& boundedUntilOperator, storm::storage::BitVector const& lowerBoundedDimensions, CostLimitClosure& satCostLimits, CostLimitClosure& unsatCostLimits, MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding) {
auto lowerBound = rewardUnfolding.getLowerObjectiveBound();
auto upperBound = rewardUnfolding.getUpperObjectiveBound();
@ -341,12 +366,14 @@ namespace storm {
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> minMaxSolver;
std::set<EpochManager::Epoch> checkedEpochs;
CostLimit currentMaxCostLimit(0);
for (CostLimit currentMaxCostLimit(0); !unionContainsAllCostLimits(satCostLimits, unsatCostLimits); ++currentMaxCostLimit.get()) {
bool progress = true;
for (CostLimit currentMaxCostLimit(0); progress; ++currentMaxCostLimit.get()) {
CostLimits currentCandidate(satCostLimits.dimension(), currentMaxCostLimit);
// We can only stop the exploration, if the upward closure of the point in the 'top right corner' is contained in the (un)satCostlLimits.
progress = !satCostLimits.containsUpwardClosure(currentCandidate) && !unsatCostLimits.containsUpwardClosure(currentCandidate);
do {
if (!satCostLimits.contains(currentCandidate) && !unsatCostLimits.contains(currentCandidate)) {
progress = true;
// Transform candidate cost limits to an appropriate start epoch
auto startEpoch = rewardUnfolding.getStartEpoch(true);
auto costLimitIt = currentCandidate.begin();
@ -367,7 +394,7 @@ namespace storm {
if (checkedEpochs.count(epoch) == 0) {
checkedEpochs.insert(epoch);
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(env, quantileFormula.getSubformula().asProbabilityOperatorFormula().getOptimalityType(), x, b, minMaxSolver, lowerBound, upperBound));
rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(env,boundedUntilOperator.getOptimalityType(), x, b, minMaxSolver, lowerBound, upperBound));
++numCheckedEpochs;
CostLimits epochAsCostLimits;
@ -376,15 +403,14 @@ namespace storm {
bool propertySatisfied;
if (env.solver().isForceSoundness()) {
auto lowerUpperValue = getLowerUpperBound(env, currValue);
propertySatisfied = quantileFormula.getSubformula().asProbabilityOperatorFormula().getBound().isSatisfied(lowerUpperValue.first);
if (propertySatisfied != quantileFormula.getSubformula().asProbabilityOperatorFormula().getBound().isSatisfied(lowerUpperValue.second)) {
propertySatisfied = boundedUntilOperator.getBound().isSatisfied(lowerUpperValue.first);
if (propertySatisfied != boundedUntilOperator.getBound().isSatisfied(lowerUpperValue.second)) {
// unclear result due to insufficient precision.
return false;
}
} else {
propertySatisfied = quantileFormula.getSubformula().asProbabilityOperatorFormula().getBound().isSatisfied(currValue);
propertySatisfied = boundedUntilOperator.getBound().isSatisfied(currValue);
}
if (propertySatisfied) {
satCostLimits.insert(epochAsCostLimits);
} else {
@ -398,383 +424,7 @@ namespace storm {
}
return true;
}
///////
template<typename ValueType>
void filterDominatedPoints(std::vector<std::vector<ValueType>>& points, std::vector<storm::solver::OptimizationDirection> const& dirs) {
std::vector<std::vector<ValueType>> result;
// Note: this is slow and not inplace but also most likely not performance critical
for (auto const& p1 : points) {
bool p1Dominated = false;
for (auto const& p2 : points) {
assert(p1.size() == p2.size());
bool p2DominatesP1 = false;
for (uint64_t i = 0; i < dirs.size(); ++i) {
if (storm::solver::minimize(dirs[i]) ? p2[i] <= p1[i] : p2[i] >= p1[i]) {
if (p2[i] != p1[i]) {
p2DominatesP1 = true;
}
} else {
p2DominatesP1 = false;
break;
}
}
if (p2DominatesP1) {
p1Dominated = true;
break;
}
}
if (!p1Dominated) {
result.push_back(p1);
}
}
points = std::move(result);
}
template<typename ModelType>
std::vector<std::vector<typename ModelType::ValueType>> QuantileHelper<ModelType>::computeTwoDimensionalQuantile(Environment& env) const {
std::vector<std::vector<ValueType>> result;
auto const& probOpFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula();
auto const& boundedUntilFormula = probOpFormula.getSubformula().asBoundedUntilFormula();
std::vector<storm::storage::BitVector> dimensionsAsBitVector;
std::vector<uint64_t> dimensions;
std::vector<storm::solver::OptimizationDirection> optimizationDirections;
std::vector<bool> lowerCostBounds;
for (auto const& dirVar : quantileFormula.getBoundVariables()) {
dimensionsAsBitVector.push_back(getDimensionsForVariable(dirVar.second));
STORM_LOG_THROW(dimensionsAsBitVector.back().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "There is not exactly one reward bound referring to quantile variable '" << dirVar.second.getName() << "'.");
dimensions.push_back(*dimensionsAsBitVector.back().begin());
lowerCostBounds.push_back(boundedUntilFormula.hasLowerBound(dimensions.back()));
optimizationDirections.push_back(dirVar.first);
}
STORM_LOG_ASSERT(dimensions.size() == 2, "Expected to have exactly two open dimensions.");
if (optimizationDirections[0] == optimizationDirections[1]) {
if (lowerCostBounds[0] == lowerCostBounds[1]) {
// TODO: Assert that we have a reasonable probability bound. STORM_LOG_THROW(storm::solver::minimize(optimizationDirections[0])
bool infInfProbSatisfiesFormula = checkLimitValue(env, storm::storage::BitVector(getDimension(), false));
bool zeroZeroProbSatisfiesFormula = checkLimitValue(env, dimensionsAsBitVector[0] | dimensionsAsBitVector[1]);
if (infInfProbSatisfiesFormula != zeroZeroProbSatisfiesFormula) {
std::vector<std::pair<int64_t, typename ModelType::ValueType>> singleQuantileValues;
for (uint64_t i = 0; i < 2; ++i) {
// find out whether the bounds B_i = 0 and B_1-i = infinity satisfy the formula
bool zeroInfSatisfiesFormula = checkLimitValue(env, dimensionsAsBitVector[1-i]);
if (zeroInfSatisfiesFormula == storm::solver::minimize(optimizationDirections[0])) {
// There is bound value b such that the point B_i=0 and B_1-i = b is part of the result
singleQuantileValues.emplace_back(0, storm::utility::zero<ValueType>());
} else {
// Compute quantile where 1-i is set to infinity
singleQuantileValues.push_back(computeQuantileForDimension(env, dimensions[i]).get());
if (!storm::solver::minimize(optimizationDirections[i])) {
// When maximizing bounds, the computed single dimensional quantile value is sat for all values of the other bound.
// Increase the computed value so that there is at least one unsat assignment of bounds with B[i] = singleQuantileValues[i]
++singleQuantileValues.back().first;
}
}
// Decrease the value for lower cost bounds to convert >= to >
if (lowerCostBounds[i]) {
--singleQuantileValues[i].first;
}
}
std::vector<int64_t> currentEpochValues = {(int64_t) singleQuantileValues[0].first, (int64_t) singleQuantileValues[1].first}; // signed int is needed to allow lower bounds >-1 (aka >=0).
while (!exploreTwoDimensionalQuantile(env, singleQuantileValues, currentEpochValues, result)) {
increasePrecision(env);
++numPrecisionRefinements;
}
} else if (infInfProbSatisfiesFormula) {
// then also zeroZeroProb satisfies the formula, i.e., all bound values satisfy the formula
if (storm::solver::minimize(optimizationDirections[0])) {
result = {{storm::utility::zero<ValueType>(), storm::utility::zero<ValueType>()}};
} else {
result = {{ storm::utility::infinity<ValueType>(), storm::utility::infinity<ValueType>()}};
}
} else {
// i.e., no bound value satisfies the formula
result = {{}};
}
} else {
// TODO: this is an "unreasonable" case
}
} else {
// TODO: find reasonable min/max cases
}
return result;
}
template<typename ModelType>
bool QuantileHelper<ModelType>::exploreTwoDimensionalQuantile(Environment const& env, std::vector<std::pair<int64_t, typename ModelType::ValueType>> const& startEpochValues, std::vector<int64_t>& currentEpochValues, std::vector<std::vector<ValueType>>& resultPoints) const {
// Initialize some data for easy access
auto const& probOpFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula();
auto const& boundedUntilFormula = probOpFormula.getSubformula().asBoundedUntilFormula();
std::vector<storm::storage::BitVector> dimensionsAsBitVector;
std::vector<uint64_t> dimensions;
std::vector<storm::solver::OptimizationDirection> optimizationDirections;
std::vector<bool> lowerCostBounds;
for (auto const& dirVar : quantileFormula.getBoundVariables()) {
dimensionsAsBitVector.push_back(getDimensionsForVariable(dirVar.second));
STORM_LOG_THROW(dimensionsAsBitVector.back().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "There is not exactly one reward bound referring to quantile variable '" << dirVar.second.getName() << "'.");
dimensions.push_back(*dimensionsAsBitVector.back().begin());
lowerCostBounds.push_back(boundedUntilFormula.hasLowerBound(dimensions.back()));
optimizationDirections.push_back(dirVar.first);
}
STORM_LOG_ASSERT(dimensions.size() == 2, "Expected to have exactly two open dimensions.");
MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(model, transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), std::vector<BoundTransformation>(getDimension(), BoundTransformation::None)));
// initialize data that will be needed for each epoch
auto lowerBound = rewardUnfolding.getLowerObjectiveBound();
auto upperBound = rewardUnfolding.getUpperObjectiveBound();
std::vector<ValueType> x, b;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> minMaxSolver;
if (currentEpochValues[0] < 0 && currentEpochValues[1] < 0) {
// This case can only happen in these cases:
assert(lowerCostBounds[0]);
assert(currentEpochValues[0] == -1);
assert(currentEpochValues[1] == -1);
// This case has been checked already, so we can skip it.
// Skipping this is actually necessary, since the rewardUnfolding will handle formulas like [F{"a"}>A,{"b"}>B "init"] incorrectly if A=B=-1.
++currentEpochValues[1];
}
std::set<typename EpochManager::Epoch> exploredEpochs;
while (true) {
auto currEpoch = rewardUnfolding.getStartEpoch(true);
for (uint64_t i = 0; i < 2; ++i) {
if (currentEpochValues[i] >= 0) {
rewardUnfolding.getEpochManager().setDimensionOfEpoch(currEpoch, dimensions[i], (uint64_t) currentEpochValues[i]);
} else {
rewardUnfolding.getEpochManager().setBottomDimension(currEpoch, dimensions[i]);
}
}
auto epochOrder = rewardUnfolding.getEpochComputationOrder(currEpoch);
for (auto const& epoch : epochOrder) {
if (exploredEpochs.count(epoch) == 0) {
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(env, quantileFormula.getSubformula().asProbabilityOperatorFormula().getOptimalityType(), x, b, minMaxSolver, lowerBound, upperBound));
++numCheckedEpochs;
exploredEpochs.insert(epoch);
}
}
ValueType currValue = rewardUnfolding.getInitialStateResult(currEpoch);
bool propertySatisfied;
if (env.solver().isForceSoundness()) {
auto lowerUpperValue = getLowerUpperBound(env, currValue);
propertySatisfied = probOpFormula.getBound().isSatisfied(lowerUpperValue.first);
if (propertySatisfied != probOpFormula.getBound().isSatisfied(lowerUpperValue.second)) {
// unclear result due to insufficient precision.
return false;
}
} else {
propertySatisfied = probOpFormula.getBound().isSatisfied(currValue);
}
// If the reward bounds should be as small as possible, we should stop as soon as the property is satisfied.
// If the reward bounds should be as large as possible, we should stop as soon as the property is violated and then go a step backwards
if (storm::solver::minimize(optimizationDirections[0]) == propertySatisfied) {
// We found another point for the result! Translate it to the original domain
auto point = currentEpochValues;
std::vector<ValueType> convertedPoint;
for (uint64_t i = 0; i < 2; ++i) {
if (lowerCostBounds[i]) {
// Translate > to >=
++point[i];
}
if (i == 1 && storm::solver::maximize(optimizationDirections[i])) {
// When maximizing, we actually searched for each x-value the smallest y-value that leads to a property violation. Hence, decreasing y by one means property satisfaction
--point[i];
}
if (point[i] < 0) {
// Skip this point
convertedPoint.clear();
continue;
}
convertedPoint.push_back(storm::utility::convertNumber<ValueType>(point[i]) * rewardUnfolding.getDimension(dimensions[i]).scalingFactor);
}
if (!convertedPoint.empty()) {
resultPoints.push_back(std::move(convertedPoint));
}
if (currentEpochValues[1] == startEpochValues[1].first) {
break;
} else {
++currentEpochValues[0];
currentEpochValues[1] = startEpochValues[1].first;
}
} else {
++currentEpochValues[1];
}
}
// When maximizing, there are border cases where one dimension can be arbitrarily large
for (uint64_t i = 0; i < 2; ++i) {
if (storm::solver::maximize(optimizationDirections[i]) && startEpochValues[i].first > 0) {
std::vector<ValueType> newResultPoint(2);
newResultPoint[i] = storm::utility::convertNumber<ValueType>(startEpochValues[i].first - 1) * startEpochValues[i].second;
newResultPoint[1-i] = storm::utility::infinity<ValueType>();
resultPoints.push_back(newResultPoint);
}
}
filterDominatedPoints(resultPoints, optimizationDirections);
return true;
}
template<typename ModelType>
boost::optional<std::pair<uint64_t, typename ModelType::ValueType>> QuantileHelper<ModelType>::computeQuantileForDimension(Environment const& env, uint64_t dimension) const {
// We assume that there is one bound value that violates the quantile and one bound value that satisfies it.
// Let all other open bounds approach infinity
std::set<storm::expressions::Variable> infinityVariables;
for (auto const& d : getOpenDimensions()) {
if (d != dimension) {
infinityVariables.insert(getVariableForDimension(d));
}
}
auto transformedFormula = transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), std::vector<BoundTransformation>(getDimension(), BoundTransformation::None));
MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(model, transformedFormula, infinityVariables);
bool upperCostBound = quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula().hasUpperBound(dimension);
bool minimizingRewardBound = storm::solver::minimize(getOptimizationDirForDimension(dimension));
// initialize data that will be needed for each epoch
auto lowerBound = rewardUnfolding.getLowerObjectiveBound();
auto upperBound = rewardUnfolding.getUpperObjectiveBound();
std::vector<ValueType> x, b;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> minMaxSolver;
uint64_t epochValue = 0;
std::set<typename EpochManager::Epoch> exploredEpochs;
while (true) {
auto currEpoch = rewardUnfolding.getStartEpoch(true);
rewardUnfolding.getEpochManager().setDimensionOfEpoch(currEpoch, dimension, (uint64_t) epochValue);
auto epochOrder = rewardUnfolding.getEpochComputationOrder(currEpoch);
for (auto const& epoch : epochOrder) {
if (exploredEpochs.count(epoch) == 0) {
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(env, quantileFormula.getSubformula().asProbabilityOperatorFormula().getOptimalityType(), x, b, minMaxSolver, lowerBound, upperBound));
++numCheckedEpochs;
exploredEpochs.insert(epoch);
}
}
ValueType currValue = rewardUnfolding.getInitialStateResult(currEpoch);
bool propertySatisfied;
if (env.solver().isForceSoundness()) {
auto lowerUpperValue = getLowerUpperBound(env, currValue);
propertySatisfied = transformedFormula->getBound().isSatisfied(lowerUpperValue.first);
if (propertySatisfied != transformedFormula->getBound().isSatisfied(lowerUpperValue.second)) {
// unclear result due to insufficient precision.
return boost::none;
}
} else {
propertySatisfied = transformedFormula->getBound().isSatisfied(currValue);
}
// If the reward bound should be as small as possible, we should stop as soon as the property is satisfied.
// If the reward bound should be as large as possible, we should stop as soon as sthe property is violated and then go a step backwards
if (minimizingRewardBound && propertySatisfied) {
// We found a satisfying value!
if (!upperCostBound) {
// The rewardunfolding assumes strict lower cost bounds while we assume non-strict ones. Hence, >B becomes >=(B+1).
++epochValue;
}
break;
} else if (!minimizingRewardBound && !propertySatisfied) {
// We found a non-satisfying value. Go one step back to get the largest satisfying value.
// ... however, lower cost bounds need to be converted from strict bounds >B to non strict bounds >=(B+1).
// Hence, no operation is necessary in this case.
if (upperCostBound) {
STORM_LOG_ASSERT(epochValue > 0, "The property does not seem to be satisfiable. This case should have been excluded earlier.");
--epochValue;
}
break;
}
++epochValue;
}
return std::make_pair(epochValue, rewardUnfolding.getDimension(dimension).scalingFactor);
}
template<typename ModelType>
bool QuantileHelper<ModelType>::checkLimitValue(Environment& env, storm::storage::BitVector const& infDimensions) const {
auto const& probabilityBound = quantileFormula.getSubformula().asProbabilityOperatorFormula().getBound();
// Increase the precision until we get a conclusive result
while (true) {
ValueType numericResult = computeLimitValue(env, infDimensions);
if (env.solver().isForceSoundness()) {
auto lowerUpper = getLowerUpperBound(env, numericResult);
bool lowerSat = probabilityBound.isSatisfied(lowerUpper.first);
bool upperSat = probabilityBound.isSatisfied(lowerUpper.second);
if (lowerSat == upperSat) {
return lowerSat;
} else {
increasePrecision(env);
++numPrecisionRefinements;
}
} else {
return probabilityBound.isSatisfied(numericResult);
}
}
}
template<typename ModelType>
typename ModelType::ValueType QuantileHelper<ModelType>::computeLimitValue(Environment const& env, storm::storage::BitVector const& infDimensions) const {
// To compute the limit for an upper bounded dimension, we can simply drop the bound
// To compute the limit for a lower bounded dimension, we only consider epoch steps that lie in an end component and check for the bound >0 instead.
// Notice, however, that this approach becomes problematic if, at the same time, we consider an upper bounded dimension with bound value zero.
std::vector<BoundTransformation> bts(getDimension(), BoundTransformation::None);
std::set<storm::expressions::Variable> infinityVariables;
for (auto const& d : getOpenDimensions()) {
bool upperCostBound = quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula().hasUpperBound(d);
if (infDimensions.get(d)) {
infinityVariables.insert(getVariableForDimension(d));
} else {
if (upperCostBound) {
bts[d] = BoundTransformation::LessEqualZero;
} else {
bts[d] = BoundTransformation::GreaterEqualZero;
}
}
}
auto transformedFormula = transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), bts);
MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(model, transformedFormula, infinityVariables);
if (!rewardUnfolding.getProb1Objectives().empty()) {
assert(rewardUnfolding.getProb1Objectives().size() == 1);
// The probability is one.
return storm::utility::one<ValueType>();
}
// Get lower and upper bounds for the solution.
auto lowerBound = rewardUnfolding.getLowerObjectiveBound();
auto upperBound = rewardUnfolding.getUpperObjectiveBound();
// Initialize epoch models
auto initEpoch = rewardUnfolding.getStartEpoch();
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch);
// initialize data that will be needed for each epoch
std::vector<ValueType> x, b;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> minMaxSolver;
for (auto const& epoch : epochOrder) {
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(env, quantileFormula.getSubformula().asProbabilityOperatorFormula().getOptimalityType(), x, b, minMaxSolver, lowerBound, upperBound));
++numCheckedEpochs;
}
ValueType numericResult = rewardUnfolding.getInitialStateResult(initEpoch);
STORM_LOG_TRACE("Limit probability for infinity dimensions " << infDimensions << " is " << numericResult << ".");
return numericResult;
}
template class QuantileHelper<storm::models::sparse::Mdp<double>>;
template class QuantileHelper<storm::models::sparse::Mdp<storm::RationalNumber>>;

17
src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h

@ -1,17 +1,17 @@
#pragma once
#include <map>
#include <boost/optional.hpp>
#include "storm/logic/QuantileFormula.h"
#include "boost/optional.hpp"
#include "storm/logic/ProbabilityOperatorFormula.h"
#include "storm/modelchecker/prctl/helper/rewardbounded/CostLimitClosure.h"
#include "storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h"
#include "storm/storage/BitVector.h"
namespace storm {
class Environment;
namespace storage {
class BitVector;
}
namespace modelchecker {
namespace helper {
namespace rewardbounded {
@ -22,12 +22,12 @@ namespace storm {
public:
QuantileHelper(ModelType const& model, storm::logic::QuantileFormula const& quantileFormula);
std::vector<std::vector<ValueType>> computeQuantile(Environment const& env) const;
std::vector<std::vector<ValueType>> computeQuantile(Environment const& env);
private:
std::pair<CostLimitClosure, std::vector<ValueType>> computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions) const;
bool computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions, storm::storage::BitVector const& lowerBoundedDimensions, CostLimitClosure& satCostLimits, CostLimitClosure& unsatCostLimits, MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding);
std::pair<CostLimitClosure, std::vector<ValueType>> computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions, bool complementaryQuery);
bool computeQuantile(Environment& env, storm::storage::BitVector const& consideredDimensions, storm::logic::ProbabilityOperatorFormula const& boundedUntilOperator, storm::storage::BitVector const& lowerBoundedDimensions, CostLimitClosure& satCostLimits, CostLimitClosure& unsatCostLimits, MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding);
std::vector<std::vector<ValueType>> computeTwoDimensionalQuantile(Environment& env) const;
@ -66,6 +66,7 @@ namespace storm {
ModelType const& model;
storm::logic::QuantileFormula const& quantileFormula;
std::map<storm::storage::BitVector, std::pair<CostLimitClosure, std::vector<ValueType>>> cachedSubQueryResults;
/// Statistics
mutable uint64_t numCheckedEpochs;

Loading…
Cancel
Save