Browse Source

early termination

Former-commit-id: a1752a6fb7
tempestpy_adaptions
TimQu 9 years ago
parent
commit
8ab7cae974
  1. 30
      src/modelchecker/region/ApproximationModel.cpp
  2. 4
      src/modelchecker/region/ApproximationModel.h
  3. 30
      src/modelchecker/region/SamplingModel.cpp
  4. 4
      src/modelchecker/region/SamplingModel.h
  5. 25
      src/solver/AllowEarlyTerminationCondition.cpp
  6. 12
      src/solver/AllowEarlyTerminationCondition.h
  7. 13
      src/solver/GameSolver.cpp
  8. 6
      src/solver/GameSolver.h
  9. 6
      src/solver/GmmxxMinMaxLinearEquationSolver.cpp
  10. 6
      src/solver/NativeMinMaxLinearEquationSolver.cpp
  11. 48
      src/utility/policyguessing.cpp

30
src/modelchecker/region/ApproximationModel.cpp

@ -12,6 +12,7 @@
#include "src/models/sparse/Mdp.h"
#include "src/models/ModelType.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/solver/AllowEarlyTerminationCondition.h"
#include "src/solver/MinMaxLinearEquationSolver.h"
#include "src/solver/GameSolver.h"
#include "src/utility/macros.h"
@ -42,7 +43,6 @@ namespace storm {
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Invalid formula: " << formula << ". Approximation model only supports eventually or reachability reward formulae.");
}
this->solverData.player1Goal = storm::solver::SolveGoal(storm::logic::isLowerBound(formula->getComparisonType()));
STORM_LOG_THROW(parametricModel.hasLabel("target"), storm::exceptions::InvalidArgumentException, "The given Model has no \"target\"-statelabel.");
this->targetStates = parametricModel.getStateLabeling().getStates("target");
STORM_LOG_THROW(parametricModel.hasLabel("sink"), storm::exceptions::InvalidArgumentException, "The given Model has no \"sink\"-statelabel.");
@ -76,6 +76,15 @@ namespace storm {
this->solverData.initialStateIndex = newIndices[initialState];
this->solverData.lastMinimizingPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
this->solverData.lastMaximizingPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
//this->solverData.player1Goal = storm::solver::SolveGoal(storm::logic::isLowerBound(formula->getComparisonType()));
storm::storage::BitVector filter(this->solverData.result.size(), false);
filter.set(this->solverData.initialStateIndex, true);
this->solverData.player1Goal = std::make_unique<storm::solver::BoundedGoal<ConstantType>>(
storm::logic::isLowerBound(formula->getComparisonType()) ? storm::solver::OptimizationDirection::Minimize : storm::solver::OptimizationDirection::Maximize,
formula->getComparisonType(),
formula->getBound(),
filter
);
}
template<typename ParametricSparseModelType, typename ConstantType>
@ -398,11 +407,18 @@ namespace storm {
template<typename ParametricSparseModelType, typename ConstantType>
void ApproximationModel<ParametricSparseModelType, ConstantType>::invokeSolver(bool computeLowerBounds, Policy& policy){
void ApproximationModel<ParametricSparseModelType, ConstantType>::invokeSolver(bool computeLowerBounds, Policy& policy, bool allowEarlyTermination){
storm::solver::SolveGoal player2Goal(computeLowerBounds);
if(this->typeOfParametricModel == storm::models::ModelType::Dtmc){
//Invoke mdp model checking
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ConstantType>> solver = storm::solver::configureMinMaxLinearEquationSolver(player2Goal, storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(), this->matrixData.matrix);
if(allowEarlyTermination){
solver->setEarlyTerminationCriterion(std::make_unique<storm::solver::TerminateAfterFilteredExtremumBelowOrAboveThreshold<ConstantType>>(
this->solverData.player1Goal->relevantColumns(),
this->solverData.player1Goal->thresholdValue(),
computeLowerBounds
));
}
storm::utility::policyguessing::solveMinMaxLinearEquationSystem(*solver,
this->solverData.result, this->vectorData.vector,
player2Goal.direction(),
@ -412,9 +428,17 @@ namespace storm {
} else if(this->typeOfParametricModel == storm::models::ModelType::Mdp){
//Invoke stochastic two player game model checking
std::unique_ptr<storm::solver::GameSolver<ConstantType>> solver = storm::utility::solver::GameSolverFactory<ConstantType>().create(this->solverData.player1Matrix, this->matrixData.matrix);
if(allowEarlyTermination && this->solverData.player1Goal->minimize() == computeLowerBounds){
//We play MIN-Min or Max-Max
solver->setEarlyTerminationCriterion(std::make_unique<storm::solver::TerminateAfterFilteredExtremumBelowOrAboveThreshold<ConstantType>>(
this->solverData.player1Goal->relevantColumnVector,
this->solverData.player1Goal->thresholdValue(),
computeLowerBounds
));
}
storm::utility::policyguessing::solveGame(*solver,
this->solverData.result, this->vectorData.vector,
this->solverData.player1Goal.direction(), player2Goal.direction(),
this->solverData.player1Goal->direction(), player2Goal.direction(),
this->solverData.lastPlayer1Policy, policy,
this->matrixData.targetChoices, (this->computeRewards ? storm::utility::infinity<ConstantType>() : storm::utility::zero<ConstantType>())
);

4
src/modelchecker/region/ApproximationModel.h

@ -76,7 +76,7 @@ namespace storm {
void initializeRewards(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices);
void initializePlayer1Matrix(ParametricSparseModelType const& parametricModel);
void instantiate(ParameterRegion<ParametricType> const& region, bool computeLowerBounds);
void invokeSolver(bool computeLowerBounds, Policy& policy);
void invokeSolver(bool computeLowerBounds, Policy& policy, bool allowEarlyTermination=true);
//A flag that denotes whether we compute probabilities or rewards
bool computeRewards;
@ -92,7 +92,7 @@ namespace storm {
Policy lastMinimizingPolicy, lastMaximizingPolicy;
std::size_t initialStateIndex; //The index which represents the result for the initial state in the result vector
//Player 1 represents the nondeterminism of the given mdp (so, this is irrelevant if we approximate values of a DTMC)
storm::solver::SolveGoal player1Goal = storm::solver::SolveGoal(true); //No default cunstructor for solve goal...
std::unique_ptr<storm::solver::BoundedGoal<ConstantType>> player1Goal;
storm::storage::SparseMatrix<storm::storage::sparse::state_type> player1Matrix;
Policy lastPlayer1Policy;
} solverData;

30
src/modelchecker/region/SamplingModel.cpp

@ -20,7 +20,6 @@
#include "src/utility/policyguessing.h"
#include "src/exceptions/UnexpectedException.h"
#include "src/exceptions/InvalidArgumentException.h"
#include "storage/dd/CuddBdd.h"
namespace storm {
namespace modelchecker {
@ -41,7 +40,6 @@ namespace storm {
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "Invalid formula: " << formula << ". Sampling model only supports eventually or reachability reward formulae.");
}
this->solverData.solveGoal = storm::solver::SolveGoal(storm::logic::isLowerBound(formula->getComparisonType()));
STORM_LOG_THROW(parametricModel.hasLabel("target"), storm::exceptions::InvalidArgumentException, "The given Model has no \"target\"-statelabel.");
this->targetStates = parametricModel.getStateLabeling().getStates("target");
STORM_LOG_THROW(parametricModel.hasLabel("sink"), storm::exceptions::InvalidArgumentException, "The given Model has no \"sink\"-statelabel.");
@ -70,6 +68,16 @@ namespace storm {
this->solverData.result = std::vector<ConstantType>(maybeStates.getNumberOfSetBits(), this->computeRewards ? storm::utility::one<ConstantType>() : ConstantType(0.5));
this->solverData.initialStateIndex = newIndices[initialState];
this->solverData.lastPolicy = Policy(this->matrixData.matrix.getRowGroupCount(), 0);
//this->solverData.solveGoal = storm::solver::SolveGoal(storm::logic::isLowerBound(formula->getComparisonType()));
storm::storage::BitVector filter(this->solverData.result.size(), false);
filter.set(this->solverData.initialStateIndex, true);
this->solverData.solveGoal = std::make_unique<storm::solver::BoundedGoal<ConstantType>>(
storm::logic::isLowerBound(formula->getComparisonType()) ? storm::solver::OptimizationDirection::Minimize : storm::solver::OptimizationDirection::Maximize,
formula->getComparisonType(),
formula->getBound(),
filter
);
}
template<typename ParametricSparseModelType, typename ConstantType>
@ -253,17 +261,25 @@ namespace storm {
}
template<typename ParametricSparseModelType, typename ConstantType>
void SamplingModel<ParametricSparseModelType, ConstantType>::invokeSolver(){
void SamplingModel<ParametricSparseModelType, ConstantType>::invokeSolver(bool allowEarlyTermination){
if(this->typeOfParametricModel == storm::models::ModelType::Dtmc){
std::unique_ptr<storm::solver::LinearEquationSolver<double>> solver = storm::utility::solver::LinearEquationSolverFactory<double>().create(this->matrixData.matrix);
std::unique_ptr<storm::solver::LinearEquationSolver<ConstantType>> solver = storm::utility::solver::LinearEquationSolverFactory<ConstantType>().create(this->matrixData.matrix);
solver->solveEquationSystem(this->solverData.result, this->vectorData.vector);
} else if(this->typeOfParametricModel == storm::models::ModelType::Mdp){
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<double>> solver = storm::solver::configureMinMaxLinearEquationSolver(this->solverData.solveGoal, storm::utility::solver::MinMaxLinearEquationSolverFactory<double>(), this->matrixData.matrix);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ConstantType>> solver = storm::utility::solver::MinMaxLinearEquationSolverFactory<ConstantType>().create(this->matrixData.matrix);
solver->setOptimizationDirection(this->solverData.solveGoal->direction());
if(allowEarlyTermination){
solver->setEarlyTerminationCriterion(std::make_unique<storm::solver::TerminateAfterFilteredExtremumBelowOrAboveThreshold<ConstantType>>(
this->solverData.solveGoal->relevantColumns(),
this->solverData.solveGoal->thresholdValue(),
this->solverData.solveGoal->minimize()
));
}
storm::utility::policyguessing::solveMinMaxLinearEquationSystem(*solver,
this->solverData.result, this->vectorData.vector,
this->solverData.solveGoal.direction(),
this->solverData.solveGoal->direction(),
this->solverData.lastPolicy,
this->matrixData.targetChoices, (this->computeRewards ? storm::utility::infinity<double>() : storm::utility::zero<double>()));
this->matrixData.targetChoices, (this->computeRewards ? storm::utility::infinity<ConstantType>() : storm::utility::zero<ConstantType>()));
} else {
STORM_LOG_THROW(false, storm::exceptions::UnexpectedException, "Unexpected Type of model");
}

4
src/modelchecker/region/SamplingModel.h

@ -57,7 +57,7 @@ namespace storm {
void initializeProbabilities(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices);
void initializeRewards(ParametricSparseModelType const& parametricModel, std::vector<std::size_t> const& newIndices);
void instantiate(std::map<VariableType, CoefficientType>const& point);
void invokeSolver();
void invokeSolver(bool allowEarlyTermination=true);
//A flag that denotes whether we compute probabilities or rewards
bool computeRewards;
@ -72,7 +72,7 @@ namespace storm {
std::vector<ConstantType> result; //Note: result.size==maybeStates.numberOfSetBits
std::size_t initialStateIndex; //The index which represents the result for the initial state in the result vector
//The following is only relevant if we consider mdps:
storm::solver::SolveGoal solveGoal = storm::solver::SolveGoal(true); //No default cunstructor for solve goal...
std::unique_ptr<storm::solver::BoundedGoal<ConstantType>> solveGoal;
Policy lastPolicy; //best policy from the previous instantiation. Serves as first guess for the next call.
} solverData;

25
src/solver/AllowEarlyTerminationCondition.cpp

@ -35,13 +35,34 @@ namespace storm {
ValueType initVal = terminationThreshold - 1;
ValueType currentThreshold = useMinimumAsExtremum ? storm::utility::vector::max_if(currentValues, filter, initVal) : storm::utility::vector::max_if(currentValues, filter, initVal);
return currentThreshold >= this->terminationThreshold;
return currentThreshold >= this->terminationThreshold;
}
template<typename ValueType>
TerminateAfterFilteredExtremumBelowOrAboveThreshold<ValueType>::TerminateAfterFilteredExtremumBelowOrAboveThreshold(storm::storage::BitVector const& filter, ValueType threshold, bool useMinimum) :
terminationThreshold(threshold), filter(filter), useMinimumAsExtremum(useMinimum)
{
// Intentionally left empty.
}
template<typename ValueType>
bool TerminateAfterFilteredExtremumBelowOrAboveThreshold<ValueType>::terminateNow(const std::vector<ValueType>& currentValues) const {
assert(currentValues.size() >= filter.size());
if(useMinimumAsExtremum){
ValueType initVal = terminationThreshold + 1;
ValueType currentThreshold = storm::utility::vector::min_if(currentValues, filter, initVal);
return currentThreshold < this->terminationThreshold;
} else {
ValueType initVal = terminationThreshold - 1;
ValueType currentThreshold = storm::utility::vector::max_if(currentValues, filter, initVal);
return currentThreshold > this->terminationThreshold;
}
}
template class TerminateAfterFilteredExtremumPassesThresholdValue<double>;
template class TerminateAfterFilteredExtremumBelowOrAboveThreshold<double>;
template class TerminateAfterFilteredSumPassesThresholdValue<double>;
}

12
src/solver/AllowEarlyTerminationCondition.h

@ -41,6 +41,18 @@ namespace storm {
storm::storage::BitVector filter;
bool useMinimumAsExtremum;
};
template<typename ValueType>
class TerminateAfterFilteredExtremumBelowOrAboveThreshold : public AllowEarlyTerminationCondition<ValueType>{
public:
TerminateAfterFilteredExtremumBelowOrAboveThreshold(storm::storage::BitVector const& filter, ValueType threshold, bool useMinimum);
bool terminateNow(std::vector<ValueType> const& currentValue) const;
protected:
ValueType terminationThreshold;
storm::storage::BitVector filter;
bool useMinimumAsExtremum;
};
}
}

13
src/solver/GameSolver.cpp

@ -9,12 +9,12 @@
namespace storm {
namespace solver {
template <typename ValueType>
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix) : AbstractGameSolver(), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix) : AbstractGameSolver(), player1Matrix(player1Matrix), player2Matrix(player2Matrix), earlyTermination(new NoEarlyTerminationCondition<ValueType>()) {
// Intentionally left empty.
}
template <typename ValueType>
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : AbstractGameSolver(precision, maximalNumberOfIterations, relative), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : AbstractGameSolver(precision, maximalNumberOfIterations, relative), player1Matrix(player1Matrix), player2Matrix(player2Matrix) , earlyTermination(new NoEarlyTerminationCondition<ValueType>()) {
// Intentionally left empty.
}
@ -69,9 +69,9 @@ namespace storm {
std::swap(x, tmpResult);
++iterations;
} while (!converged && iterations < maximalNumberOfIterations);
} while (!converged && iterations < maximalNumberOfIterations && !this->earlyTermination->terminateNow(x));
STORM_LOG_WARN_COND(converged, "Iterative solver for stochastic two player games did not converge after " << iterations << " iterations.");
STORM_LOG_WARN_COND(converged || this->earlyTermination->terminateNow(x), "Iterative solver for stochastic two player games did not converge after " << iterations << " iterations.");
if(this->trackPolicies){
this->player2Policy = std::vector<storm::storage::sparse::state_type>(player2Matrix.getRowGroupCount());
@ -109,6 +109,11 @@ namespace storm {
}
}
}
template <typename ValueType>
void GameSolver<ValueType>::setEarlyTerminationCriterion(std::unique_ptr<AllowEarlyTerminationCondition<ValueType>> v) {
earlyTermination = std::move(v);
}
template <typename ValueType>
storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& GameSolver<ValueType>::getPlayer1Matrix() const {

6
src/solver/GameSolver.h

@ -4,6 +4,7 @@
#include <vector>
#include "src/solver/AbstractGameSolver.h"
#include "src/solver/AllowEarlyTerminationCondition.h"
#include "src/solver/OptimizationDirection.h"
#include "src/storage/sparse/StateType.h"
@ -53,6 +54,8 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> const& getPlayer2Matrix() const;
storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& getPlayer1Matrix() const;
void setEarlyTerminationCriterion(std::unique_ptr<AllowEarlyTerminationCondition<ValueType>> v);
private:
// The matrix defining the choices of player 1.
storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix;
@ -60,6 +63,9 @@ namespace storm {
// The matrix defining the choices of player 2.
storm::storage::SparseMatrix<ValueType> const& player2Matrix;
std::unique_ptr<AllowEarlyTerminationCondition<ValueType>> earlyTermination;
};
}
}

6
src/solver/GmmxxMinMaxLinearEquationSolver.cpp

@ -74,6 +74,8 @@ namespace storm {
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations.");
} else if (this->earlyTermination->terminateNow(*currentX)) {
LOG4CPLUS_INFO(logger, "Iterative solver stopped due to early termination. Performed " << iterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converge after " << iterations << " iterations.");
}
@ -85,6 +87,10 @@ namespace storm {
}
if(this->trackPolicy){
if(iterations==0){ //may happen due to early termination. Then we need to compute x'= A*x+b
gmm::mult(*gmmxxMatrix, x, *multiplyResult);
gmm::add(b, *multiplyResult);
}
this->policy = std::vector<storm::storage::sparse::state_type>(x.size());
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, x, rowGroupIndices, &(this->policy));
}

6
src/solver/NativeMinMaxLinearEquationSolver.cpp

@ -74,6 +74,8 @@ namespace storm {
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << iterations << " iterations.");
} else if (this->earlyTermination->terminateNow(*currentX)) {
LOG4CPLUS_INFO(logger, "Iterative solver stopped due to early termination. Performed " << iterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converge after " << iterations << " iterations.");
}
@ -85,6 +87,10 @@ namespace storm {
}
if(this->trackPolicy){
if(iterations==0){ //may happen due to early termination. Then we need to compute x'= A*x+b
this->A.multiplyWithVector(x, *multiplyResult);
storm::utility::vector::addVectors(*multiplyResult, b, *multiplyResult);
}
this->policy = std::vector<storm::storage::sparse::state_type>(x.size());
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, x, this->A.getRowGroupIndices(), &(this->policy));
}

48
src/utility/policyguessing.cpp

@ -55,43 +55,7 @@ namespace storm {
solveLinearEquationSystem(inducedA, x, inducedB, probGreater0States, prob0Value, solver.getPrecision(), solver.getRelative());
//x = std::vector<ValueType>(x.size(), storm::utility::zero<ValueType>());
}
}
/*
std::size_t p2Precount=0;
std::size_t p2Postcount=0;
std::size_t p1diff =0;
std::size_t p2diff =0;
std::size_t p2RelevantCount=0;
storm::storage::BitVector relevantP2Groups(pl2Policy.size(),false);
for(std::size_t i = 0; i<pl1Policy.size(); ++i){
if(pl1Policy[i] != player1Policy[i]){
++p1diff;
}
std::size_t row = solver.getPlayer1Matrix().getRowGroupIndices()[i] + player1Policy[i];
auto rowObj = solver.getPlayer1Matrix().getRow(row);
relevantP2Groups.set(rowObj.begin()->getColumn());
}
for (std::size_t i : relevantP2Groups){
if(pl2Policy[i] != player2Policy[i]){
++p2RelevantCount;
}
}
for(std::size_t i = 0; i<pl2Policy.size(); ++i){
if(pl2Policy[i] != player2Policy[i]){
++p2diff;
}
p2Precount += pl2Policy[i];
p2Postcount += player2Policy[i];
}
std::cout << "P1: " << (player1Goal == OptimizationDirection::Minimize ? "MIN " : "MAX ");
std::cout << "P2: " << (player2Goal == OptimizationDirection::Minimize ? "MIN " : "MAX ");
std::cout << "Changes: P1: " << p1diff;
std::cout << " P2: " << p2diff << " (" << p2RelevantCount << " relevant)";
std::cout << " Counts P2: " << p2Precount << " and " << p2Postcount << ".";
std::cout << std::endl;
*/
}
}
template <typename ValueType>
@ -209,20 +173,22 @@ namespace storm {
storm::utility::vector::selectVectorValues(subB, probGreater0States, b);
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> linEqSysSolver = storm::utility::solver::LinearEquationSolverFactory<ValueType>().create(eqSysA);
linEqSysSolver->setRelative(relative);
linEqSysSolver->setIterations(500);
std::size_t iterations = 0;
std::vector<ValueType> copyX(subX.size());
ValueType newPrecision = precision;
do {
linEqSysSolver->setPrecision(newPrecision);
if(!linEqSysSolver->solveEquationSystem(subX, subB)){
break; //Solver did not converge.. so we have to go on with the current solution.
// break; //Solver did not converge.. so we have to go on with the current solution.
}
subA.multiplyWithVector(subX,copyX);
storm::utility::vector::addVectors(copyX, subB, copyX); // = Ax + b
++iterations;
newPrecision *= 0.1;
} while(!storm::utility::vector::equalModuloPrecision(subX, copyX, precision, relative) && iterations<30);
newPrecision *= 0.5;
} while(!storm::utility::vector::equalModuloPrecision(subX, copyX, precision*0.5, relative) && iterations<50);
STORM_LOG_WARN_COND(iterations<50, "Solving linear equation system did not yield a precise result");
STORM_LOG_DEBUG("Required to increase the precision " << iterations << " times in order to obtain a precise result");
//fill in the result

Loading…
Cancel
Save