diff --git a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp index ced5463a6..18c4f268e 100644 --- a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp +++ b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp @@ -12,6 +12,9 @@ #include "src/exceptions/InvalidPropertyException.h" +#include "src/storage/MaximalEndComponentDecomposition.h" +#include "src/storage/MaximalEndComponent.h" + namespace storm { namespace modelchecker { template @@ -313,6 +316,154 @@ namespace storm { return std::unique_ptr(new ExplicitQuantitativeCheckResult(this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector(), qualitative))); } + + template + std::vector SparseMdpPrctlModelChecker::computeLongRunAverageHelper(bool minimize, storm::storage::BitVector const& psiStates, bool qualitative) const { + // If there are no goal states, we avoid the computation and directly return zero. + if (psiStates.empty()) { + return std::vector(model.getNumberOfStates(), storm::utility::zero()); + } + + // Likewise, if all bits are set, we can avoid the computation and set. + if ((~psiStates).empty()) { + return std::vector(model.getNumberOfStates(), storm::utility::one()); + } + + // Start by decomposing the MDP into its MECs. + storm::storage::MaximalEndComponentDecomposition mecDecomposition(model); + + // Get some data members for convenience. + typename storm::storage::SparseMatrix const& transitionMatrix = model.getTransitionMatrix(); + std::vector const& nondeterministicChoiceIndices = model.getNondeterministicChoiceIndices(); + + // Now start with compute the long-run average for all end components in isolation. + std::vector lraValuesForEndComponents; + + // While doing so, we already gather some information for the following steps. + std::vector stateToMecIndexMap(model.getNumberOfStates()); + storm::storage::BitVector statesInMecs(model.getNumberOfStates()); + + for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { + storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; + + // Gather information for later use. + for (auto const& stateChoicesPair : mec) { + uint_fast64_t state = stateChoicesPair.first; + + statesInMecs.set(state); + stateToMecIndexMap[state] = currentMecIndex; + } + + // Compute the LRA value for the current MEC. + lraValuesForEndComponents.push_back(this->computeLraForMaximalEndComponent(minimize, transitionMatrix, psiStates, mec)); + } + + // For fast transition rewriting, we build some auxiliary data structures. + storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; + + // Prepare result vector. + std::vector result(model.getNumberOfStates()); + + //Set the values for all states in MECs. + for (auto state : statesInMecs) { + result[state] = lraValuesForEndComponents[stateToMecIndexMap[state]]; + } + + //for all states not in any mec set the result to the minimal/maximal value of the reachable MECs + //there might be a more efficient way to do this... + for (auto state : statesNotContainedInAnyMec){ + + //calculate what result values the reachable states in MECs have + storm::storage::BitVector currentState(model.getNumberOfStates); + currentState.set(state); + storm::storage::BitVector reachableStates = storm::utility::graph::getReachableStates( + transitionMatrix, currentState, storm::storage::BitVector(model.getNumberOfStates, true), statesInMecs + ); + + storm::storage::BitVector reachableMecStates = statesInMecs & reachableStates; + std::vector reachableResults(reachableMecStates.getNumberOfSetBits()); + storm::utility::vector::selectVectorValues(reachableResults, reachableMecStates, result); + + //now select the minimal/maximal element + if (minimize){ + result[state] = *std::min_element(reachableResults.begin(), reachableResults.end()); + } else { + result[state] = *std::max_element(reachableResults.begin(), reachableResults.end()); + } + } + + return result; + } + + template + std::unique_ptr SparseMdpPrctlModelChecker::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional const& optimalityType) { + STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model."); + + std::unique_ptr subResultPointer = this->check(stateFormula); + ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult(); + + return std::unique_ptr(new ExplicitQuantitativeCheckResult(this->computeLongRunAverageHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector(), qualitative))); + } + + template + ValueType SparseMarkovAutomatonCslModelChecker::computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::BitVector const& psiStates, storm::storage::MaximalEndComponent const& mec) { + std::shared_ptr solver = storm::utility::solver::getLpSolver("LRA for MEC"); + solver->setModelSense(minimize ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize); + + //// First, we need to create the variables for the problem. + //std::map stateToVariableMap; + //for (auto const& stateChoicesPair : mec) { + // std::string variableName = "x" + std::to_string(stateChoicesPair.first); + // stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName); + //} + //storm::expressions::Variable k = solver->addUnboundedContinuousVariable("k", 1); + //solver->update(); + + //// Now we encode the problem as constraints. + //for (auto const& stateChoicesPair : mec) { + // uint_fast64_t state = stateChoicesPair.first; + + // // Now, based on the type of the state, create a suitable constraint. + // if (markovianStates.get(state)) { + // storm::expressions::Expression constraint = stateToVariableMap.at(state); + + // for (auto element : transitionMatrix.getRow(nondeterministicChoiceIndices[state])) { + // constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); + // } + + // constraint = constraint + solver->getConstant(storm::utility::one() / exitRates[state]) * k; + // storm::expressions::Expression rightHandSide = psiStates.get(state) ? solver->getConstant(storm::utility::one() / exitRates[state]) : solver->getConstant(0); + // if (minimize) { + // constraint = constraint <= rightHandSide; + // } else { + // constraint = constraint >= rightHandSide; + // } + // solver->addConstraint("state" + std::to_string(state), constraint); + // } else { + // // For probabilistic states, we want to add the constraint x_s <= sum P(s, a, s') * x_s' where a is the current action + // // and the sum ranges over all states s'. + // for (auto choice : stateChoicesPair.second) { + // storm::expressions::Expression constraint = stateToVariableMap.at(state); + + // for (auto element : transitionMatrix.getRow(choice)) { + // constraint = constraint - stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); + // } + + // storm::expressions::Expression rightHandSide = solver->getConstant(storm::utility::zero()); + // if (minimize) { + // constraint = constraint <= rightHandSide; + // } else { + // constraint = constraint >= rightHandSide; + // } + // solver->addConstraint("state" + std::to_string(state), constraint); + // } + // } + //} + + //solver->optimize(); + //return solver->getContinuousValue(k); + } + template storm::models::Mdp const& SparseMdpPrctlModelChecker::getModel() const { return this->template getModelAs>(); diff --git a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.h b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.h index 630ce0bb2..3dad8e619 100644 --- a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.h +++ b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.h @@ -39,6 +39,7 @@ namespace storm { virtual std::unique_ptr computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional const& optimalityType = boost::optional()) override; virtual std::unique_ptr computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional const& optimalityType = boost::optional()) override; virtual std::unique_ptr computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional const& optimalityType = boost::optional()) override; + virtual std::unique_ptr computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional const& optimalityType = boost::optional()) override; protected: storm::models::Mdp const& getModel() const override; @@ -52,7 +53,10 @@ namespace storm { std::vector computeInstantaneousRewardsHelper(bool minimize, uint_fast64_t stepCount) const; std::vector computeCumulativeRewardsHelper(bool minimize, uint_fast64_t stepBound) const; std::vector computeReachabilityRewardsHelper(bool minimize, storm::storage::BitVector const& targetStates, bool qualitative) const; + std::vector computeLongRunAverageHelper(bool minimize, storm::storage::BitVector const& psiStates, bool qualitative) const; + static ValueType computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec); + // A solver that is used for solving systems of linear equations that are the result of nondeterministic choices. std::shared_ptr> nondeterministicLinearEquationSolver; }; diff --git a/src/utility/graph.h b/src/utility/graph.h index 95b9e4ddc..dc8a2c98c 100644 --- a/src/utility/graph.h +++ b/src/utility/graph.h @@ -51,7 +51,7 @@ namespace storm { currentState = stack.back(); stack.pop_back(); - for (auto const& successor : transitionMatrix.getRow(currentState)) { + for (auto const& successor : transitionMatrix.getRowGroup(currentState)) { // Only explore the state if the transition was actually there and the successor has not yet // been visited. if (successor.getValue() != storm::utility::zero() && !reachableStates.get(successor.getColumn())) {