|
|
@ -369,6 +369,45 @@ namespace storm { |
|
|
|
return finish[node]; |
|
|
|
} |
|
|
|
|
|
|
|
template<typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type= 0> |
|
|
|
void SparseMarkovAutomatonCslHelper::identify( |
|
|
|
storm::storage::SparseMatrix<ValueType> const &fullTransitionMatrix, |
|
|
|
storm::storage::BitVector const &markovianStates, storm::storage::BitVector const& psiStates) { |
|
|
|
auto indices = fullTransitionMatrix.getRowGroupIndices(); |
|
|
|
bool realProb = false; |
|
|
|
bool NDM = false; |
|
|
|
bool Alternating = true; |
|
|
|
bool probStates = false; |
|
|
|
bool markStates = false; |
|
|
|
|
|
|
|
for (uint64_t i=0; i<fullTransitionMatrix.getRowGroupCount(); i++){ |
|
|
|
auto from = indices[i]; |
|
|
|
auto to = indices[i+1]; |
|
|
|
if (from+1!=to){ |
|
|
|
NDM = true; |
|
|
|
} |
|
|
|
if (!psiStates[i]){ |
|
|
|
if (markovianStates[i]){ |
|
|
|
markStates=true; |
|
|
|
} else { |
|
|
|
probStates=true; |
|
|
|
} |
|
|
|
} |
|
|
|
for (uint64_t j =from; j<to ; j++){ |
|
|
|
for (auto& element: fullTransitionMatrix.getRow(j)){ |
|
|
|
if (markovianStates[i]==markovianStates[element.getColumn()] && !psiStates[element.getColumn()]){ |
|
|
|
Alternating = false; |
|
|
|
} |
|
|
|
if (!markovianStates[i] && element.getValue()!=1){ |
|
|
|
realProb = true; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
std:: cout << "prob States :" << probStates <<" markovian States: " << markStates << " realProb: "<< realProb << " NDM: " << NDM << " Alternating: " << Alternating << "\n"; |
|
|
|
} |
|
|
|
|
|
|
|
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type=0> |
|
|
|
storm::storage::BitVector SparseMarkovAutomatonCslHelper::identifyProbCyclesGoalStates(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& cycleStates) { |
|
|
|
|
|
|
@ -465,6 +504,7 @@ namespace storm { |
|
|
|
std::vector<ValueType> SparseMarkovAutomatonCslHelper::unifPlus(OptimizationDirection dir, std::pair<double, double> const& boundsPair, std::vector<ValueType> const& exitRateVector, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory){ |
|
|
|
STORM_LOG_TRACE("Using UnifPlus to compute bounded until probabilities."); |
|
|
|
|
|
|
|
|
|
|
|
std::ofstream logfile("U+logfile.txt", std::ios::app); |
|
|
|
ValueType maxNorm = storm::utility::zero<ValueType>(); |
|
|
|
ValueType oldDiff = -storm::utility::zero<ValueType>(); |
|
|
@ -516,6 +556,7 @@ namespace storm { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//calculate relative ReachabilityVectors
|
|
|
|
std::vector<ValueType> in(numberOfStates, 0); |
|
|
|
std::vector<std::vector<ValueType>> relReachability(fullTransitionMatrix.getRowCount(),in); |
|
|
@ -588,8 +629,12 @@ namespace storm { |
|
|
|
} |
|
|
|
|
|
|
|
// calculate poisson distribution
|
|
|
|
std::vector<double> poisson = foxGlynnProb(lambda*T, N, epsilon*kappa); |
|
|
|
std::tuple<uint_fast64_t, uint_fast64_t, ValueType, std::vector<ValueType>> foxGlynnResult = storm::utility::numerical::getFoxGlynnCutoff(T*lambda, 1e+300, epsilon*kappa/ 8.0); |
|
|
|
|
|
|
|
// Scale the weights so they add up to one.
|
|
|
|
for (auto& element : std::get<3>(foxGlynnResult)) { |
|
|
|
element /= std::get<2>(foxGlynnResult); |
|
|
|
} |
|
|
|
// (4) define vectors/matrices
|
|
|
|
std::vector<ValueType> init(numberOfStates, -1); |
|
|
|
vd = std::vector<std::vector<ValueType>> (N + 1, init); |
|
|
@ -605,9 +650,9 @@ namespace storm { |
|
|
|
// (5) calculate vectors and maxNorm
|
|
|
|
for (uint64_t i = 0; i < numberOfStates; i++) { |
|
|
|
for (uint64_t k = N; k <= N; k--) { |
|
|
|
calculateUnifPlusVector(k,i,0,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, poisson); |
|
|
|
calculateUnifPlusVector(k,i,2,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, poisson); |
|
|
|
calculateVu(relReachability,dir,k,i,1,lambda,probSize,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, poisson); |
|
|
|
calculateUnifPlusVector(k,i,0,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); |
|
|
|
calculateUnifPlusVector(k,i,2,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); |
|
|
|
calculateVu(relReachability,dir,k,i,1,lambda,probSize,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); |
|
|
|
//also use iteration to keep maxNorm of vd and vup to date, so the loop-condition is easy to prove
|
|
|
|
ValueType diff = std::abs(unifVectors[0][k][i]-unifVectors[1][k][i]); |
|
|
|
maxNorm = std::max(maxNorm, diff); |
|
|
@ -631,6 +676,7 @@ namespace storm { |
|
|
|
|
|
|
|
logfile.close(); |
|
|
|
return unifVectors[0][0]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type> |
|
|
|