Browse Source

Put most of the optimistic value iteration code into a new helper file

tempestpy_adaptions
Tim Quatmann 5 years ago
parent
commit
7c49edb68f
  1. 222
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp
  2. 279
      src/storm/solver/helper/OptimisticValueIterationHelper.h

222
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -2,6 +2,7 @@
#include <limits> #include <limits>
#include "storm/solver/IterativeMinMaxLinearEquationSolver.h" #include "storm/solver/IterativeMinMaxLinearEquationSolver.h"
#include "storm/solver/helper/OptimisticValueIterationHelper.h"
#include "storm/utility/ConstantsComparator.h" #include "storm/utility/ConstantsComparator.h"
@ -359,69 +360,9 @@ namespace storm {
return result; return result;
} }
template<typename ValueType>
ValueType computeMaxAbsDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues) {
ValueType result = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < allOldValues.size(); ++i) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]));
}
return result;
}
template<typename ValueType>
ValueType computeMaxRelDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues, storm::storage::BitVector const& relevantValues) {
ValueType result = storm::utility::zero<ValueType>();
for (auto const& i : relevantValues) {
STORM_LOG_ASSERT(!storm::utility::isZero(allNewValues[i]) || storm::utility::isZero(allOldValues[i]), "Unexpected entry in iteration vector.");
if (!storm::utility::isZero(allNewValues[i])) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]) / allNewValues[i]);
}
}
return result;
}
template<typename ValueType>
ValueType computeMaxRelDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues) {
ValueType result = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < allOldValues.size(); ++i) {
STORM_LOG_ASSERT(!storm::utility::isZero(allNewValues[i]) || storm::utility::isZero(allOldValues[i]), "Unexpected entry in iteration vector.");
if (!storm::utility::isZero(allNewValues[i])) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]) / allNewValues[i]);
}
}
return result;
}
template<typename ValueType>
ValueType updateIterationPrecision(storm::Environment const& env, std::vector<ValueType> const& currentX, std::vector<ValueType> const& newX, bool const& relative, boost::optional<storm::storage::BitVector> const& relevantValues) {
auto factor = storm::utility::convertNumber<ValueType>(env.solver().ovi().getPrecisionUpdateFactor());
bool useRelevant = relevantValues.is_initialized() && env.solver().ovi().useRelevantValuesForPrecisionUpdate();
if (relative) {
return (useRelevant ? computeMaxRelDiff(newX, currentX, relevantValues.get()) : computeMaxRelDiff(newX, currentX)) * factor;
} else {
return (useRelevant ? computeMaxAbsDiff(newX, currentX, relevantValues.get()) : computeMaxAbsDiff(newX, currentX)) * factor;
}
}
template<typename ValueType>
void guessUpperBoundRelative(std::vector<ValueType> const& x, std::vector<ValueType> &target, ValueType const& relativeBoundGuessingScaler) {
storm::utility::vector::applyPointwise<ValueType, ValueType>(x, target, [&relativeBoundGuessingScaler] (ValueType const& argument) -> ValueType { return argument * relativeBoundGuessingScaler; });
}
template<typename ValueType>
void guessUpperBoundAbsolute(std::vector<ValueType> const& x, std::vector<ValueType> &target, ValueType const& precision) {
storm::utility::vector::applyPointwise<ValueType, ValueType>(x, target, [&precision] (ValueType const& argument) -> ValueType { return argument + precision; });
}
template<typename ValueType> template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsOptimisticValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const { bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsOptimisticValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
uint64_t overallIterations = 0;
uint64_t maxOverallIterations = env.solver().minMax().getMaximalNumberOfIterations();
uint64_t lastValueIterationIterations = 0;
uint64_t currentVerificationIterations = 0;
uint64_t valueIterationInvocations = 0;
if (!this->multiplierA) { if (!this->multiplierA) {
this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A); this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A);
} }
@ -440,10 +381,6 @@ namespace storm {
// Allow aliased multiplications. // Allow aliased multiplications.
storm::solver::MultiplicationStyle multiplicationStyle = env.solver().minMax().getMultiplicationStyle(); storm::solver::MultiplicationStyle multiplicationStyle = env.solver().minMax().getMultiplicationStyle();
bool useGaussSeidelMultiplication = multiplicationStyle == storm::solver::MultiplicationStyle::GaussSeidel; bool useGaussSeidelMultiplication = multiplicationStyle == storm::solver::MultiplicationStyle::GaussSeidel;
// Relative errors
bool relative = env.solver().minMax().getRelativeTerminationCriterion();
// Upper bound only iterations
uint64_t upperBoundOnlyIterations = env.solver().ovi().getUpperBoundOnlyIterations();
boost::optional<storm::storage::BitVector> relevantValues; boost::optional<storm::storage::BitVector> relevantValues;
if (this->hasRelevantValues()) { if (this->hasRelevantValues()) {
@ -453,153 +390,34 @@ namespace storm {
// x has to start with a lower bound. // x has to start with a lower bound.
this->createLowerBoundsVector(x); this->createLowerBoundsVector(x);
std::vector<ValueType> *currentX = &x;
std::vector<ValueType> *newX = auxiliaryRowGroupVector.get();
std::vector<ValueType> *currentUpperBound = auxiliaryRowGroupVector2.get();
std::vector<ValueType> newUpperBound(x.size());
ValueType two = storm::utility::convertNumber<ValueType>(2.0);
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision());
ValueType relativeBoundGuessingScaler = (storm::utility::one<ValueType>() + storm::utility::convertNumber<ValueType>(env.solver().ovi().getUpperBoundGuessingFactor()) * precision);
ValueType doublePrecision = precision * two;
ValueType iterationPrecision = precision;
std::vector<ValueType>* lowerX = &x;
std::vector<ValueType>* upperX = auxiliaryRowGroupVector.get();
std::vector<ValueType>* auxVector = auxiliaryRowGroupVector2.get();
SolverStatus status = SolverStatus::InProgress;
this->startMeasureProgress(); this->startMeasureProgress();
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
// Perform value iteration until convergence
++valueIterationInvocations;
ValueIterationResult result = performValueIteration(env, dir, currentX, newX, b, iterationPrecision, relative, guarantee, overallIterations, env.solver().minMax().getMaximalNumberOfIterations(), multiplicationStyle);
lastValueIterationIterations = result.iterations;
overallIterations += result.iterations;
if (result.status != SolverStatus::Converged) {
status = result.status;
} else {
bool intervalIterationNeeded = false;
currentVerificationIterations = 0;
if (relative) {
guessUpperBoundRelative(*currentX, *currentUpperBound, relativeBoundGuessingScaler);
} else {
guessUpperBoundAbsolute(*currentX, *currentUpperBound, precision);
}
bool cancelGuess = false;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations && !cancelGuess) {
// Perform value iteration stepwise for lower bound and guessed upper bound
// Lower and upper bound iteration
// Compute x' = min/max(A*x + b).
auto statusIters = storm::solver::helper::solveEquationsOptimisticValueIteration(env, lowerX, upperX, auxVector,
[&] (std::vector<ValueType>*& y, std::vector<ValueType>*& yPrime, ValueType const& precision, bool const& relative, uint64_t const& i, uint64_t const& maxI) {
this->showProgressIterative(i);
return performValueIteration(env, dir, y, yPrime, b, precision, relative, guarantee, i, maxI, multiplicationStyle);
},
[&] (std::vector<ValueType>* y, std::vector<ValueType>* yPrime, uint64_t const& i) {
this->showProgressIterative(i);
if (useGaussSeidelMultiplication) { if (useGaussSeidelMultiplication) {
// Copy over the current vectors so we can modify them in-place. // Copy over the current vectors so we can modify them in-place.
// This is necessary as we want to compare the new values with the current ones. // This is necessary as we want to compare the new values with the current ones.
newUpperBound = *currentUpperBound;
// Do the calculation.
multiplier.multiplyAndReduceGaussSeidel(env, dir, newUpperBound, &b);
if (intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
// Now do interval iteration.
*newX = *currentX;
multiplier.multiplyAndReduceGaussSeidel(env, dir, *newX, &b);
}
*yPrime = *y;
multiplier.multiplyAndReduceGaussSeidel(env, dir, *y, &b);
} else { } else {
multiplier.multiplyAndReduce(env, dir, *currentUpperBound, &b, newUpperBound);
if (intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
// Now do interval iteration.
multiplier.multiplyAndReduce(env, dir, *currentX, &b, *newX);
}
}
bool newUpperBoundAlwaysHigherEqual = true;
bool newUpperBoundAlwaysLowerEqual = true;
bool valuesCrossed = false;
for (uint64_t i = 0; i < x.size(); ++i) {
if (newUpperBound[i] < (*currentUpperBound)[i]) {
newUpperBoundAlwaysHigherEqual = false;
} else if (newUpperBound[i] != (*currentUpperBound)[i]) {
newUpperBoundAlwaysLowerEqual = false;
}
}
if (intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
for (uint64_t i = 0; i < x.size(); ++i) {
if (newUpperBound[i] < (*newX)[i]) {
valuesCrossed = true;
break;
}
}
}
// Update bounds
std::swap(currentX, newX);
std::swap(*currentUpperBound, newUpperBound);
if (newUpperBoundAlwaysHigherEqual & ! newUpperBoundAlwaysLowerEqual) {
iterationPrecision = updateIterationPrecision(env, *currentX, *newX, relative, relevantValues);
// Not all values moved up or stayed the same
// If we have a single fixed point, we can safely set the new lower bound, to the wrongly guessed upper bound
if (this->hasUniqueSolution()) {
*currentX = *currentUpperBound;
}
break;
} else if (valuesCrossed) {
STORM_LOG_ASSERT(false, "Cross case occurred.");
iterationPrecision = updateIterationPrecision(env, *currentX, *newX, relative, relevantValues);
break;
} else if (newUpperBoundAlwaysLowerEqual) {
// All values moved down or stayed the same and we have a maximum difference of twice the requested precision
// We can safely use twice the requested precision, as we calculate the center of both vectors
// We can use max_if instead of computeMaxAbsDiff, as x is definitely a lower bound and ub is larger in all elements
// Recalculate terminationPrecision if relative error requested
bool reachedPrecision = true;
for (auto const& valueIndex : relevantValues ? relevantValues.get() : storm::storage::BitVector(x.size(), true)) {
ValueType absDiff = (*currentUpperBound)[valueIndex] - (*currentX)[valueIndex];
if (relative) {
if (absDiff > doublePrecision * (*currentX)[valueIndex]) {
reachedPrecision = false;
break;
}
} else {
if (absDiff > doublePrecision) {
reachedPrecision = false;
break;
}
}
}
if (reachedPrecision) {
// Calculate the center of both vectors and store it in currentX
storm::utility::vector::applyPointwise<ValueType, ValueType, ValueType>(*currentX, *currentUpperBound, *currentX, [&two] (ValueType const& a, ValueType const& b) -> ValueType { return (a + b) / two; });
status = SolverStatus::Converged;
}
else {
intervalIterationNeeded = true;
}
}
ValueType scaledIterationCount = storm::utility::convertNumber<ValueType>(currentVerificationIterations) * storm::utility::convertNumber<ValueType>(env.solver().ovi().getMaxVerificationIterationFactor());
if (scaledIterationCount >= storm::utility::convertNumber<ValueType>(lastValueIterationIterations)) {
cancelGuess = true;
iterationPrecision = updateIterationPrecision(env, *currentX, *newX, relative, relevantValues);
multiplier.multiplyAndReduce(env, dir, *y, &b, *yPrime);
std::swap(y, yPrime);
} }
}, relevantValues);
auto two = storm::utility::convertNumber<ValueType>(2.0);
storm::utility::vector::applyPointwise<ValueType, ValueType, ValueType>(*lowerX, *upperX, x, [&two] (ValueType const& a, ValueType const& b) -> ValueType { return (a + b) / two; });
++overallIterations;
++currentVerificationIterations;
}
}
}
if (overallIterations > maxOverallIterations) {
status = SolverStatus::MaximalIterationsExceeded;
}
// Swap the result into the output x.
if (currentX == auxiliaryRowGroupVector.get()) {
std::swap(x, *currentX);
}
reportStatus(status, overallIterations);
reportStatus(statusIters.first, statusIters.second);
// If requested, we store the scheduler for retrieval. // If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) { if (this->isTrackSchedulerSet()) {
@ -612,7 +430,7 @@ namespace storm {
clearCache(); clearCache();
} }
return status == SolverStatus::Converged || status == SolverStatus::TerminatedEarly;
return statusIters.first == SolverStatus::Converged || statusIters.first == SolverStatus::TerminatedEarly;
} }
template<typename ValueType> template<typename ValueType>

279
src/storm/solver/helper/OptimisticValueIterationHelper.h

@ -0,0 +1,279 @@
#pragma once
#include <vector>
#include <boost/optional.hpp>
#include "storm/solver/OptimizationDirection.h"
#include "storm/solver/SolverStatus.h"
#include "storm/utility/vector.h"
#include "storm/utility/ProgressMeasurement.h"
#include "storm/storage/BitVector.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/environment/solver/OviSolverEnvironment.h"
#include "storm/utility/macros.h"
namespace storm {
namespace solver {
namespace helper {
namespace oviinternal {
template<typename ValueType>
ValueType computeMaxAbsDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues, storm::storage::BitVector const& relevantValues) {
ValueType result = storm::utility::zero<ValueType>();
for (auto value : relevantValues) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[value] - allOldValues[value]));
}
return result;
}
template<typename ValueType>
ValueType computeMaxAbsDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues) {
ValueType result = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < allOldValues.size(); ++i) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]));
}
return result;
}
template<typename ValueType>
ValueType computeMaxRelDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues, storm::storage::BitVector const& relevantValues) {
ValueType result = storm::utility::zero<ValueType>();
for (auto const& i : relevantValues) {
STORM_LOG_ASSERT(!storm::utility::isZero(allNewValues[i]) || storm::utility::isZero(allOldValues[i]), "Unexpected entry in iteration vector.");
if (!storm::utility::isZero(allNewValues[i])) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]) / allNewValues[i]);
}
}
return result;
}
template<typename ValueType>
ValueType computeMaxRelDiff(std::vector<ValueType> const& allOldValues, std::vector<ValueType> const& allNewValues) {
ValueType result = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < allOldValues.size(); ++i) {
STORM_LOG_ASSERT(!storm::utility::isZero(allNewValues[i]) || storm::utility::isZero(allOldValues[i]), "Unexpected entry in iteration vector.");
if (!storm::utility::isZero(allNewValues[i])) {
result = storm::utility::max<ValueType>(result, storm::utility::abs<ValueType>(allNewValues[i] - allOldValues[i]) / allNewValues[i]);
}
}
return result;
}
template<typename ValueType>
ValueType updateIterationPrecision(storm::Environment const& env, std::vector<ValueType> const& currentX, std::vector<ValueType> const& newX, bool const& relative, boost::optional<storm::storage::BitVector> const& relevantValues) {
auto factor = storm::utility::convertNumber<ValueType>(env.solver().ovi().getPrecisionUpdateFactor());
bool useRelevant = relevantValues.is_initialized() && env.solver().ovi().useRelevantValuesForPrecisionUpdate();
if (relative) {
return (useRelevant ? computeMaxRelDiff(newX, currentX, relevantValues.get()) : computeMaxRelDiff(newX, currentX)) * factor;
} else {
return (useRelevant ? computeMaxAbsDiff(newX, currentX, relevantValues.get()) : computeMaxAbsDiff(newX, currentX)) * factor;
}
}
template<typename ValueType>
void guessUpperBoundRelative(std::vector<ValueType> const& x, std::vector<ValueType> &target, ValueType const& relativeBoundGuessingScaler) {
storm::utility::vector::applyPointwise<ValueType, ValueType>(x, target, [&relativeBoundGuessingScaler] (ValueType const& argument) -> ValueType { return argument * relativeBoundGuessingScaler; });
}
template<typename ValueType>
void guessUpperBoundAbsolute(std::vector<ValueType> const& x, std::vector<ValueType> &target, ValueType const& precision) {
storm::utility::vector::applyPointwise<ValueType, ValueType>(x, target, [&precision] (ValueType const& argument) -> ValueType { return argument + precision; });
}
}
/*!
* Performs Optimistic value iteration.
* See https://arxiv.org/abs/1910.01100 for more information on this algorithm
*
* @tparam ValueType
* @tparam ValueType
* @param env
* @param lowerX Needs to be some arbitrary lower bound on the actual values initially
* @param upperX Does not need to be an upper bound initially
* @param auxVector auxiliary storage
* @param valueIterationCallback Function that should perform standard value iteration on the input vector
* @param singleIterationCallback Function that should perform a single value iteration step on the input vector e.g. ( x' = min/max(A*x + b))
* @param relevantValues If given, we only check the precision at the states with the given indices.
* @return The status upon termination as well as the number of iterations Also, the maximum (relative/absolute) difference between lowerX and upperX will be 2*epsilon
* with precision parameters as given by the environment env.
*/
template<typename ValueType, typename ValueIterationCallback, typename SingleIterationCallback>
std::pair<SolverStatus, uint64_t> solveEquationsOptimisticValueIteration(Environment const& env, std::vector<ValueType>* lowerX, std::vector<ValueType>* upperX, std::vector<ValueType>* auxVector, ValueIterationCallback const& valueIterationCallback, SingleIterationCallback const& singleIterationCallback, boost::optional<storm::storage::BitVector> relevantValues = boost::none) {
STORM_LOG_ASSERT(lowerX->size() == upperX->size(), "Dimension missmatch.");
STORM_LOG_ASSERT(lowerX->size() == auxVector->size(), "Dimension missmatch.");
// As we will shuffle pointers around, let's store the original positions here.
std::vector<ValueType>* initLowerX = lowerX;
std::vector<ValueType>* initUpperX = upperX;
std::vector<ValueType>* initAux = auxVector;
uint64_t overallIterations = 0;
uint64_t lastValueIterationIterations = 0;
uint64_t currentVerificationIterations = 0;
uint64_t valueIterationInvocations = 0;
// Get some parameters for the algorithm
// 2
ValueType two = storm::utility::convertNumber<ValueType>(2.0);
// Relative errors
bool relative = env.solver().minMax().getRelativeTerminationCriterion();
// Goal precision
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision());
// Desired max difference between upperX and lowerX
ValueType doublePrecision = precision * two;
// Upper bound only iterations
uint64_t upperBoundOnlyIterations = env.solver().ovi().getUpperBoundOnlyIterations();
// Maximum number of iterations done overall
uint64_t maxOverallIterations = env.solver().minMax().getMaximalNumberOfIterations();
ValueType relativeBoundGuessingScaler = (storm::utility::one<ValueType>() + storm::utility::convertNumber<ValueType>(env.solver().ovi().getUpperBoundGuessingFactor()) * precision);
// Initial precision for the value iteration calls
ValueType iterationPrecision = precision;
SolverStatus status = SolverStatus::InProgress;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
// Perform value iteration until convergence
++valueIterationInvocations;
auto result = valueIterationCallback(lowerX, auxVector, iterationPrecision, relative, overallIterations, maxOverallIterations);
lastValueIterationIterations = result.iterations;
overallIterations += result.iterations;
if (result.status != SolverStatus::Converged) {
status = result.status;
} else {
bool intervalIterationNeeded = false;
currentVerificationIterations = 0;
if (relative) {
oviinternal::guessUpperBoundRelative(*lowerX, *upperX, relativeBoundGuessingScaler);
} else {
oviinternal::guessUpperBoundAbsolute(*lowerX, *upperX, precision);
}
bool cancelGuess = false;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
++overallIterations;
++currentVerificationIterations;
// Perform value iteration stepwise for lower bound and guessed upper bound
// Upper bound iteration
singleIterationCallback(upperX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the upper bound whereas upperX contains the new ones.
// Compare the new upper bound candidate with the old one
bool newUpperBoundAlwaysHigherEqual = true;
bool newUpperBoundAlwaysLowerEqual = true;
for (uint64_t i = 0; i < upperX->size(); ++i) {
if ((*auxVector)[i] > (*upperX)[i]) {
newUpperBoundAlwaysHigherEqual = false;
} else if ((*auxVector)[i] != (*upperX)[i]) {
newUpperBoundAlwaysLowerEqual = false;
}
}
if (newUpperBoundAlwaysHigherEqual & !newUpperBoundAlwaysLowerEqual) {
// All values moved up or stayed the same (but are not the same)
// That means the guess for an upper bound is actually a lower bound
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *upperX, relative, relevantValues);
// We assume to have a single fixed point. We can thus safely set the new lower bound, to the wrongly guessed upper bound
// Set lowerX to the upper bound candidate
std::swap(lowerX, upperX);
break;
} else if (newUpperBoundAlwaysLowerEqual) {
// All values moved down or stayed the same and we have a maximum difference of twice the requested precision
// We can safely use twice the requested precision, as we calculate the center of both vectors
bool reachedPrecision;
if (relevantValues) {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, relevantValues.get(), doublePrecision, relative);
} else {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, doublePrecision, relative);
}
if (reachedPrecision) {
status = SolverStatus::Converged;
break;
} else {
// From now on, we keep updating both bounds
intervalIterationNeeded = true;
}
}
// At this point, the old upper bounds (auxVector) are not needed anymore.
// Check whether we tried this guess for too long
ValueType scaledIterationCount = storm::utility::convertNumber<ValueType>(currentVerificationIterations) * storm::utility::convertNumber<ValueType>(env.solver().ovi().getMaxVerificationIterationFactor());
if (!intervalIterationNeeded && scaledIterationCount >= storm::utility::convertNumber<ValueType>(lastValueIterationIterations)) {
cancelGuess = true;
// In this case we will make one more iteration on the lower bound (mainly to obtain a new iterationPrecision)
}
// Lower bound iteration (only if needed)
if (cancelGuess || intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
singleIterationCallback(lowerX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the lower bound whereas lowerX contains the new ones.
// Check whether the upper and lower bounds have crossed, i.e., the upper bound is smaller than the lower bound.
bool valuesCrossed = false;
for (uint64_t i = 0; i < lowerX->size(); ++i) {
if ((*upperX)[i] < (*lowerX)[i]) {
valuesCrossed = true;
break;
}
}
if (cancelGuess || valuesCrossed) {
// A new guess is needed.
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *lowerX, relative, relevantValues);
break;
}
}
}
}
}
// Swap the results into the output vectors.
if (initLowerX == lowerX) {
// lowerX is already at the correct position. We still have to care for upperX
if (initUpperX != upperX) {
// UpperX is not at the correct position. It has to be at the auxVector
assert(initAux == upperX);
std::swap(*initUpperX, *initAux);
}
} else if (initUpperX == upperX) {
// UpperX is already at the correct position.
// We already know that lowerX is at the wrong position. It has to be at the auxVector
assert(initAux == lowerX);
std::swap(*initLowerX, *initAux);
} else if (initAux == auxVector) {
// We know that upperX and lowerX are swapped.
assert(initLowerX == upperX);
assert(initUpperX == lowerX);
std::swap(*initUpperX, *initLowerX);
} else {
// Now we know that all vectors are at the wrong position. There are only two possibilities left
if (initLowerX == upperX) {
assert(initUpperX == auxVector);
assert(initAux == lowerX);
std::swap(*initLowerX, *initAux);
std::swap(*initUpperX, *initAux);
} else {
assert(initLowerX == auxVector);
assert(initUpperX == lowerX);
assert (initAux == upperX);
std::swap(*initUpperX, *initAux);
std::swap(*initLowerX, *initAux);
}
}
if (overallIterations > maxOverallIterations) {
status = SolverStatus::MaximalIterationsExceeded;
}
return {status, overallIterations};
}
}
}
}
Loading…
Cancel
Save