Browse Source

scheduler tracking for value iteration

Former-commit-id: 1fbfeadda3
tempestpy_adaptions
TimQu 9 years ago
parent
commit
7c4770df07
  1. 34
      src/solver/GmmxxMinMaxLinearEquationSolver.cpp

34
src/solver/GmmxxMinMaxLinearEquationSolver.cpp

@ -28,7 +28,6 @@ namespace storm {
template<typename ValueType>
void GmmxxMinMaxLinearEquationSolver<ValueType>::solveEquationSystem(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
if (this->useValueIteration) {
STORM_LOG_THROW(!this->isTrackSchedulerSet(), storm::exceptions::InvalidSettingsException, "Unable to produce a scheduler when using value iteration. Use policy iteration instead.");
// Set up the environment for the power method. If scratch memory was not provided, we need to create it.
bool multiplyResultMemoryProvided = true;
@ -43,6 +42,14 @@ namespace storm {
newX = new std::vector<ValueType>(x.size());
xMemoryProvided = false;
}
std::vector<storm::storage::sparse::state_type> currentScheduler;
std::vector<storm::storage::sparse::state_type> newScheduler;
if(this->trackScheduler){
//Allocate memory for the schedulers and initialize them with valid choices
currentScheduler = std::vector<storm::storage::sparse::state_type>(this->A.getRowGroupCount());
newScheduler = std::vector<storm::storage::sparse::state_type>(this->A.getRowGroupCount());
}
uint_fast64_t iterations = 0;
bool converged = false;
@ -56,8 +63,24 @@ namespace storm {
gmm::mult(*gmmxxMatrix, *currentX, *multiplyResult);
gmm::add(b, *multiplyResult);
// Reduce the vector x by applying min/max over all nondeterministic choices.
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, *newX, rowGroupIndices);
if(this->trackScheduler){
// Reduce the vector x by applying min/max over all nondeterministic choices. Also keep track of the choices made
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, *newX, rowGroupIndices, &newScheduler);
// We update the currentScheduler conservatively
// This is to prevent that e.g. a choice for a selfloop with probability 1 is taken
auto currentChoice = currentScheduler.begin();
auto newChoice = newScheduler.begin();
for(storm::storage::sparse::state_type state = 0; state<currentScheduler.size(); ++state) {
if(*currentChoice != *newChoice && !storm::utility::vector::equalModuloPrecision((*multiplyResult)[state + (*currentChoice)], (*multiplyResult)[state + (*newChoice)], this->precision, this->relative)){
*currentChoice = *newChoice;
}
++currentChoice;
++newChoice;
}
} else {
// Reduce the vector x by applying min/max over all nondeterministic choices.
storm::utility::vector::reduceVectorMinOrMax(dir, *multiplyResult, *newX, rowGroupIndices);
}
// Determine whether the method converged.
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, this->precision, this->relative);
@ -74,6 +97,11 @@ namespace storm {
STORM_LOG_WARN("Iterative solver did not converge after " << iterations << " iterations.");
}
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->scheduler = std::make_unique<storm::storage::TotalScheduler>(std::move(currentScheduler));
}
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
if (currentX == copyX) {

Loading…
Cancel
Save