Browse Source

bounded reachability for MAs

Former-commit-id: 982277d9ab
main
TimQu 9 years ago
parent
commit
7bab48b59b
  1. 348
      src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.cpp
  2. 114
      src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.h
  3. 6
      src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.cpp
  4. 2
      src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.h
  5. 103
      src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp
  6. 15
      src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h
  7. 11
      src/storage/SparseMatrix.cpp
  8. 8
      src/storage/SparseMatrix.h
  9. 20
      src/utility/constants.cpp

348
src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.cpp

@ -5,6 +5,7 @@
#include "src/adapters/CarlAdapter.h"
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/transformer/EndComponentEliminator.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
@ -23,75 +24,123 @@ namespace storm {
STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected.");
this->discreteActionRewards[objIndex] = rewModel.hasStateActionRewards() ? rewModel.getStateActionRewardVector() : std::vector<ValueType>(this->data.preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
if(rewModel.hasStateRewards()) {
// Note that state rewards are earned over time and thus play no role for probabilistic states
for(auto markovianState : this->data.getMarkovianStatesOfPreprocessedModel()) {
this->discreteActionRewards[objIndex][this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[markovianState]] += rewModel.getStateReward(markovianState) / this->data.preprocessedModel.getExitRate(markovianState);
}
}
}
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
// Set the digitization constant
// Split the preprocessed model into transitions from/to probabilistic/Markovian states.
SubModel MS = createSubModel(true, weightedRewardVector);
SubModel PS = createSubModel(false, weightedRewardVector);
// Apply digitization to Markovian transitions
ValueType digitizationConstant = getDigitizationConstant();
std::cout << "Got delta: " << digitizationConstant << std::endl;
/*
// Allocate some memory so this does not need to happen for each time epoch
std::vector<uint_fast64_t> optimalChoicesInCurrentEpoch(this->data.preprocessedModel.getNumberOfStates());
std::vector<ValueType> choiceValues(weightedRewardVector.size());
std::vector<ValueType> temporaryResult(this->data.preprocessedModel.getNumberOfStates());
// Get for each occurring timeBound the indices of the objectives with that bound.
std::map<uint_fast64_t, storm::storage::BitVector, std::greater<uint_fast64_t>> timeBounds;
storm::storage::BitVector boundedObjectives = ~this->unboundedObjectives;
for(uint_fast64_t objIndex : boundedObjectives) {
uint_fast64_t timeBound = boost::get<uint_fast64_t>(this->data.objectives[objIndex].timeBounds.get());
auto timeBoundIt = timeBounds.insert(std::make_pair(timeBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
// There is no error for the values of these objectives.
this->offsetsToLowerBound[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToUpperBound[objIndex] = storm::utility::zero<ValueType>();
}
storm::storage::BitVector objectivesAtCurrentEpoch = this->unboundedObjectives;
auto timeBoundIt = timeBounds.begin();
for(uint_fast64_t currentEpoch = timeBoundIt->first; currentEpoch > 0; --currentEpoch) {
if(timeBoundIt != timeBounds.end() && currentEpoch == timeBoundIt->first) {
objectivesAtCurrentEpoch |= timeBoundIt->second;
for(auto objIndex : timeBoundIt->second) {
storm::utility::vector::addScaledVector(weightedRewardVector, this->discreteActionRewards[objIndex], weightVector[objIndex]);
}
++timeBoundIt;
}
digitize(MS, digitizationConstant);
// Get for each occurring (digitized) timeBound the indices of the objectives with that bound.
TimeBoundMap lowerTimeBounds;
TimeBoundMap upperTimeBounds;
digitizeTimeBounds(lowerTimeBounds, upperTimeBounds, digitizationConstant);
// Initialize a minMaxSolver to compute an optimal scheduler (w.r.t. PS) for each epoch
// The end components that stay in PS will be removed.
// Note that the end component elimination could be omitted if we forbid zeno behavior
std::unique_ptr<MinMaxSolverData> minMax = initMinMaxSolverData(PS);
// Store the optimal choices of PS as computed by the minMax solver.
std::vector<uint_fast64_t> optimalChoicesAtCurrentEpoch(PS.getNumberOfStates(), std::numeric_limits<uint_fast64_t>::max());
// create a linear equation solver for the model induced by the optimal choice vector.
// the solver will be updated whenever the optimal choice vector has changed.
LinEqSolverData linEq;
linEq.b.resize(PS.getNumberOfStates());
// Stores the objectives for which we need to compute values in the current time epoch.
storm::storage::BitVector consideredObjectives = this->unboundedObjectives;
auto lowerTimeBoundIt = lowerTimeBounds.begin();
auto upperTimeBoundIt = upperTimeBounds.begin();
uint_fast64_t currentEpoch = std::max(lowerTimeBounds.empty() ? 0 : lowerTimeBoundIt->first - 1, upperTimeBounds.empty() ? 0 : upperTimeBoundIt->first); // consider lowerBound - 1 since we are interested in the first epoch that passes the bound
while(true) {
// Update the objectives that are considered at the current time epoch as well as the (weighted) reward vectors.
updateDataToCurrentEpoch(MS, PS, *minMax, consideredObjectives, currentEpoch, weightVector, lowerTimeBoundIt, lowerTimeBounds, upperTimeBoundIt, upperTimeBounds);
// Get values and scheduler for weighted sum of objectives
this->data.preprocessedModel.getTransitionMatrix().multiplyWithVector(this->weightedResult, choiceValues);
storm::utility::vector::addVectors(choiceValues, weightedRewardVector, choiceValues);
storm::utility::vector::reduceVectorMax(choiceValues, this->weightedResult, this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices(), &optimalChoicesInCurrentEpoch);
// Compute the values that can be obtained at probabilistic states in the current time epoch
performPSStep(PS, MS, *minMax, linEq, optimalChoicesAtCurrentEpoch, consideredObjectives);
// get values for individual objectives
// TODO we could compute the result for one of the objectives from the weighted result, the given weight vector, and the remaining objective results.
for(auto objIndex : objectivesAtCurrentEpoch) {
std::vector<ValueType>& objectiveResult = this->objectiveResults[objIndex];
std::vector<ValueType> objectiveRewards = this->discreteActionRewards[objIndex];
auto rowGroupIndexIt = this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices().begin();
auto optimalChoiceIt = optimalChoicesInCurrentEpoch.begin();
for(ValueType& stateValue : temporaryResult){
uint_fast64_t row = (*rowGroupIndexIt) + (*optimalChoiceIt);
++rowGroupIndexIt;
++optimalChoiceIt;
stateValue = objectiveRewards[row];
for(auto const& entry : this->data.preprocessedModel.getTransitionMatrix().getRow(row)) {
stateValue += entry.getValue() * objectiveResult[entry.getColumn()];
}
// Compute values that can be obtained at Markovian states after letting one (digitized) time unit pass.
// Only perform such a step if there is time left.
if(currentEpoch>0) {
performMSStep(MS, PS, consideredObjectives);
if(currentEpoch % 1000 == 0) {
STORM_LOG_DEBUG(currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0]);
}
objectiveResult.swap(temporaryResult);
--currentEpoch;
} else {
break;
}
}
*/
// compose the results from MS and PS
storm::utility::vector::setVectorValues(this->weightedResult, MS.states, MS.weightedSolutionVector);
storm::utility::vector::setVectorValues(this->weightedResult, PS.states, PS.weightedSolutionVector);
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], MS.states, MS.objectiveSolutionVectors[objIndex]);
storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], PS.states, PS.objectiveSolutionVectors[objIndex]);
}
}
template <class SparseMaModelType>
typename SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::SubModel SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::createSubModel(bool createMS, std::vector<ValueType> const& weightedRewardVector) const {
SubModel result;
storm::storage::BitVector probabilisticStates = ~this->data.getMarkovianStatesOfPreprocessedModel();
result.states = createMS ? this->data.getMarkovianStatesOfPreprocessedModel() : probabilisticStates;
result.choices = this->data.preprocessedModel.getTransitionMatrix().getRowIndicesOfRowGroups(result.states);
STORM_LOG_ASSERT(!createMS || result.states.getNumberOfSetBits() == result.choices.getNumberOfSetBits(), "row groups for Markovian states should consist of exactly one row");
//We need to add diagonal entries for selfloops on Markovian states.
result.toMS = this->data.preprocessedModel.getTransitionMatrix().getSubmatrix(true, result.states, this->data.getMarkovianStatesOfPreprocessedModel(), createMS);
result.toPS = this->data.preprocessedModel.getTransitionMatrix().getSubmatrix(true, result.states, probabilisticStates, false);
STORM_LOG_ASSERT(result.getNumberOfStates() == result.states.getNumberOfSetBits() && result.getNumberOfStates() == result.toMS.getRowGroupCount() && result.getNumberOfStates() == result.toPS.getRowGroupCount(), "Invalid state count for subsystem");
STORM_LOG_ASSERT(result.getNumberOfChoices() == result.choices.getNumberOfSetBits() && result.getNumberOfChoices() == result.toMS.getRowCount() && result.getNumberOfChoices() == result.toPS.getRowCount(), "Invalid state count for subsystem");
result.weightedRewardVector.resize(result.getNumberOfChoices());
storm::utility::vector::selectVectorValues(result.weightedRewardVector, result.choices, weightedRewardVector);
result.objectiveRewardVectors.resize(this->data.objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
std::vector<ValueType>& objVector = result.objectiveRewardVectors[objIndex];
objVector = std::vector<ValueType>(result.weightedRewardVector.size(), storm::utility::zero<ValueType>());
if(this->unboundedObjectives.get(objIndex)) {
storm::utility::vector::selectVectorValues(objVector, result.choices, this->discreteActionRewards[objIndex]);
} else {
typename SparseMaModelType::RewardModelType const& rewModel = this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName);
STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected.");
STORM_LOG_ASSERT(!rewModel.hasStateRewards(), "State rewards for bounded objectives for MAs are not expected (bounded rewards are not supported).");
if(rewModel.hasStateActionRewards()) {
storm::utility::vector::selectVectorValues(objVector, result.choices, rewModel.getStateActionRewardVector());
}
}
}
result.weightedSolutionVector.resize(result.getNumberOfStates());
storm::utility::vector::selectVectorValues(result.weightedSolutionVector, result.states, this->weightedResult);
result.objectiveSolutionVectors.resize(this->data.objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
result.objectiveSolutionVectors[objIndex].resize(result.weightedSolutionVector.size());
storm::utility::vector::selectVectorValues(result.objectiveSolutionVectors[objIndex], result.states, this->objectiveResults[objIndex]);
}
result.auxChoiceValues.resize(result.getNumberOfChoices());
return result;
}
template <class SparseMaModelType>
@ -109,7 +158,7 @@ namespace storm {
for(auto const& obj : this->data.objectives) {
if(obj.timeBounds) {
if(obj.timeBounds->which() == 0) {
lowerUpperBounds.emplace_back(storm::utility::zero<VT>(), boost::get<uint_fast64_t>(*obj.timeBounds));
lowerUpperBounds.emplace_back(storm::utility::zero<VT>(), storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(*obj.timeBounds)));
eToPowerOfMinusMaxRateTimesBound.emplace_back(storm::utility::one<VT>(), std::exp(-maxRate * lowerUpperBounds.back().second));
} else {
auto const& pair = boost::get<std::pair<double, double>>(*obj.timeBounds);
@ -167,18 +216,205 @@ namespace storm {
return delta;
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type>
VT SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::getDigitizationConstant() const {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type.");
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitize(SubModel& MS, VT const& digitizationConstant) const {
std::vector<VT> rateVector(MS.getNumberOfChoices());
storm::utility::vector::selectVectorValues(rateVector, MS.states, this->data.preprocessedModel.getExitRates());
for(uint_fast64_t row = 0; row < rateVector.size(); ++row) {
VT const eToMinusRateTimesDelta = std::exp(-rateVector[row] * digitizationConstant);
for(auto& entry : MS.toMS.getRow(row)) {
entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue());
if(entry.getColumn() == row) {
entry.setValue(entry.getValue() + eToMinusRateTimesDelta);
}
}
for(auto& entry : MS.toPS.getRow(row)) {
entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue());
}
MS.weightedRewardVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta;
for(auto& objVector : MS.objectiveRewardVectors) {
objVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta;
}
}
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitize(SubModel& subModel, VT const& digitizationConstant) const {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type.");
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) {
VT const maxRate = this->data.preprocessedModel.getMaximalExitRate();
storm::storage::BitVector boundedObjectives = ~this->unboundedObjectives;
for(uint_fast64_t objIndex : boundedObjectives) {
boost::optional<VT> objLowerBound, objUpperBound;
if(this->data.objectives[objIndex].timeBounds->which() == 0) {
objUpperBound = storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(this->data.objectives[objIndex].timeBounds.get()));
} else {
auto const& pair = boost::get<std::pair<double, double>>(this->data.objectives[objIndex].timeBounds.get());
if(!storm::utility::isZero(pair.first)) {
objLowerBound = storm::utility::convertNumber<VT>(pair.first);
}
objUpperBound = storm::utility::convertNumber<VT>(pair.second);
}
if(objLowerBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objLowerBound)/digitizationConstant);
auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objLowerBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToLowerBound[objIndex] = -digitizationError;
} else {
this->offsetsToLowerBound[objIndex] = storm::utility::zero<VT>();
}
if(objUpperBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objUpperBound)/digitizationConstant);
auto timeBoundIt = upperTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objUpperBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToUpperBound[objIndex] = digitizationError;
} else {
this->offsetsToUpperBound[objIndex] = storm::utility::zero<VT>();
}
STORM_LOG_ASSERT(this->offsetsToUpperBound[objIndex] - this->offsetsToLowerBound[objIndex] <= this->maximumLowerUpperBoundGap, "Precision not sufficient.");
}
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type.");
}
template <class SparseMaModelType>
std::unique_ptr<typename SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::MinMaxSolverData> SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::initMinMaxSolverData(SubModel const& PS) const {
std::unique_ptr<MinMaxSolverData> result(new MinMaxSolverData());
storm::storage::BitVector choicesStayingInPS(PS.getNumberOfChoices(), false);
for(uint_fast64_t choice = 0; choice < PS.toPS.getRowCount(); ++choice) {
if(storm::utility::isOne(PS.toPS.getRowSum(choice))) {
choicesStayingInPS.set(choice);
}
}
auto ecEliminatorResult = storm::transformer::EndComponentEliminator<ValueType>::transform(PS.toPS, choicesStayingInPS & storm::utility::vector::filterZero(PS.weightedRewardVector), storm::storage::BitVector(PS.getNumberOfStates(), true));
result->matrix = std::move(ecEliminatorResult.matrix);
result->toPSChoiceMapping = std::move(ecEliminatorResult.newToOldRowMapping);
result->fromPSStateMapping = std::move(ecEliminatorResult.oldToNewStateMapping);
result->b.resize(result->matrix.getRowCount());
result->x.resize(result->matrix.getRowGroupCount());
for(uint_fast64_t state=0; state < result->fromPSStateMapping.size(); ++state) {
if(result->fromPSStateMapping[state] < result->x.size()) {
result->x[result->fromPSStateMapping[state]] = PS.weightedSolutionVector[state];
}
}
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory;
result->solver = minMaxSolverFactory.create(result->matrix);
result->solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
result->solver->setTrackScheduler(true);
result->solver->allocateAuxMemory(storm::solver::MinMaxLinearEquationSolverOperation::SolveEquations);
return result;
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::updateDataToCurrentEpoch(SubModel& MS, SubModel& PS, MinMaxSolverData& minMax, storm::storage::BitVector& consideredObjectives, uint_fast64_t const& currentEpoch, std::vector<ValueType> const& weightVector, TimeBoundMap::iterator& lowerTimeBoundIt, TimeBoundMap const& lowerTimeBounds, TimeBoundMap::iterator& upperTimeBoundIt, TimeBoundMap const& upperTimeBounds) {
//For lower time bounds we need to react when the currentEpoch passed the bound
// Hence, we substract 1 from the lower time bounds.
if(lowerTimeBoundIt != lowerTimeBounds.end() && currentEpoch == lowerTimeBoundIt->first - 1) {
for(auto objIndex : lowerTimeBoundIt->second) {
// No more reward is earned for this objective.
storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], -weightVector[objIndex]);
storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], -weightVector[objIndex]);
MS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(MS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>());
PS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(PS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>());
}
++lowerTimeBoundIt;
}
if(upperTimeBoundIt != upperTimeBounds.end() && currentEpoch == upperTimeBoundIt->first) {
consideredObjectives |= upperTimeBoundIt->second;
for(auto objIndex : upperTimeBoundIt->second) {
// This objective now plays a role in the weighted sum
storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], weightVector[objIndex]);
storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], weightVector[objIndex]);
}
++upperTimeBoundIt;
}
// Update the solver data
PS.toMS.multiplyWithVector(MS.weightedSolutionVector, PS.auxChoiceValues);
storm::utility::vector::addVectors(PS.auxChoiceValues, PS.weightedRewardVector, PS.auxChoiceValues);
storm::utility::vector::selectVectorValues(minMax.b, minMax.toPSChoiceMapping, PS.auxChoiceValues);
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector<uint_fast64_t>& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives) const {
// compute a choice vector for the probabilistic states that is optimal w.r.t. the weighted reward vector
std::vector<uint_fast64_t> newOptimalChoices(PS.getNumberOfStates());
minMax.solver->solveEquations(minMax.x, minMax.b);
this->transformReducedSolutionToOriginalModel(minMax.matrix, minMax.x, minMax.solver->getScheduler()->getChoices(), minMax.toPSChoiceMapping, minMax.fromPSStateMapping, PS.toPS, PS.weightedSolutionVector, newOptimalChoices);
// check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed
if(newOptimalChoices != optimalChoicesAtCurrentEpoch) {
std::cout << "Scheduler changed!";
optimalChoicesAtCurrentEpoch.swap(newOptimalChoices);
linEq.solver = nullptr;
storm::storage::SparseMatrix<ValueType> linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true);
linEqMatrix.convertToEquationSystem();
linEq.solver = linEq.factory.create(std::move(linEqMatrix));
}
for(auto objIndex : consideredObjectives) {
PS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], PS.auxChoiceValues);
storm::utility::vector::addVectors(PS.auxChoiceValues, PS.objectiveRewardVectors[objIndex], PS.auxChoiceValues);
storm::utility::vector::selectVectorValues(linEq.b, optimalChoicesAtCurrentEpoch, PS.toPS.getRowGroupIndices(), PS.auxChoiceValues);
linEq.solver->solveEquations(PS.objectiveSolutionVectors[objIndex], linEq.b);
}
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives) const {
MS.toMS.multiplyWithVector(MS.weightedSolutionVector, MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.weightedRewardVector, MS.auxChoiceValues, MS.weightedSolutionVector);
MS.toPS.multiplyWithVector(PS.weightedSolutionVector, MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.weightedSolutionVector, MS.auxChoiceValues, MS.weightedSolutionVector);
for(auto objIndex : consideredObjectives) {
MS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.objectiveRewardVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]);
MS.toPS.multiplyWithVector(PS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]);
}
}
template class SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>;
template double SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::getDigitizationConstant<double>() const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitize<double>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::SubModel& subModel, double const& digitizationConstant) const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitizeTimeBounds<double>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, double const& digitizationConstant);
#ifdef STORM_HAVE_CARL
template storm::RationalNumber SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::getDigitizationConstant<storm::RationalNumber>() const;
template class SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>;
template storm::RationalNumber SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::getDigitizationConstant<storm::RationalNumber>() const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitize<storm::RationalNumber>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::SubModel& subModel, storm::RationalNumber const& digitizationConstant) const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitizeTimeBounds<storm::RationalNumber>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, storm::RationalNumber const& digitizationConstant);
#endif
}

114
src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.h

@ -5,6 +5,8 @@
#include <type_traits>
#include "src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h"
#include "src/solver/LinearEquationSolver.h"
#include "src/solver/MinMaxLinearEquationSolver.h"
#include "src/utility/NumberTraits.h"
namespace storm {
@ -22,27 +24,129 @@ namespace storm {
public:
typedef typename SparseMaModelType::ValueType ValueType;
typedef SparseMultiObjectivePreprocessorData<SparseMaModelType> PreprocessorData;
SparseMaMultiObjectiveWeightVectorChecker(PreprocessorData const& data);
private:
/*
* Stores (digitized) time bounds in descending order
*/
typedef std::map<uint_fast64_t, storm::storage::BitVector, std::greater<uint_fast64_t>> TimeBoundMap;
/*
* Stores the ingredients of a sub model
*/
struct SubModel {
storm::storage::BitVector states; // The states that are part of this sub model
storm::storage::BitVector choices; // The choices that are part of this sub model
storm::storage::SparseMatrix<ValueType> toMS; // Transitions to Markovian states
storm::storage::SparseMatrix<ValueType> toPS; // Transitions to probabilistic states
std::vector<ValueType> weightedRewardVector;
std::vector<std::vector<ValueType>> objectiveRewardVectors;
std::vector<ValueType> weightedSolutionVector;
std::vector<std::vector<ValueType>> objectiveSolutionVectors;
std::vector<ValueType> auxChoiceValues; //stores auxiliary values for every choice
uint_fast64_t getNumberOfStates() const { return toMS.getRowGroupCount(); };
uint_fast64_t getNumberOfChoices() const { return toMS.getRowCount(); };
};
/*
* Stores the data that is relevant to invoke the minMaxSolver and retrieve the result.
*/
struct MinMaxSolverData {
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver; // the solver itself
storm::storage::SparseMatrix<ValueType> matrix; // the considered matrix
std::vector<uint_fast64_t> toPSChoiceMapping; // maps rows of the considered matrix to choices of the PS SubModel
std::vector<uint_fast64_t> fromPSStateMapping; // maps states of the PS SubModel to row groups of the considered matrix
std::vector<ValueType> b;
std::vector<ValueType> x;
};
struct LinEqSolverData {
storm::solver::GeneralLinearEquationSolverFactory<ValueType> factory;
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver;
std::vector<ValueType> b;
};
/*!
*
* @param weightVector the weight vector of the current check
* @param weightedRewardVector the weighted rewards (initially only considering the unbounded objectives, will be extended to all objectives)
* @param weightedRewardVector the weighted rewards considering the unbounded objectives. Will be invalidated after calling this.
*/
virtual void boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) override;
/*!
*
* Retrieves the delta used for the digitization
* Retrieves the data for a submodel of the data->preprocessedModel
* @param createMS if true, the submodel containing the Markovian states is created.
* if false, the submodel containing the probabilistic states is created.
*/
SubModel createSubModel(bool createMS, std::vector<ValueType> const& weightedRewardVector) const;
/*!
* Retrieves the delta used for digitization
*/
template <typename VT = ValueType, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>
VT getDigitizationConstant() const;
template <typename VT = ValueType, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>
VT getDigitizationConstant() const;
/*!
* Digitizes the given matrix and vectors w.r.t. the given digitization constant and the given rate vector.
*/
template <typename VT = ValueType, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>
void digitize(SubModel& subModel, VT const& digitizationConstant) const;
template <typename VT = ValueType, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>
void digitize(SubModel& subModel, VT const& digitizationConstant) const;
/*
* Fills the given maps with the digitized time bounds. Also sets the offsetsToLowerBound / offsetsToUpperBound values
* according to the digitization error
*/
template <typename VT = ValueType, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>
void digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant);
template <typename VT = ValueType, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>
void digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant);
/*!
* Computes a reduction of the PStoPS submodel which does not contain end components in which no choice with reward is taken.
* With the reduction, a MinMaxSolver is initialized.
*/
std::unique_ptr<MinMaxSolverData> initMinMaxSolverData(SubModel const& PS) const;
/*
* Updates the reward vectors within the split model,
* the reward vector of the reduced PStoPS model, and
* objectives that are considered at the current time epoch.
*/
void updateDataToCurrentEpoch(SubModel& MS, SubModel& PS, MinMaxSolverData& minMax, storm::storage::BitVector& consideredObjectives, uint_fast64_t const& currentEpoch, std::vector<ValueType> const& weightVector, TimeBoundMap::iterator& lowerTimeBoundIt, TimeBoundMap const& lowerTimeBounds, TimeBoundMap::iterator& upperTimeBoundIt, TimeBoundMap const& upperTimeBounds);
/*
* Performs a step for the probabilistic states, that is
* * Compute an optimal scheduler for the weighted reward sum
* * Compute the values for the individual objectives w.r.t. that scheduler
*
* The resulting values represent the rewards at probabilistic states that are obtained at the current time epoch.
*/
void performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector<uint_fast64_t>& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives) const;
/*
* Performs a step for the Markovian states, that is
* * Compute values for the weighted reward sum as well as for the individual objectives
*
* The resulting values represent the rewards at Markovian states that are obtained after one (digitized) time unit has passed.
*/
void performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives) const;
};
}

6
src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.cpp

@ -38,11 +38,11 @@ namespace storm {
this->offsetsToLowerBound[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToUpperBound[objIndex] = storm::utility::zero<ValueType>();
}
storm::storage::BitVector objectivesAtCurrentEpoch = this->unboundedObjectives;
storm::storage::BitVector consideredObjectives = this->unboundedObjectives;
auto timeBoundIt = timeBounds.begin();
for(uint_fast64_t currentEpoch = timeBoundIt->first; currentEpoch > 0; --currentEpoch) {
if(timeBoundIt != timeBounds.end() && currentEpoch == timeBoundIt->first) {
objectivesAtCurrentEpoch |= timeBoundIt->second;
consideredObjectives |= timeBoundIt->second;
for(auto objIndex : timeBoundIt->second) {
storm::utility::vector::addScaledVector(weightedRewardVector, this->discreteActionRewards[objIndex], weightVector[objIndex]);
}
@ -56,7 +56,7 @@ namespace storm {
// get values for individual objectives
// TODO we could compute the result for one of the objectives from the weighted result, the given weight vector, and the remaining objective results.
for(auto objIndex : objectivesAtCurrentEpoch) {
for(auto objIndex : consideredObjectives) {
std::vector<ValueType>& objectiveResult = this->objectiveResults[objIndex];
std::vector<ValueType> objectiveRewards = this->discreteActionRewards[objIndex];
auto rowGroupIndexIt = this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices().begin();

2
src/modelchecker/multiobjective/helper/SparseMdpMultiObjectiveWeightVectorChecker.h

@ -32,7 +32,7 @@ namespace storm {
* - computes the values of these objectives w.r.t. this scheduler
*
* @param weightVector the weight vector of the current check
* @param weightedRewardVector the weighted rewards (initially only considering the unbounded objectives, will be extended to all objectives)
* @param weightedRewardVector the weighted rewards considering the unbounded objectives. Will be invalidated after calling this.
*/
virtual void boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) override;

103
src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp

@ -113,49 +113,11 @@ namespace storm {
solver->solveEquations(subResult, subRewardVector);
this->weightedResult = std::vector<ValueType>(data.preprocessedModel.getNumberOfStates());
this->scheduler = storm::storage::TotalScheduler(data.preprocessedModel.getNumberOfStates());
std::unique_ptr<storm::storage::TotalScheduler> solverScheduler = solver->getScheduler();
storm::storage::BitVector statesWithUndefinedScheduler(data.preprocessedModel.getNumberOfStates(), false);
for(uint_fast64_t state = 0; state < data.preprocessedModel.getNumberOfStates(); ++state) {
uint_fast64_t stateInReducedModel = ecEliminatorResult.oldToNewStateMapping[state];
// Check if the state exists in the reduced model
if(stateInReducedModel < ecEliminatorResult.matrix.getRowGroupCount()) {
this->weightedResult[state] = subResult[stateInReducedModel];
// Check if the chosen row originaly belonged to the current state
uint_fast64_t chosenRowInReducedModel = ecEliminatorResult.matrix.getRowGroupIndices()[stateInReducedModel] + solverScheduler->getChoice(stateInReducedModel);
uint_fast64_t chosenRowInOriginalModel = ecEliminatorResult.newToOldRowMapping[chosenRowInReducedModel];
if(chosenRowInOriginalModel >= data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state] &&
chosenRowInOriginalModel < data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state+1]) {
this->scheduler.setChoice(state, chosenRowInOriginalModel - data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]);
} else {
statesWithUndefinedScheduler.set(state);
}
} else {
// if the state does not exist in the reduced model, it means that the result is always zero, independent of the scheduler.
// Hence, we don't have to set the scheduler explicitly
this->weightedResult[state] = storm::utility::zero<ValueType>();
}
}
while(!statesWithUndefinedScheduler.empty()) {
for(auto state : statesWithUndefinedScheduler) {
// Try to find a choice that stays inside the EC (i.e., for which all successors are represented by the same state in the reduced model)
// And at least one successor has a defined scheduler.
// This way, a scheduler is chosen that leads (with probability one) to the state of the EC for which the scheduler is defined
uint_fast64_t stateInReducedModel = ecEliminatorResult.oldToNewStateMapping[state];
for(uint_fast64_t row = data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]; row < data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state+1]; ++row) {
bool rowStaysInEC = true;
bool rowLeadsToDefinedScheduler = false;
for(auto const& entry : data.preprocessedModel.getTransitionMatrix().getRow(row)) {
rowStaysInEC &= ( stateInReducedModel == ecEliminatorResult.oldToNewStateMapping[entry.getColumn()]);
rowLeadsToDefinedScheduler |= !statesWithUndefinedScheduler.get(entry.getColumn());
}
if(rowStaysInEC && rowLeadsToDefinedScheduler) {
this->scheduler.setChoice(state, row - data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]);
statesWithUndefinedScheduler.set(state, false);
}
}
}
}
std::vector<uint_fast64_t> optimalChoices(data.preprocessedModel.getNumberOfStates());
transformReducedSolutionToOriginalModel(ecEliminatorResult.matrix, subResult, solver->getScheduler()->getChoices(), ecEliminatorResult.newToOldRowMapping, ecEliminatorResult.oldToNewStateMapping, this->data.preprocessedModel.getTransitionMatrix(), this->weightedResult, optimalChoices);
this->scheduler = storm::storage::TotalScheduler(std::move(optimalChoices));
}
template <class SparseModelType>
@ -190,6 +152,61 @@ namespace storm {
}
}
template <class SparseModelType>
void SparseMultiObjectiveWeightVectorChecker<SparseModelType>::transformReducedSolutionToOriginalModel(storm::storage::SparseMatrix<ValueType> const& reducedMatrix,
std::vector<ValueType> const& reducedSolution,
std::vector<uint_fast64_t> const& reducedOptimalChoices,
std::vector<uint_fast64_t> const& reducedToOriginalChoiceMapping,
std::vector<uint_fast64_t> const& originalToReducedStateMapping,
storm::storage::SparseMatrix<ValueType> const& originalMatrix,
std::vector<ValueType>& originalSolution,
std::vector<uint_fast64_t>& originalOptimalChoices) const {
storm::storage::BitVector statesWithUndefinedScheduler(originalMatrix.getRowGroupCount(), false);
for(uint_fast64_t state = 0; state < originalMatrix.getRowGroupCount(); ++state) {
uint_fast64_t stateInReducedModel = originalToReducedStateMapping[state];
// Check if the state exists in the reduced model
if(stateInReducedModel < reducedMatrix.getRowGroupCount()) {
originalSolution[state] = reducedSolution[stateInReducedModel];
// Check if the chosen row originaly belonged to the current state
uint_fast64_t chosenRowInReducedModel = reducedMatrix.getRowGroupIndices()[stateInReducedModel] + reducedOptimalChoices[stateInReducedModel];
uint_fast64_t chosenRowInOriginalModel = reducedToOriginalChoiceMapping[chosenRowInReducedModel];
if(chosenRowInOriginalModel >= originalMatrix.getRowGroupIndices()[state] &&
chosenRowInOriginalModel < originalMatrix.getRowGroupIndices()[state+1]) {
originalOptimalChoices[state] = chosenRowInOriginalModel - originalMatrix.getRowGroupIndices()[state];
} else {
statesWithUndefinedScheduler.set(state);
}
} else {
// if the state does not exist in the reduced model, it means that the result is always zero, independent of the scheduler.
// Hence, we don't have to set the scheduler explicitly
originalSolution[state] = storm::utility::zero<ValueType>();
}
}
while(!statesWithUndefinedScheduler.empty()) {
for(auto state : statesWithUndefinedScheduler) {
// Try to find a choice that stays inside the EC (i.e., for which all successors are represented by the same state in the reduced model)
// And at least one successor has a defined scheduler.
// This way, a scheduler is chosen that leads (with probability one) to the state of the EC for which the scheduler is defined
uint_fast64_t stateInReducedModel = originalToReducedStateMapping[state];
for(uint_fast64_t row = originalMatrix.getRowGroupIndices()[state]; row < originalMatrix.getRowGroupIndices()[state+1]; ++row) {
bool rowStaysInEC = true;
bool rowLeadsToDefinedScheduler = false;
for(auto const& entry : originalMatrix.getRow(row)) {
rowStaysInEC &= ( stateInReducedModel == originalToReducedStateMapping[entry.getColumn()]);
rowLeadsToDefinedScheduler |= !statesWithUndefinedScheduler.get(entry.getColumn());
}
if(rowStaysInEC && rowLeadsToDefinedScheduler) {
originalOptimalChoices[state] = row - originalMatrix.getRowGroupIndices()[state];
statesWithUndefinedScheduler.set(state, false);
}
}
}
}
}
template class SparseMultiObjectiveWeightVectorChecker<storm::models::sparse::Mdp<double>>;
template class SparseMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>;
#ifdef STORM_HAVE_CARL

15
src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h

@ -81,10 +81,23 @@ namespace storm {
* - computes the values of these objectives w.r.t. this scheduler
*
* @param weightVector the weight vector of the current check
* @param weightedRewardVector the weighted rewards (initially only considering the unbounded objectives, will be extended to all objectives)
* @param weightedRewardVector the weighted rewards considering the unbounded objectives. Will be invalidated after calling this.
*/
virtual void boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) = 0;
/*!
* Transforms the results of a min-max-solver that considers a reduced model (without end components) to a result for the original (unreduced) model
*/
void transformReducedSolutionToOriginalModel(storm::storage::SparseMatrix<ValueType> const& reducedMatrix,
std::vector<ValueType> const& reducedSolution,
std::vector<uint_fast64_t> const& reducedOptimalChoices,
std::vector<uint_fast64_t> const& reducedToOriginalChoiceMapping,
std::vector<uint_fast64_t> const& originalToReducedStateMapping,
storm::storage::SparseMatrix<ValueType> const& originalMatrix,
std::vector<ValueType>& originalSolution,
std::vector<uint_fast64_t>& originalOptimalChoices) const;
// stores the considered information of the multi-objective model checking problem
PreprocessorData const& data;
// stores the indices of the objectives for which there is no time bound

11
src/storage/SparseMatrix.cpp

@ -581,6 +581,17 @@ namespace storm {
return rowGroupIndices.get();
}
template<typename ValueType>
storm::storage::BitVector SparseMatrix<ValueType>::getRowIndicesOfRowGroups(storm::storage::BitVector const& groups) const {
storm::storage::BitVector res(this->getRowCount(), false);
for(auto group : groups) {
for(uint_fast64_t row = this->getRowGroupIndices()[group]; row < this->getRowGroupIndices()[group+1]; ++row) {
res.set(row, true);
}
}
return res;
}
template<typename ValueType>
void SparseMatrix<ValueType>::makeRowsAbsorbing(storm::storage::BitVector const& rows) {
for (auto row : rows) {

8
src/storage/SparseMatrix.h

@ -569,6 +569,14 @@ namespace storm {
*/
std::vector<index_type> const& getRowGroupIndices() const;
/*!
* Returns the indices of the rows that belong to one of the selected row groups.
*
* @param groups the selected row groups
* @return a bit vector that is true at position i iff the row group of row i is selected.
*/
storm::storage::BitVector getRowIndicesOfRowGroups(storm::storage::BitVector const& groups) const;
/*!
* This function makes the given rows absorbing.
*

20
src/utility/constants.cpp

@ -109,6 +109,16 @@ namespace storm {
return number;
}
template<>
uint_fast64_t convertNumber(double const& number){
return std::llround(number);
}
template<>
double convertNumber(uint_fast64_t const& number){
return number;
}
template<typename ValueType>
ValueType sqrt(ValueType const& number) {
return std::sqrt(number);
@ -162,6 +172,16 @@ namespace storm {
RationalNumber convertNumber(double const& number){
return carl::rationalize<RationalNumber>(number);
}
template<>
uint_fast64_t convertNumber(RationalNumber const& number){
return carl::toInt<carl::uint>(carl::round(number));
}
template<>
RationalNumber convertNumber(uint_fast64_t const& number){
return RationalNumber(number);
}
template<>
RationalFunction convertNumber(double const& number){

Loading…
Cancel
Save