@ -5,6 +5,7 @@
# include "src/adapters/CarlAdapter.h"
# include "src/models/sparse/MarkovAutomaton.h"
# include "src/models/sparse/StandardRewardModel.h"
# include "src/transformer/EndComponentEliminator.h"
# include "src/utility/macros.h"
# include "src/utility/vector.h"
@ -23,75 +24,123 @@ namespace storm {
STORM_LOG_ASSERT ( ! rewModel . hasTransitionRewards ( ) , " Preprocessed Reward model has transition rewards which is not expected. " ) ;
this - > discreteActionRewards [ objIndex ] = rewModel . hasStateActionRewards ( ) ? rewModel . getStateActionRewardVector ( ) : std : : vector < ValueType > ( this - > data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
if ( rewModel . hasStateRewards ( ) ) {
// Note that state rewards are earned over time and thus play no role for probabilistic states
for ( auto markovianState : this - > data . getMarkovianStatesOfPreprocessedModel ( ) ) {
this - > discreteActionRewards [ objIndex ] [ this - > data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ markovianState ] ] + = rewModel . getStateReward ( markovianState ) / this - > data . preprocessedModel . getExitRate ( markovianState ) ;
}
}
}
}
template < class SparseMaModelType >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : boundedPhase ( std : : vector < ValueType > const & weightVector , std : : vector < ValueType > & weightedRewardVector ) {
// Set the digitization constant
// Split the preprocessed model into transitions from/to probabilistic/Markovian states.
SubModel MS = createSubModel ( true , weightedRewardVector ) ;
SubModel PS = createSubModel ( false , weightedRewardVector ) ;
// Apply digitization to Markovian transitions
ValueType digitizationConstant = getDigitizationConstant ( ) ;
std : : cout < < " Got delta: " < < digitizationConstant < < std : : endl ;
/*
// Allocate some memory so this does not need to happen for each time epoch
std : : vector < uint_fast64_t > optimalChoicesInCurrentEpoch ( this - > data . preprocessedModel . getNumberOfStates ( ) ) ;
std : : vector < ValueType > choiceValues ( weightedRewardVector . size ( ) ) ;
std : : vector < ValueType > temporaryResult ( this - > data . preprocessedModel . getNumberOfStates ( ) ) ;
// Get for each occurring timeBound the indices of the objectives with that bound.
std : : map < uint_fast64_t , storm : : storage : : BitVector , std : : greater < uint_fast64_t > > timeBounds ;
storm : : storage : : BitVector boundedObjectives = ~ this - > unboundedObjectives ;
for ( uint_fast64_t objIndex : boundedObjectives ) {
uint_fast64_t timeBound = boost : : get < uint_fast64_t > ( this - > data . objectives [ objIndex ] . timeBounds . get ( ) ) ;
auto timeBoundIt = timeBounds . insert ( std : : make_pair ( timeBound , storm : : storage : : BitVector ( this - > data . objectives . size ( ) , false ) ) ) . first ;
timeBoundIt - > second . set ( objIndex ) ;
// There is no error for the values of these objectives.
this - > offsetsToLowerBound [ objIndex ] = storm : : utility : : zero < ValueType > ( ) ;
this - > offsetsToUpperBound [ objIndex ] = storm : : utility : : zero < ValueType > ( ) ;
}
storm : : storage : : BitVector objectivesAtCurrentEpoch = this - > unboundedObjectives ;
auto timeBoundIt = timeBounds . begin ( ) ;
for ( uint_fast64_t currentEpoch = timeBoundIt - > first ; currentEpoch > 0 ; - - currentEpoch ) {
if ( timeBoundIt ! = timeBounds . end ( ) & & currentEpoch = = timeBoundIt - > first ) {
objectivesAtCurrentEpoch | = timeBoundIt - > second ;
for ( auto objIndex : timeBoundIt - > second ) {
storm : : utility : : vector : : addScaledVector ( weightedRewardVector , this - > discreteActionRewards [ objIndex ] , weightVector [ objIndex ] ) ;
}
+ + timeBoundIt ;
}
digitize ( MS , digitizationConstant ) ;
// Get for each occurring (digitized) timeBound the indices of the objectives with that bound.
TimeBoundMap lowerTimeBounds ;
TimeBoundMap upperTimeBounds ;
digitizeTimeBounds ( lowerTimeBounds , upperTimeBounds , digitizationConstant ) ;
// Initialize a minMaxSolver to compute an optimal scheduler (w.r.t. PS) for each epoch
// The end components that stay in PS will be removed.
// Note that the end component elimination could be omitted if we forbid zeno behavior
std : : unique_ptr < MinMaxSolverData > minMax = initMinMaxSolverData ( PS ) ;
// Store the optimal choices of PS as computed by the minMax solver.
std : : vector < uint_fast64_t > optimalChoicesAtCurrentEpoch ( PS . getNumberOfStates ( ) , std : : numeric_limits < uint_fast64_t > : : max ( ) ) ;
// create a linear equation solver for the model induced by the optimal choice vector.
// the solver will be updated whenever the optimal choice vector has changed.
LinEqSolverData linEq ;
linEq . b . resize ( PS . getNumberOfStates ( ) ) ;
// Stores the objectives for which we need to compute values in the current time epoch.
storm : : storage : : BitVector consideredObjectives = this - > unboundedObjectives ;
auto lowerTimeBoundIt = lowerTimeBounds . begin ( ) ;
auto upperTimeBoundIt = upperTimeBounds . begin ( ) ;
uint_fast64_t currentEpoch = std : : max ( lowerTimeBounds . empty ( ) ? 0 : lowerTimeBoundIt - > first - 1 , upperTimeBounds . empty ( ) ? 0 : upperTimeBoundIt - > first ) ; // consider lowerBound - 1 since we are interested in the first epoch that passes the bound
while ( true ) {
// Update the objectives that are considered at the current time epoch as well as the (weighted) reward vectors.
updateDataToCurrentEpoch ( MS , PS , * minMax , consideredObjectives , currentEpoch , weightVector , lowerTimeBoundIt , lowerTimeBounds , upperTimeBoundIt , upperTimeBounds ) ;
// Get values and scheduler for weighted sum of objectives
this - > data . preprocessedModel . getTransitionMatrix ( ) . multiplyWithVector ( this - > weightedResult , choiceValues ) ;
storm : : utility : : vector : : addVectors ( choiceValues , weightedRewardVector , choiceValues ) ;
storm : : utility : : vector : : reduceVectorMax ( choiceValues , this - > weightedResult , this - > data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) , & optimalChoicesInCurrentEpoch ) ;
// Compute the values that can be obtained at probabilistic states in the current time epoch
performPSStep ( PS , MS , * minMax , linEq , optimalChoicesAtCurrentEpoch , consideredObjectives ) ;
// get values for individual objectives
// TODO we could compute the result for one of the objectives from the weighted result, the given weight vector, and the remaining objective results.
for ( auto objIndex : objectivesAtCurrentEpoch ) {
std : : vector < ValueType > & objectiveResult = this - > objectiveResults [ objIndex ] ;
std : : vector < ValueType > objectiveRewards = this - > discreteActionRewards [ objIndex ] ;
auto rowGroupIndexIt = this - > data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) . begin ( ) ;
auto optimalChoiceIt = optimalChoicesInCurrentEpoch . begin ( ) ;
for ( ValueType & stateValue : temporaryResult ) {
uint_fast64_t row = ( * rowGroupIndexIt ) + ( * optimalChoiceIt ) ;
+ + rowGroupIndexIt ;
+ + optimalChoiceIt ;
stateValue = objectiveRewards [ row ] ;
for ( auto const & entry : this - > data . preprocessedModel . getTransitionMatrix ( ) . getRow ( row ) ) {
stateValue + = entry . getValue ( ) * objectiveResult [ entry . getColumn ( ) ] ;
}
// Compute values that can be obtained at Markovian states after letting one (digitized) time unit pass.
// Only perform such a step if there is time left.
if ( currentEpoch > 0 ) {
performMSStep ( MS , PS , consideredObjectives ) ;
if ( currentEpoch % 1000 = = 0 ) {
STORM_LOG_DEBUG ( currentEpoch < < " digitized time steps left. Current weighted value is " < < PS . weightedSolutionVector [ 0 ] ) ;
}
objectiveResult . swap ( temporaryResult ) ;
- - currentEpoch ;
} else {
break ;
}
}
*/
// compose the results from MS and PS
storm : : utility : : vector : : setVectorValues ( this - > weightedResult , MS . states , MS . weightedSolutionVector ) ;
storm : : utility : : vector : : setVectorValues ( this - > weightedResult , PS . states , PS . weightedSolutionVector ) ;
for ( uint_fast64_t objIndex = 0 ; objIndex < this - > data . objectives . size ( ) ; + + objIndex ) {
storm : : utility : : vector : : setVectorValues ( this - > objectiveResults [ objIndex ] , MS . states , MS . objectiveSolutionVectors [ objIndex ] ) ;
storm : : utility : : vector : : setVectorValues ( this - > objectiveResults [ objIndex ] , PS . states , PS . objectiveSolutionVectors [ objIndex ] ) ;
}
}
template < class SparseMaModelType >
typename SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : SubModel SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : createSubModel ( bool createMS , std : : vector < ValueType > const & weightedRewardVector ) const {
SubModel result ;
storm : : storage : : BitVector probabilisticStates = ~ this - > data . getMarkovianStatesOfPreprocessedModel ( ) ;
result . states = createMS ? this - > data . getMarkovianStatesOfPreprocessedModel ( ) : probabilisticStates ;
result . choices = this - > data . preprocessedModel . getTransitionMatrix ( ) . getRowIndicesOfRowGroups ( result . states ) ;
STORM_LOG_ASSERT ( ! createMS | | result . states . getNumberOfSetBits ( ) = = result . choices . getNumberOfSetBits ( ) , " row groups for Markovian states should consist of exactly one row " ) ;
//We need to add diagonal entries for selfloops on Markovian states.
result . toMS = this - > data . preprocessedModel . getTransitionMatrix ( ) . getSubmatrix ( true , result . states , this - > data . getMarkovianStatesOfPreprocessedModel ( ) , createMS ) ;
result . toPS = this - > data . preprocessedModel . getTransitionMatrix ( ) . getSubmatrix ( true , result . states , probabilisticStates , false ) ;
STORM_LOG_ASSERT ( result . getNumberOfStates ( ) = = result . states . getNumberOfSetBits ( ) & & result . getNumberOfStates ( ) = = result . toMS . getRowGroupCount ( ) & & result . getNumberOfStates ( ) = = result . toPS . getRowGroupCount ( ) , " Invalid state count for subsystem " ) ;
STORM_LOG_ASSERT ( result . getNumberOfChoices ( ) = = result . choices . getNumberOfSetBits ( ) & & result . getNumberOfChoices ( ) = = result . toMS . getRowCount ( ) & & result . getNumberOfChoices ( ) = = result . toPS . getRowCount ( ) , " Invalid state count for subsystem " ) ;
result . weightedRewardVector . resize ( result . getNumberOfChoices ( ) ) ;
storm : : utility : : vector : : selectVectorValues ( result . weightedRewardVector , result . choices , weightedRewardVector ) ;
result . objectiveRewardVectors . resize ( this - > data . objectives . size ( ) ) ;
for ( uint_fast64_t objIndex = 0 ; objIndex < this - > data . objectives . size ( ) ; + + objIndex ) {
std : : vector < ValueType > & objVector = result . objectiveRewardVectors [ objIndex ] ;
objVector = std : : vector < ValueType > ( result . weightedRewardVector . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
if ( this - > unboundedObjectives . get ( objIndex ) ) {
storm : : utility : : vector : : selectVectorValues ( objVector , result . choices , this - > discreteActionRewards [ objIndex ] ) ;
} else {
typename SparseMaModelType : : RewardModelType const & rewModel = this - > data . preprocessedModel . getRewardModel ( this - > data . objectives [ objIndex ] . rewardModelName ) ;
STORM_LOG_ASSERT ( ! rewModel . hasTransitionRewards ( ) , " Preprocessed Reward model has transition rewards which is not expected. " ) ;
STORM_LOG_ASSERT ( ! rewModel . hasStateRewards ( ) , " State rewards for bounded objectives for MAs are not expected (bounded rewards are not supported). " ) ;
if ( rewModel . hasStateActionRewards ( ) ) {
storm : : utility : : vector : : selectVectorValues ( objVector , result . choices , rewModel . getStateActionRewardVector ( ) ) ;
}
}
}
result . weightedSolutionVector . resize ( result . getNumberOfStates ( ) ) ;
storm : : utility : : vector : : selectVectorValues ( result . weightedSolutionVector , result . states , this - > weightedResult ) ;
result . objectiveSolutionVectors . resize ( this - > data . objectives . size ( ) ) ;
for ( uint_fast64_t objIndex = 0 ; objIndex < this - > data . objectives . size ( ) ; + + objIndex ) {
result . objectiveSolutionVectors [ objIndex ] . resize ( result . weightedSolutionVector . size ( ) ) ;
storm : : utility : : vector : : selectVectorValues ( result . objectiveSolutionVectors [ objIndex ] , result . states , this - > objectiveResults [ objIndex ] ) ;
}
result . auxChoiceValues . resize ( result . getNumberOfChoices ( ) ) ;
return result ;
}
template < class SparseMaModelType >
@ -109,7 +158,7 @@ namespace storm {
for ( auto const & obj : this - > data . objectives ) {
if ( obj . timeBounds ) {
if ( obj . timeBounds - > which ( ) = = 0 ) {
lowerUpperBounds . emplace_back ( storm : : utility : : zero < VT > ( ) , boost : : get < uint_fast64_t > ( * obj . timeBounds ) ) ;
lowerUpperBounds . emplace_back ( storm : : utility : : zero < VT > ( ) , storm : : utility : : convertNumber < VT > ( boost : : get < uint_fast64_t > ( * obj . timeBounds ) ) ) ;
eToPowerOfMinusMaxRateTimesBound . emplace_back ( storm : : utility : : one < VT > ( ) , std : : exp ( - maxRate * lowerUpperBounds . back ( ) . second ) ) ;
} else {
auto const & pair = boost : : get < std : : pair < double , double > > ( * obj . timeBounds ) ;
@ -167,18 +216,205 @@ namespace storm {
return delta ;
}
template < class SparseMaModelType >
template < typename VT , typename std : : enable_if < ! storm : : NumberTraits < VT > : : SupportsExponential , int > : : type >
VT SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : getDigitizationConstant ( ) const {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidOperationException , " Computing bounded probabilities of MAs is unsupported for this value type. " ) ;
}
template < class SparseMaModelType >
template < typename VT , typename std : : enable_if < storm : : NumberTraits < VT > : : SupportsExponential , int > : : type >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : digitize ( SubModel & MS , VT const & digitizationConstant ) const {
std : : vector < VT > rateVector ( MS . getNumberOfChoices ( ) ) ;
storm : : utility : : vector : : selectVectorValues ( rateVector , MS . states , this - > data . preprocessedModel . getExitRates ( ) ) ;
for ( uint_fast64_t row = 0 ; row < rateVector . size ( ) ; + + row ) {
VT const eToMinusRateTimesDelta = std : : exp ( - rateVector [ row ] * digitizationConstant ) ;
for ( auto & entry : MS . toMS . getRow ( row ) ) {
entry . setValue ( ( storm : : utility : : one < VT > ( ) - eToMinusRateTimesDelta ) * entry . getValue ( ) ) ;
if ( entry . getColumn ( ) = = row ) {
entry . setValue ( entry . getValue ( ) + eToMinusRateTimesDelta ) ;
}
}
for ( auto & entry : MS . toPS . getRow ( row ) ) {
entry . setValue ( ( storm : : utility : : one < VT > ( ) - eToMinusRateTimesDelta ) * entry . getValue ( ) ) ;
}
MS . weightedRewardVector [ row ] * = storm : : utility : : one < VT > ( ) - eToMinusRateTimesDelta ;
for ( auto & objVector : MS . objectiveRewardVectors ) {
objVector [ row ] * = storm : : utility : : one < VT > ( ) - eToMinusRateTimesDelta ;
}
}
}
template < class SparseMaModelType >
template < typename VT , typename std : : enable_if < ! storm : : NumberTraits < VT > : : SupportsExponential , int > : : type >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : digitize ( SubModel & subModel , VT const & digitizationConstant ) const {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidOperationException , " Computing bounded probabilities of MAs is unsupported for this value type. " ) ;
}
template < class SparseMaModelType >
template < typename VT , typename std : : enable_if < storm : : NumberTraits < VT > : : SupportsExponential , int > : : type >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : digitizeTimeBounds ( TimeBoundMap & lowerTimeBounds , TimeBoundMap & upperTimeBounds , VT const & digitizationConstant ) {
VT const maxRate = this - > data . preprocessedModel . getMaximalExitRate ( ) ;
storm : : storage : : BitVector boundedObjectives = ~ this - > unboundedObjectives ;
for ( uint_fast64_t objIndex : boundedObjectives ) {
boost : : optional < VT > objLowerBound , objUpperBound ;
if ( this - > data . objectives [ objIndex ] . timeBounds - > which ( ) = = 0 ) {
objUpperBound = storm : : utility : : convertNumber < VT > ( boost : : get < uint_fast64_t > ( this - > data . objectives [ objIndex ] . timeBounds . get ( ) ) ) ;
} else {
auto const & pair = boost : : get < std : : pair < double , double > > ( this - > data . objectives [ objIndex ] . timeBounds . get ( ) ) ;
if ( ! storm : : utility : : isZero ( pair . first ) ) {
objLowerBound = storm : : utility : : convertNumber < VT > ( pair . first ) ;
}
objUpperBound = storm : : utility : : convertNumber < VT > ( pair . second ) ;
}
if ( objLowerBound ) {
uint_fast64_t digitizedBound = storm : : utility : : convertNumber < uint_fast64_t > ( ( * objLowerBound ) / digitizationConstant ) ;
auto timeBoundIt = lowerTimeBounds . insert ( std : : make_pair ( digitizedBound , storm : : storage : : BitVector ( this - > data . objectives . size ( ) , false ) ) ) . first ;
timeBoundIt - > second . set ( objIndex ) ;
VT digitizationError = storm : : utility : : one < VT > ( ) ;
digitizationError - = std : : exp ( - maxRate * ( * objLowerBound ) ) * storm : : utility : : pow ( storm : : utility : : one < VT > ( ) + maxRate * digitizationConstant , digitizedBound ) ;
this - > offsetsToLowerBound [ objIndex ] = - digitizationError ;
} else {
this - > offsetsToLowerBound [ objIndex ] = storm : : utility : : zero < VT > ( ) ;
}
if ( objUpperBound ) {
uint_fast64_t digitizedBound = storm : : utility : : convertNumber < uint_fast64_t > ( ( * objUpperBound ) / digitizationConstant ) ;
auto timeBoundIt = upperTimeBounds . insert ( std : : make_pair ( digitizedBound , storm : : storage : : BitVector ( this - > data . objectives . size ( ) , false ) ) ) . first ;
timeBoundIt - > second . set ( objIndex ) ;
VT digitizationError = storm : : utility : : one < VT > ( ) ;
digitizationError - = std : : exp ( - maxRate * ( * objUpperBound ) ) * storm : : utility : : pow ( storm : : utility : : one < VT > ( ) + maxRate * digitizationConstant , digitizedBound ) ;
this - > offsetsToUpperBound [ objIndex ] = digitizationError ;
} else {
this - > offsetsToUpperBound [ objIndex ] = storm : : utility : : zero < VT > ( ) ;
}
STORM_LOG_ASSERT ( this - > offsetsToUpperBound [ objIndex ] - this - > offsetsToLowerBound [ objIndex ] < = this - > maximumLowerUpperBoundGap , " Precision not sufficient. " ) ;
}
}
template < class SparseMaModelType >
template < typename VT , typename std : : enable_if < ! storm : : NumberTraits < VT > : : SupportsExponential , int > : : type >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : digitizeTimeBounds ( TimeBoundMap & lowerTimeBounds , TimeBoundMap & upperTimeBounds , VT const & digitizationConstant ) {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidOperationException , " Computing bounded probabilities of MAs is unsupported for this value type. " ) ;
}
template < class SparseMaModelType >
std : : unique_ptr < typename SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : MinMaxSolverData > SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : initMinMaxSolverData ( SubModel const & PS ) const {
std : : unique_ptr < MinMaxSolverData > result ( new MinMaxSolverData ( ) ) ;
storm : : storage : : BitVector choicesStayingInPS ( PS . getNumberOfChoices ( ) , false ) ;
for ( uint_fast64_t choice = 0 ; choice < PS . toPS . getRowCount ( ) ; + + choice ) {
if ( storm : : utility : : isOne ( PS . toPS . getRowSum ( choice ) ) ) {
choicesStayingInPS . set ( choice ) ;
}
}
auto ecEliminatorResult = storm : : transformer : : EndComponentEliminator < ValueType > : : transform ( PS . toPS , choicesStayingInPS & storm : : utility : : vector : : filterZero ( PS . weightedRewardVector ) , storm : : storage : : BitVector ( PS . getNumberOfStates ( ) , true ) ) ;
result - > matrix = std : : move ( ecEliminatorResult . matrix ) ;
result - > toPSChoiceMapping = std : : move ( ecEliminatorResult . newToOldRowMapping ) ;
result - > fromPSStateMapping = std : : move ( ecEliminatorResult . oldToNewStateMapping ) ;
result - > b . resize ( result - > matrix . getRowCount ( ) ) ;
result - > x . resize ( result - > matrix . getRowGroupCount ( ) ) ;
for ( uint_fast64_t state = 0 ; state < result - > fromPSStateMapping . size ( ) ; + + state ) {
if ( result - > fromPSStateMapping [ state ] < result - > x . size ( ) ) {
result - > x [ result - > fromPSStateMapping [ state ] ] = PS . weightedSolutionVector [ state ] ;
}
}
storm : : solver : : GeneralMinMaxLinearEquationSolverFactory < ValueType > minMaxSolverFactory ;
result - > solver = minMaxSolverFactory . create ( result - > matrix ) ;
result - > solver - > setOptimizationDirection ( storm : : solver : : OptimizationDirection : : Maximize ) ;
result - > solver - > setTrackScheduler ( true ) ;
result - > solver - > allocateAuxMemory ( storm : : solver : : MinMaxLinearEquationSolverOperation : : SolveEquations ) ;
return result ;
}
template < class SparseMaModelType >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : updateDataToCurrentEpoch ( SubModel & MS , SubModel & PS , MinMaxSolverData & minMax , storm : : storage : : BitVector & consideredObjectives , uint_fast64_t const & currentEpoch , std : : vector < ValueType > const & weightVector , TimeBoundMap : : iterator & lowerTimeBoundIt , TimeBoundMap const & lowerTimeBounds , TimeBoundMap : : iterator & upperTimeBoundIt , TimeBoundMap const & upperTimeBounds ) {
//For lower time bounds we need to react when the currentEpoch passed the bound
// Hence, we substract 1 from the lower time bounds.
if ( lowerTimeBoundIt ! = lowerTimeBounds . end ( ) & & currentEpoch = = lowerTimeBoundIt - > first - 1 ) {
for ( auto objIndex : lowerTimeBoundIt - > second ) {
// No more reward is earned for this objective.
storm : : utility : : vector : : addScaledVector ( MS . weightedRewardVector , MS . objectiveRewardVectors [ objIndex ] , - weightVector [ objIndex ] ) ;
storm : : utility : : vector : : addScaledVector ( PS . weightedRewardVector , PS . objectiveRewardVectors [ objIndex ] , - weightVector [ objIndex ] ) ;
MS . objectiveRewardVectors [ objIndex ] = std : : vector < ValueType > ( MS . objectiveRewardVectors [ objIndex ] . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
PS . objectiveRewardVectors [ objIndex ] = std : : vector < ValueType > ( PS . objectiveRewardVectors [ objIndex ] . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
}
+ + lowerTimeBoundIt ;
}
if ( upperTimeBoundIt ! = upperTimeBounds . end ( ) & & currentEpoch = = upperTimeBoundIt - > first ) {
consideredObjectives | = upperTimeBoundIt - > second ;
for ( auto objIndex : upperTimeBoundIt - > second ) {
// This objective now plays a role in the weighted sum
storm : : utility : : vector : : addScaledVector ( MS . weightedRewardVector , MS . objectiveRewardVectors [ objIndex ] , weightVector [ objIndex ] ) ;
storm : : utility : : vector : : addScaledVector ( PS . weightedRewardVector , PS . objectiveRewardVectors [ objIndex ] , weightVector [ objIndex ] ) ;
}
+ + upperTimeBoundIt ;
}
// Update the solver data
PS . toMS . multiplyWithVector ( MS . weightedSolutionVector , PS . auxChoiceValues ) ;
storm : : utility : : vector : : addVectors ( PS . auxChoiceValues , PS . weightedRewardVector , PS . auxChoiceValues ) ;
storm : : utility : : vector : : selectVectorValues ( minMax . b , minMax . toPSChoiceMapping , PS . auxChoiceValues ) ;
}
template < class SparseMaModelType >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : performPSStep ( SubModel & PS , SubModel const & MS , MinMaxSolverData & minMax , LinEqSolverData & linEq , std : : vector < uint_fast64_t > & optimalChoicesAtCurrentEpoch , storm : : storage : : BitVector const & consideredObjectives ) const {
// compute a choice vector for the probabilistic states that is optimal w.r.t. the weighted reward vector
std : : vector < uint_fast64_t > newOptimalChoices ( PS . getNumberOfStates ( ) ) ;
minMax . solver - > solveEquations ( minMax . x , minMax . b ) ;
this - > transformReducedSolutionToOriginalModel ( minMax . matrix , minMax . x , minMax . solver - > getScheduler ( ) - > getChoices ( ) , minMax . toPSChoiceMapping , minMax . fromPSStateMapping , PS . toPS , PS . weightedSolutionVector , newOptimalChoices ) ;
// check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed
if ( newOptimalChoices ! = optimalChoicesAtCurrentEpoch ) {
std : : cout < < " Scheduler changed! " ;
optimalChoicesAtCurrentEpoch . swap ( newOptimalChoices ) ;
linEq . solver = nullptr ;
storm : : storage : : SparseMatrix < ValueType > linEqMatrix = PS . toPS . selectRowsFromRowGroups ( optimalChoicesAtCurrentEpoch , true ) ;
linEqMatrix . convertToEquationSystem ( ) ;
linEq . solver = linEq . factory . create ( std : : move ( linEqMatrix ) ) ;
}
for ( auto objIndex : consideredObjectives ) {
PS . toMS . multiplyWithVector ( MS . objectiveSolutionVectors [ objIndex ] , PS . auxChoiceValues ) ;
storm : : utility : : vector : : addVectors ( PS . auxChoiceValues , PS . objectiveRewardVectors [ objIndex ] , PS . auxChoiceValues ) ;
storm : : utility : : vector : : selectVectorValues ( linEq . b , optimalChoicesAtCurrentEpoch , PS . toPS . getRowGroupIndices ( ) , PS . auxChoiceValues ) ;
linEq . solver - > solveEquations ( PS . objectiveSolutionVectors [ objIndex ] , linEq . b ) ;
}
}
template < class SparseMaModelType >
void SparseMaMultiObjectiveWeightVectorChecker < SparseMaModelType > : : performMSStep ( SubModel & MS , SubModel const & PS , storm : : storage : : BitVector const & consideredObjectives ) const {
MS . toMS . multiplyWithVector ( MS . weightedSolutionVector , MS . auxChoiceValues ) ;
storm : : utility : : vector : : addVectors ( MS . weightedRewardVector , MS . auxChoiceValues , MS . weightedSolutionVector ) ;
MS . toPS . multiplyWithVector ( PS . weightedSolutionVector , MS . auxChoiceValues ) ;
storm : : utility : : vector : : addVectors ( MS . weightedSolutionVector , MS . auxChoiceValues , MS . weightedSolutionVector ) ;
for ( auto objIndex : consideredObjectives ) {
MS . toMS . multiplyWithVector ( MS . objectiveSolutionVectors [ objIndex ] , MS . auxChoiceValues ) ;
storm : : utility : : vector : : addVectors ( MS . objectiveRewardVectors [ objIndex ] , MS . auxChoiceValues , MS . objectiveSolutionVectors [ objIndex ] ) ;
MS . toPS . multiplyWithVector ( PS . objectiveSolutionVectors [ objIndex ] , MS . auxChoiceValues ) ;
storm : : utility : : vector : : addVectors ( MS . objectiveSolutionVectors [ objIndex ] , MS . auxChoiceValues , MS . objectiveSolutionVectors [ objIndex ] ) ;
}
}
template class SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > ;
template double SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : getDigitizationConstant < double > ( ) const ;
template void SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : digitize < double > ( SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : SubModel & subModel , double const & digitizationConstant ) const ;
template void SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : digitizeTimeBounds < double > ( SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : TimeBoundMap & lowerTimeBounds , SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : TimeBoundMap & upperTimeBounds , double const & digitizationConstant ) ;
# ifdef STORM_HAVE_CARL
template storm : : RationalNumber SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < storm : : RationalNumber > > : : getDigitizationConstant < storm : : RationalNumber > ( ) const ;
template class SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < storm : : RationalNumber > > ;
template storm : : RationalNumber SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < storm : : RationalNumber > > : : getDigitizationConstant < storm : : RationalNumber > ( ) const ;
template void SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < storm : : RationalNumber > > : : digitize < storm : : RationalNumber > ( SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < storm : : RationalNumber > > : : SubModel & subModel , storm : : RationalNumber const & digitizationConstant ) const ;
template void SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < storm : : RationalNumber > > : : digitizeTimeBounds < storm : : RationalNumber > ( SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : TimeBoundMap & lowerTimeBounds , SparseMaMultiObjectiveWeightVectorChecker < storm : : models : : sparse : : MarkovAutomaton < double > > : : TimeBoundMap & upperTimeBounds , storm : : RationalNumber const & digitizationConstant ) ;
# endif
}