Browse Source

optimized qvi implementation

tempestpy_adaptions
TimQu 7 years ago
parent
commit
7aac41d8f2
  1. 166
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

166
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -9,6 +9,7 @@
#include "storm/utility/KwekMehlhorn.h"
#include "storm/utility/NumberTraits.h"
#include "storm/utility/Stopwatch.h"
#include "storm/utility/vector.h"
#include "storm/utility/macros.h"
#include "storm/exceptions/InvalidEnvironmentException.h"
@ -607,43 +608,21 @@ namespace storm {
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsQuickSoundValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if (!this->linEqSolverA) {
this->createLinearEquationSolver(env);
this->linEqSolverA->setCachingEnabled(true);
}
// Allow aliased multiplications.
bool useGaussSeidelMultiplication = this->linEqSolverA->supportsGaussSeidelMultiplication() && env.solver().minMax().getMultiplicationStyle() == storm::solver::MultiplicationStyle::GaussSeidel;
// Prepare the solution vectors.
assert(x.size() == this->A->getRowGroupCount());
std::vector<ValueType> *stepBoundedX, *stepBoundedStayProbs, *tmp;
if (useGaussSeidelMultiplication) {
stepBoundedX = &x;
stepBoundedX->assign(this->A->getRowGroupCount(), storm::utility::zero<ValueType>());
std::vector<ValueType>& stepBoundedX = x;
stepBoundedX.assign(this->A->getRowGroupCount(), storm::utility::zero<ValueType>());
if (!this->auxiliaryRowGroupVector) {
this->auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
} else {
this->auxiliaryRowGroupVector->assign(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
}
stepBoundedStayProbs = this->auxiliaryRowGroupVector.get();
tmp = nullptr;
} else {
if (!this->auxiliaryRowGroupVector) {
this->auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount(), storm::utility::zero<ValueType>());
} else {
this->auxiliaryRowGroupVector->assign(this->A->getRowGroupCount(), storm::utility::zero<ValueType>());
}
stepBoundedX = this->auxiliaryRowGroupVector.get();
if (!this->auxiliaryRowGroupVector2) {
this->auxiliaryRowGroupVector2 = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
} else {
this->auxiliaryRowGroupVector2->assign(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
}
stepBoundedStayProbs = this->auxiliaryRowGroupVector2.get();
tmp = &x;
}
std::vector<ValueType>& stepBoundedStayProbs = *this->auxiliaryRowGroupVector;
// Get the precision
bool relative = env.solver().minMax().getRelativeTerminationCriterion();
@ -689,41 +668,98 @@ namespace storm {
bool& hasPrimaryBound = minimize(dir) ? hasCurrentLowerBound : hasCurrentUpperBound;
STORM_LOG_INFO_COND(!hasPrimaryBound, "Initial bound on the result is " << primaryBound);
storm::utility::Stopwatch sw1, sw2, sw3, sw4, sw5;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
SolverStatus status = SolverStatus::InProgress;
uint64_t iterations = 0;
std::vector<ValueType> xTmp, yTmp;
uint64_t minIndex(0), maxIndex(0);
uint64_t firstStayProb1Index = 0;
uint64_t firstIndexViolatingConvergence = this->hasRelevantValues() ? this->getRelevantValues().getNextSetIndex(0) : 0;
while (status == SolverStatus::InProgress && iterations < env.solver().minMax().getMaximalNumberOfIterations()) {
//Perform the iteration step
auto xIt = stepBoundedX->rbegin();
auto yIt = stepBoundedStayProbs->rbegin();
auto xIt = stepBoundedX.rbegin();
auto yIt = stepBoundedStayProbs.rbegin();
auto groupStartIt = this->A->getRowGroupIndices().rbegin();
++groupStartIt;
auto groupEndIt = this->A->getRowGroupIndices().rbegin();
while (groupStartIt != this->A->getRowGroupIndices().rend()) {
// Handle Row Groups of size 1 quickly
if (*groupStartIt + 1 == *groupEndIt) {
*xIt = this->linEqSolverA->multiplyRow(*groupStartIt, *stepBoundedX) + b[*groupStartIt];
*yIt = this->linEqSolverA->multiplyRow(*groupStartIt, *stepBoundedStayProbs);
} else {
// First pass through the group: get the multiplication results
// Perform the iteration for the first row in the group
uint64_t row = *groupStartIt;
uint64_t rowEnd = *groupEndIt;
ValueType xBest = b[row];
ValueType yBest = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(row)) {
xBest += entry.getValue() * stepBoundedX[entry.getColumn()];
yBest += entry.getValue() * stepBoundedStayProbs[entry.getColumn()];
}
++row;
// Only do more work if there are still rows in this row group
if (row != rowEnd) {
xTmp.clear();
yTmp.clear();
for (uint64_t row = *groupStartIt; row < *groupEndIt; ++row) {
xTmp.push_back(this->linEqSolverA->multiplyRow(row, *stepBoundedX) + b[row]);
yTmp.push_back(this->linEqSolverA->multiplyRow(row, *stepBoundedStayProbs));
if (hasPrimaryBound) {
ValueType bestValue = xBest + yBest * primaryBound;
for (;row < *groupEndIt; ++row) {
// Get the multiplication results
ValueType xi = b[row];
ValueType yi = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(row)) {
xi += entry.getValue() * stepBoundedX[entry.getColumn()];
yi += entry.getValue() * stepBoundedStayProbs[entry.getColumn()];
}
// Update the best choice
ValueType currentValue = xi + yi * primaryBound;
if (better(currentValue, bestValue)) {
if (yBest < yi) {
xTmp.push_back(std::move(xBest));
yTmp.push_back(std::move(yBest));
}
xBest = std::move(xi);
yBest = std::move(yi);
bestValue = std::move(currentValue);
} else if (yBest > yi) {
if (currentValue == bestValue) {
xBest = std::move(xi);
yBest = std::move(yi);
} else {
xTmp.push_back(std::move(xi));
yTmp.push_back(std::move(yi));
}
}
}
} else {
for (;row < *groupEndIt; ++row) {
// Get the multiplication results
ValueType xi = b[row];
ValueType yi = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(row)) {
xi += entry.getValue() * stepBoundedX[entry.getColumn()];
yi += entry.getValue() * stepBoundedStayProbs[entry.getColumn()];
}
// Update the best choice
if (yi > yBest || (yi == yBest && better(xi, xBest))) {
xTmp.push_back(std::move(xBest));
yTmp.push_back(std::move(yBest));
xBest = std::move(xi);
yBest = std::move(yi);
} else {
xTmp.push_back(std::move(xi));
yTmp.push_back(std::move(yi));
}
}
}
/*
// Second pass: get the best choice
uint64_t bestChoice = 0;
if (hasPrimaryBound) {
// Second pass: get the best choice
ValueType bestValue = xTmp.front() + yTmp.front() * primaryBound;
for (uint64_t choice = 1; choice < xTmp.size(); ++choice) {
for (uint64_t choice = 1; choice < groupSize; ++choice) {
ValueType value = xTmp[choice] + yTmp[choice] * primaryBound;
if (betterEqual(value, bestValue) && (value != bestValue || yTmp[choice] < yTmp[bestChoice])) {
bestValue = std::move(value);
@ -733,7 +769,7 @@ namespace storm {
} else {
// If no bound is known, we implicitly assume a sufficiently large (or low) bound
ValueType bestValue = yTmp.front();
for (uint64_t choice = 1; choice < xTmp.size(); ++choice) {
for (uint64_t choice = 1; choice < groupSize; ++choice) {
ValueType const& value = yTmp[choice];
if (value >= bestValue && (value != bestValue || better(xTmp[choice], xTmp[bestChoice]))) {
bestValue = std::move(value);
@ -743,13 +779,13 @@ namespace storm {
}
*xIt = xTmp[bestChoice];
*yIt = yTmp[bestChoice];
*/
// Third pass: Update the decision value
for (uint64_t choice = 0; choice < xTmp.size(); ++choice) {
if (choice != bestChoice) {
ValueType deltaY = *yIt - yTmp[choice];
// Update the decision value
for (auto xTmpIt = xTmp.begin(), yTmpIt = yTmp.begin(); xTmpIt != xTmp.end(); ++xTmpIt, ++yTmpIt) {
ValueType deltaY = yBest - (*yTmpIt);
if (deltaY > storm::utility::zero<ValueType>()) {
ValueType newDecisionValue = (xTmp[choice] - *xIt) / deltaY;
ValueType newDecisionValue = (*xTmpIt - xBest) / deltaY;
if (!hasDecisionValue || better(newDecisionValue, decisionValue)) {
// std::cout << "Updating decision value in Iteration " << iterations << " to " << newDecisionValue << ", where deltaX = " << xTmp[choice] << " - " << *xIt << " = " << (xTmp[choice] - *xIt) << " and deltaY= " << *yIt << " - " << yTmp[choice] << " = " << deltaY << "." << std::endl;
decisionValue = std::move(newDecisionValue);
@ -758,7 +794,9 @@ namespace storm {
}
}
}
}
*xIt = std::move(xBest);
*yIt = std::move(yBest);
++groupStartIt;
++groupEndIt;
++xIt;
@ -767,39 +805,39 @@ namespace storm {
// Update bounds and check for convergence
// Phase 1: the probability to 'stay within the matrix' has to be < 1 at every state
for (; firstStayProb1Index != stepBoundedStayProbs->size(); ++firstStayProb1Index) {
for (; firstStayProb1Index != stepBoundedStayProbs.size(); ++firstStayProb1Index) {
static_assert(NumberTraits<ValueType>::IsExact || std::is_same<ValueType, double>::value, "Considered ValueType not handled.");
if (NumberTraits<ValueType>::IsExact) {
if (storm::utility::isOne(stepBoundedStayProbs->at(firstStayProb1Index))) {
if (storm::utility::isOne(stepBoundedStayProbs[firstStayProb1Index])) {
break;
}
} else {
if (storm::utility::isAlmostOne(storm::utility::convertNumber<double>(stepBoundedStayProbs->at(firstStayProb1Index)))) {
if (storm::utility::isAlmostOne(storm::utility::convertNumber<double>(stepBoundedStayProbs[firstStayProb1Index]))) {
break;
}
}
}
if (firstStayProb1Index == stepBoundedStayProbs->size()) {
STORM_LOG_ASSERT(!std::any_of(stepBoundedStayProbs->begin(), stepBoundedStayProbs->end(), [](ValueType value){return storm::utility::isOne(value);}), "Did not expect staying-probability 1 at this point.");
if (firstStayProb1Index == stepBoundedStayProbs.size()) {
STORM_LOG_ASSERT(!std::any_of(stepBoundedStayProbs.begin(), stepBoundedStayProbs.end(), [](ValueType value){return storm::utility::isOne(value);}), "Did not expect staying-probability 1 at this point.");
// Phase 2: the difference between lower and upper bound has to be < precision at every (relevant) value
// First check with (possibly too tight) bounds from a previous iteration. Only compute the actual bounds if this first check passes.
currentLowerBound = stepBoundedX->at(minIndex) / (storm::utility::one<ValueType>() - stepBoundedStayProbs->at(minIndex));
currentUpperBound = stepBoundedX->at(maxIndex) / (storm::utility::one<ValueType>() - stepBoundedStayProbs->at(maxIndex));
currentLowerBound = stepBoundedX[minIndex] / (storm::utility::one<ValueType>() - stepBoundedStayProbs[minIndex]);
currentUpperBound = stepBoundedX[maxIndex] / (storm::utility::one<ValueType>() - stepBoundedStayProbs[maxIndex]);
// Potentially correct the primary bound so that scheduler choices remain valid
if (hasDecisionValue && better(decisionValue, primaryBound)) {
primaryBound = decisionValue;
}
ValueType const& stayProb = stepBoundedStayProbs->at(firstIndexViolatingConvergence);
ValueType const& stayProb = stepBoundedStayProbs[firstIndexViolatingConvergence];
// The error made in this iteration
ValueType absoluteError = stayProb * (currentUpperBound - currentLowerBound);
// The maximal allowed error (possibly respecting relative precision)
// Note: We implement the relative convergence criterion in a way that avoids division by zero in the case where stepBoundedX[i] is zero.
ValueType maxAllowedError = relative ? (precision * stepBoundedX->at(firstIndexViolatingConvergence)) : precision;
ValueType maxAllowedError = relative ? (precision * stepBoundedX[firstIndexViolatingConvergence]) : precision;
if (absoluteError <= maxAllowedError) {
// Compute the actual bounds now
auto valIt = stepBoundedX->begin();
auto valIte = stepBoundedX->end();
auto probIt = stepBoundedStayProbs->begin();
auto valIt = stepBoundedX.begin();
auto valIte = stepBoundedX.end();
auto probIt = stepBoundedStayProbs.begin();
for (uint64_t index = 0; valIt != valIte; ++valIt, ++probIt, ++index) {
ValueType currentBound = *valIt / (storm::utility::one<ValueType>() - *probIt);
if (currentBound < currentLowerBound) {
@ -824,12 +862,12 @@ namespace storm {
if (this->hasRelevantValues()) {
firstIndexViolatingConvergence = this->getRelevantValues().getNextSetIndex(firstIndexViolatingConvergence);
}
if (firstIndexViolatingConvergence == stepBoundedStayProbs->size()) {
if (firstIndexViolatingConvergence == stepBoundedStayProbs.size()) {
status = SolverStatus::Converged;
break;
} else {
absoluteError = stepBoundedStayProbs->at(firstIndexViolatingConvergence) * (currentUpperBound - currentLowerBound);
maxAllowedError = relative ? (precision * stepBoundedX->at(firstIndexViolatingConvergence)) : precision;
absoluteError = stepBoundedStayProbs[firstIndexViolatingConvergence] * (currentUpperBound - currentLowerBound);
maxAllowedError = relative ? (precision * stepBoundedX[firstIndexViolatingConvergence]) : precision;
if (absoluteError > maxAllowedError) {
// not converged yet
break;
@ -840,23 +878,27 @@ namespace storm {
}
}
// Update environment variables.
++iterations;
// TODO: Implement custom termination criterion. We would need to add our errors to the stepBoundedX values (only if in second phase)
status = updateStatusIfNotConverged(status, *stepBoundedX, iterations, env.solver().minMax().getMaximalNumberOfIterations(), SolverGuarantee::None);
status = updateStatusIfNotConverged(status, stepBoundedX, iterations, env.solver().minMax().getMaximalNumberOfIterations(), SolverGuarantee::None);
// Potentially show progress.
this->showProgressIterative(iterations);
}
std::cout << "sw1: " << sw1 << std::endl;
std::cout << "sw2: " << sw2 << std::endl;
std::cout << "sw3: " << sw3 << std::endl;
std::cout << "sw4: " << sw4 << std::endl;
std::cout << "sw5: " << sw5 << std::endl;
reportStatus(status, iterations);
STORM_LOG_WARN_COND(hasCurrentLowerBound && hasCurrentUpperBound, "No lower or upper result bound could be computed within the given number of Iterations.");
// Finally set up the solution vector
ValueType meanBound = (currentUpperBound + currentLowerBound) / storm::utility::convertNumber<ValueType>(2.0);
storm::utility::vector::applyPointwise(*stepBoundedX, *stepBoundedStayProbs, x, [&meanBound] (ValueType const& v, ValueType const& p) { return v + p * meanBound; });
storm::utility::vector::applyPointwise(stepBoundedX, stepBoundedStayProbs, x, [&meanBound] (ValueType const& v, ValueType const& p) { return v + p * meanBound; });
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {

Loading…
Cancel
Save