Browse Source
Added function tests for CTMC creation and time-bounded reachability.
Added function tests for CTMC creation and time-bounded reachability.
Former-commit-id: e56f860a70
tempestpy_adaptions
dehnert
10 years ago
10 changed files with 854 additions and 0 deletions
-
126examples/ctmc/fms/fms.sm
-
38examples/ctmc/tandem/tandem.sm
-
5src/modelchecker/csl/SparseCtmcCslModelChecker.cpp
-
28test/functional/builder/ExplicitPrismModelBuilderTest.cpp
-
116test/functional/builder/cluster2.sm
-
151test/functional/builder/embedded2.sm
-
126test/functional/builder/fms2.sm
-
53test/functional/builder/polling2.sm
-
42test/functional/builder/tandem5.sm
-
169test/functional/modelchecker/SparseCtmcCslModelCheckerTest.cpp
@ -0,0 +1,126 @@ |
|||
// flexible manufacturing system [CT93] |
|||
// gxn/dxp 11/06/01 |
|||
|
|||
ctmc // model is a ctmc |
|||
|
|||
const int n; // number of tokens |
|||
|
|||
// rates from Pi equal #(Pi) * min(1, np/r) |
|||
// where np = (3n)/2 and r = P1+P2+P3+P12 |
|||
const int np=floor((3*n)/2); |
|||
formula r = P1+P2+P3+P12; |
|||
|
|||
module machine1 |
|||
|
|||
P1 : [0..n] init n; |
|||
P1wM1 : [0..n]; |
|||
P1M1 : [0..3]; |
|||
P1d : [0..n]; |
|||
P1s : [0..n]; |
|||
P1wP2 : [0..n]; |
|||
M1 : [0..3] init 3; |
|||
|
|||
[t1] (P1>0) & (M1>0) & (P1M1<3) -> P1*min(1,np/r) : (P1'=P1-1) & (P1M1'=P1M1+1) & (M1'=M1-1); |
|||
[t1] (P1>0) & (M1=0) & (P1wM1<n) -> P1*min(1,np/r) : (P1'=P1-1) & (P1wM1'=P1wM1+1); |
|||
|
|||
[] (P1M1>0) & (P1wM1=0) & (M1<3) & (P1s<n) -> 0.2*P1M1 : (P1M1'=P1M1-1) & (M1'=M1+1) & (P1s'=P1s+1); |
|||
[] (P1M1>0) & (P1wM1>0) & (P1s<n) -> 0.2*P1M1 : (P1wM1'=P1wM1-1) & (P1s'=P1s+1); |
|||
|
|||
[] (P1M1>0) & (P2wP1=0) & (P1wM1=0) & (M1<3) & (P1wP2<n) -> 0.05*P1M1 : (P1M1'=P1M1-1) & (M1'=M1+1) & (P1wP2'=P1wP2+1); |
|||
[] (P1M1>0) & (P2wP1=0) & (P1wM1>0) & (P1wP2<n) -> 0.05*P1M1 : (P1wM1'=P1wM1-1) & (P1wP2'=P1wP2+1); |
|||
|
|||
[p1p2] (P1M1>0) & (P2wP1>0) & (P1wM1=0) & (M1<3) -> 0.05*P1M1 : (P1M1'=P1M1-1) & (M1'=M1+1); |
|||
[p1p2] (P1M1>0) & (P2wP1>0) & (P1wM1>0) -> 0.05*P1M1 : (P1wM1'=P1wM1-1); |
|||
|
|||
[p1p2] (P1wP2>0) -> 1: (P1wP2'=P1wP2-1); |
|||
[] (P1s>0) & (P1+P1s<=n) -> 1/60 : (P1s'=0) & (P1'=P1+P1s); |
|||
[fp12] (P1+P12s<=n) -> 1: (P1'=P1+P12s); |
|||
|
|||
endmodule |
|||
|
|||
module machine2 |
|||
|
|||
P2 : [0..n] init n; |
|||
P2wM2 : [0..n]; |
|||
P2M2 : [0..1]; |
|||
P2s : [0..n]; |
|||
P2wP1 : [0..n]; |
|||
M2 : [0..1] init 1; |
|||
|
|||
[t2] (P2>0) & (M2>0) & (P2M2<1) -> P2*min(1,np/r) : (P2'=P2-1) & (P2M2'=P2M2+1) & (M2'=M2-1); |
|||
[t2] (P2>0) & (M2=0) & (P2wM2<n) -> P2*min(1,np/r) : (P2'=P2-1) & (P2wM2'=P2wM2+1); |
|||
|
|||
[] (P2M2>0) & (P2wM2=0) & (M2<1) & (P2s<n) -> 0.1 : (P2M2'=P2M2-1) & (M2'=M2+1) & (P2s'=P2s+1); |
|||
[] (P2M2>0) & (P2wM2>0) & (P2s<n) -> 0.1 : (P2wM2'=P2wM2-1) & (P2s'=P2s+1); |
|||
|
|||
[] (P2M2>0) & (P1wP2=0) & (P2wM2=0) & (M2<1) & (P2wP1<n) -> 1/15: (P2M2'=P2M2-1) & (M2'=M2+1) & (P2wP1'=P2wP1+1); |
|||
[] (P2M2>0) & (P1wP2=0) & (P2wM2>0) & (P2wP1<n) -> 1/15: (P2wM2'=P2wM2-1) & (P2wP1'=P2wP1+1); |
|||
|
|||
[p1p2] (P2M2>0) & (P1wP2>0) & (P2wM2=0) & (M2<1) -> 1/15: (P2M2'=P2M2-1) & (M2'=M2+1); |
|||
[p1p2] (P2M2>0) & (P1wP2>0) & (P2wM2>0) -> 1/15: (P2wM2'=P2wM2-1); |
|||
|
|||
[p1p2] (P2wP1>0) -> 1 : (P2wP1'=P2wP1-1); |
|||
[] (P2s>0) & (P2+P2s<=n) -> 1/60 : (P2s'=0) & (P2'=P2+P2s); |
|||
[fp12] (P2+P12s<=n) -> 1 : (P2'=P2+P12s); |
|||
[p2p3] (M2>0) -> 1 : (M2'=M2); |
|||
|
|||
endmodule |
|||
|
|||
module machine3 |
|||
|
|||
P3 : [0..n] init n; |
|||
P3M2 : [0..n]; |
|||
P3s : [0..n]; |
|||
|
|||
[t3] (P3>0) & (P3M2<n) -> P3*min(1,np/r) : (P3'=P3-1) & (P3M2'=P3M2+1); |
|||
|
|||
[p2p3] (P3M2>0) & (P3s<n) -> 1/2 : (P3M2'=P3M2-1) & (P3s'=P3s+1); |
|||
[] (P3s>0) & (P3+P3s<=n) -> 1/60 : (P3s'=0) & (P3'=P3+P3s); |
|||
|
|||
endmodule |
|||
|
|||
module machine12 |
|||
|
|||
P12 : [0..n]; |
|||
P12wM3 : [0..n]; |
|||
P12M3 : [0..2]; |
|||
P12s : [0..n]; |
|||
M3 : [0..2] init 2; |
|||
|
|||
[p1p2] (P12<n) -> 1: (P12'=P12+1); |
|||
|
|||
[t12] (P12>0) & (M3>0) & (P12M3<2) -> P12*min(1,np/r) : (P12'=P12-1) & (P12M3'=P12M3+1) & (M3'=M3-1); |
|||
[t12] (P12>0) & (M3=0) & (P12wM3<n) -> P12*min(1,np/r) : (P12'=P12-1) & (P12wM3'=P12wM3+1); |
|||
|
|||
[] (P12M3>0) & (P12wM3=0) & (P12s<n) & (M3<2) -> P12M3 : (P12M3'=P12M3-1) & (P12s'=P12s+1) & (M3'=M3+1); |
|||
[] (P12M3>0) & (P12wM3>0) & (P12s<n) -> P12M3 : (P12wM3'=P12wM3-1) & (P12s'=P12s+1); |
|||
|
|||
[fp12] (P12s>0) -> 1/60 : (P12s'=0); |
|||
|
|||
endmodule |
|||
|
|||
// reward structures |
|||
|
|||
// throughput of machine1 |
|||
rewards "throughput_m1" |
|||
[t1] true : 1; |
|||
endrewards |
|||
// throughput of machine2 |
|||
rewards "throughput_m2" |
|||
[t2] true : 1; |
|||
endrewards |
|||
// throughput of machine3 |
|||
rewards "throughput_m3" |
|||
[t3] true : 1; |
|||
endrewards |
|||
// throughput of machine12 |
|||
rewards "throughput_m12" |
|||
[t12] true : 1; |
|||
endrewards |
|||
// productivity of the system |
|||
rewards "productivity" |
|||
[t1] true : 400; |
|||
[t2] true : 600; |
|||
[t3] true : 100; |
|||
[t12] true : 1100; |
|||
endrewards |
@ -0,0 +1,38 @@ |
|||
// tandem queueing network [HKMKS99] |
|||
// gxn/dxp 25/01/00 |
|||
|
|||
ctmc |
|||
|
|||
const int c; // queue capacity |
|||
|
|||
const double lambda = 4*c; |
|||
const double mu1a = 0.1*2; |
|||
const double mu1b = 0.9*2; |
|||
const double mu2 = 2; |
|||
const double kappa = 4; |
|||
|
|||
module serverC |
|||
|
|||
sc : [0..c]; |
|||
ph : [1..2]; |
|||
|
|||
[] (sc<c) -> lambda: (sc'=sc+1); |
|||
[route] (sc>0) & (ph=1) -> mu1b: (sc'=sc-1); |
|||
[] (sc>0) & (ph=1) -> mu1a: (ph'=2); |
|||
[route] (sc>0) & (ph=2) -> mu2: (ph'=1) & (sc'=sc-1); |
|||
|
|||
endmodule |
|||
|
|||
module serverM |
|||
|
|||
sm : [0..c]; |
|||
|
|||
[route] (sm<c) -> 1: (sm'=sm+1); |
|||
[] (sm>0) -> kappa: (sm'=sm-1); |
|||
|
|||
endmodule |
|||
|
|||
// reward - number of customers in network |
|||
rewards "customers" |
|||
true : sc + sm; |
|||
endrewards |
@ -0,0 +1,116 @@ |
|||
// Workstation cluster [HHK00] |
|||
// dxp/gxn 11/01/00 |
|||
|
|||
ctmc |
|||
|
|||
const int N = 2; // Number of workstations in each cluster |
|||
const int left_mx = N; // Number of work stations in left cluster |
|||
const int right_mx = N; // Number of work stations in right cluster |
|||
|
|||
// Failure rates |
|||
const double ws_fail = 1/500; // Single workstation: average time to fail = 500 hrs |
|||
const double switch_fail = 1/4000; // Switch: average time to fail = 4000 hrs |
|||
const double line_fail = 1/5000; // Backbone: average time to fail = 5000 hrs |
|||
|
|||
// Left cluster |
|||
module Left |
|||
|
|||
left_n : [0..left_mx] init left_mx; // Number of workstations operational |
|||
left : bool; // Being repaired? |
|||
|
|||
[startLeft] !left & (left_n<left_mx) -> 1 : (left'=true); |
|||
[repairLeft] left & (left_n<left_mx) -> 1 : (left'=false) & (left_n'=left_n+1); |
|||
[] (left_n>0) -> ws_fail*left_n : (left_n'=left_n-1); |
|||
|
|||
endmodule |
|||
|
|||
// Right cluster |
|||
module Right = Left[left_n=right_n, |
|||
left=right, |
|||
left_mx=right_mx, |
|||
startLeft=startRight, |
|||
repairLeft=repairRight ] |
|||
endmodule |
|||
|
|||
// Repair unit |
|||
module Repairman |
|||
|
|||
r : bool; // Repairing? |
|||
|
|||
[startLeft] !r -> 10 : (r'=true); // Inspect Left |
|||
[startRight] !r -> 10 : (r'=true); // Inspect Right |
|||
[startToLeft] !r -> 10 : (r'=true); // Inspect ToLeft |
|||
[startToRight] !r -> 10 : (r'=true); // Inspect ToRight |
|||
[startLine] !r -> 10 : (r'=true); // Inspect Line |
|||
|
|||
[repairLeft] r -> 2 : (r'=false); // Repair Left |
|||
[repairRight] r -> 2 : (r'=false); // Repair Right |
|||
[repairToLeft] r -> 0.25 : (r'=false); // Repair ToLeft |
|||
[repairToRight] r -> 0.25 : (r'=false); // Repair ToRight |
|||
[repairLine] r -> 0.125 : (r'=false); // Repair Line |
|||
|
|||
endmodule |
|||
|
|||
// Line/backbone |
|||
module Line |
|||
|
|||
line : bool; // Being repaired? |
|||
line_n : bool init true; // Working? |
|||
|
|||
[startLine] !line & !line_n -> 1 : (line'=true); |
|||
[repairLine] line & !line_n -> 1 : (line'=false) & (line_n'=true); |
|||
[] line_n -> line_fail : (line_n'=false); |
|||
|
|||
endmodule |
|||
|
|||
// Left switch |
|||
module ToLeft = Line[line=toleft, |
|||
line_n=toleft_n, |
|||
line_fail=switch_fail, |
|||
startLine=startToLeft, |
|||
repairLine=repairToLeft ] |
|||
endmodule |
|||
|
|||
// Right switch |
|||
module ToRight = Line[line=toright, |
|||
line_n=toright_n, |
|||
line_fail=switch_fail, |
|||
startLine=startToRight, |
|||
repairLine=repairToRight ] |
|||
endmodule |
|||
|
|||
// Formulas + labels |
|||
|
|||
// Minimum QoS requires 3/4 connected workstations operational |
|||
const int k = floor(0.75*N); |
|||
// left_operational_i : left_n>=i & toleft_n |
|||
// right_operational_i : right_n>=i & toright_n |
|||
// operational_i : (left_n+right_n)>=i & toleft_n & line_n & toright_n |
|||
// minimum_k : left_operational_k | right_operational_k | operational_k |
|||
formula minimum = (left_n>=k & toleft_n) | |
|||
(right_n>=k & toright_n) | |
|||
((left_n+right_n)>=k & toleft_n & line_n & toright_n); |
|||
label "minimum" = (left_n>=k & toleft_n) | (right_n>=k & toright_n) | ((left_n+right_n)>=k & toleft_n & line_n & toright_n); |
|||
// premium = minimum_N |
|||
label "premium" = (left_n>=left_mx & toleft_n) | (right_n>=right_mx & toright_n) | ((left_n+right_n)>=left_mx & toleft_n & line_n & toright_n); |
|||
|
|||
// Reward structures |
|||
|
|||
// Percentage of operational workstations stations |
|||
rewards "percent_op" |
|||
true : 100*(left_n+right_n)/(2*N); |
|||
endrewards |
|||
|
|||
// Time that the system is not delivering at least minimum QoS |
|||
rewards "time_not_min" |
|||
!minimum : 1; |
|||
endrewards |
|||
|
|||
// Number of repairs |
|||
rewards "num_repairs" |
|||
[repairLeft] true : 1; |
|||
[repairRight] true : 1; |
|||
[repairToLeft] true : 1; |
|||
[repairToRight] true : 1; |
|||
[repairLine] true : 1; |
|||
endrewards |
@ -0,0 +1,151 @@ |
|||
ctmc |
|||
|
|||
// constants |
|||
const int MAX_COUNT = 2; |
|||
const int MIN_SENSORS = 2; |
|||
const int MIN_ACTUATORS = 1; |
|||
|
|||
// rates |
|||
const double lambda_p = 1/(365*24*60*60); // 1 year |
|||
const double lambda_s = 1/(30*24*60*60); // 1 month |
|||
const double lambda_a = 1/(2*30*24*60*60); // 2 months |
|||
const double tau = 1/60; // 1 min |
|||
const double delta_f = 1/(24*60*60); // 1 day |
|||
const double delta_r = 1/30; // 30 secs |
|||
|
|||
// sensors |
|||
module sensors |
|||
|
|||
s : [0..3] init 3; // number of sensors working |
|||
|
|||
[] s>1 -> s*lambda_s : (s'=s-1); // failure of a single sensor |
|||
|
|||
endmodule |
|||
|
|||
// input processor |
|||
// (takes data from sensors and passes onto main processor) |
|||
module proci |
|||
|
|||
i : [0..2] init 2; // 2=ok, 1=transient fault, 0=failed |
|||
|
|||
[] i>0 & s>=MIN_SENSORS -> lambda_p : (i'=0); // failure of processor |
|||
[] i=2 & s>=MIN_SENSORS -> delta_f : (i'=1); // transient fault |
|||
[input_reboot] i=1 & s>=MIN_SENSORS -> delta_r : (i'=2); // reboot after transient fault |
|||
|
|||
endmodule |
|||
|
|||
// actuators |
|||
module actuators |
|||
|
|||
a : [0..2] init 2; // number of actuators working |
|||
|
|||
[] a>0 -> a*lambda_a : (a'=a-1); // failure of a single actuator |
|||
|
|||
endmodule |
|||
|
|||
// output processor |
|||
// (receives instructions from main processor and passes onto actuators) |
|||
module proco = proci [ i=o, s=a, input_reboot=output_reboot, MIN_SENSORS=MIN_ACTUATORS ] endmodule |
|||
|
|||
// main processor |
|||
// (takes data from proci, processes it, and passes instructions to proco) |
|||
module procm |
|||
|
|||
m : [0..1] init 1; // 1=ok, 0=failed |
|||
count : [0..MAX_COUNT+1] init 0; // number of consecutive skipped cycles |
|||
|
|||
// failure of processor |
|||
[] m=1 -> lambda_p : (m'=0); |
|||
// processing completed before timer expires - reset skipped cycle counter |
|||
[timeout] comp -> tau : (count'=0); |
|||
// processing not completed before timer expires - increment skipped cycle counter |
|||
[timeout] !comp -> tau : (count'=min(count+1, MAX_COUNT+1)); |
|||
|
|||
endmodule |
|||
|
|||
// connecting bus |
|||
module bus |
|||
|
|||
// flags |
|||
// main processor has processed data from input processor |
|||
// and sent corresponding instructions to output processor (since last timeout) |
|||
comp : bool init true; |
|||
// input processor has data ready to send |
|||
reqi : bool init true; |
|||
// output processor has instructions ready to be processed |
|||
reqo : bool init false; |
|||
|
|||
// input processor reboots |
|||
[input_reboot] true -> 1 : |
|||
// performs a computation if has already done so or |
|||
// it is up and ouput clear (i.e. nothing waiting) |
|||
(comp'=(comp | (m=1 & !reqo))) |
|||
// up therefore something to process |
|||
& (reqi'=true) |
|||
// something to process if not functioning and either |
|||
// there is something already pending |
|||
// or the main processor sends a request |
|||
& (reqo'=!(o=2 & a>=1) & (reqo | m=1)); |
|||
|
|||
// output processor reboots |
|||
[output_reboot] true -> 1 : |
|||
// performs a computation if it has already or |
|||
// something waiting and is up |
|||
// (can be processes as the output has come up and cleared pending requests) |
|||
(comp'=(comp | (reqi & m=1))) |
|||
// something to process it they are up or |
|||
// there was already something and the main processor acts |
|||
// (output now up must be due to main processor being down) |
|||
& (reqi'=(i=2 & s>=2) | (reqi & m=0)) |
|||
// output and actuators up therefore nothing can be pending |
|||
& (reqo'=false); |
|||
|
|||
// main processor times out |
|||
[timeout] true -> 1 : |
|||
// performs a computation if it is up something was pending |
|||
// and nothing is waiting for the output |
|||
(comp'=(reqi & !reqo & m=1)) |
|||
// something to process if up or |
|||
// already something and main process cannot act |
|||
// (down or outputs pending) |
|||
& (reqi'=(i=2 & s>=2) | (reqi & (reqo | m=0))) |
|||
// something to process if they are not functioning and |
|||
// either something is already pending |
|||
// or the main processor acts |
|||
& (reqo'=!(o=2 & a>=1) & (reqo | (reqi & m=1))); |
|||
|
|||
endmodule |
|||
|
|||
|
|||
// the system is down |
|||
formula down = (i=2&s<MIN_SENSORS)|(count=MAX_COUNT+1)|(o=2&a<MIN_ACTUATORS)|(m=0); |
|||
// transient failure has occured but the system is not down |
|||
formula danger = !down & (i=1 | o=1); |
|||
// the system is operational |
|||
formula up = !down & !danger; |
|||
|
|||
|
|||
// reward structures |
|||
|
|||
rewards "up" |
|||
up : 1/3600; |
|||
endrewards |
|||
|
|||
rewards "danger" |
|||
danger : 1/3600; |
|||
endrewards |
|||
rewards "down" |
|||
down : 1/3600; |
|||
endrewards |
|||
|
|||
//labels |
|||
// causes of failues |
|||
label "fail_sensors" = i=2&s<MIN_SENSORS; // sensors have failed |
|||
label "fail_actuators" = o=2&a<MIN_ACTUATORS; // actuators have failed |
|||
label "fail_io" = count=MAX_COUNT+1; // IO has failed |
|||
label "fail_main" = m=0; // ,main processor has failed |
|||
|
|||
// system status |
|||
label "down" = (i=2&s<MIN_SENSORS)|(count=MAX_COUNT+1)|(o=2&a<MIN_ACTUATORS)|(m=0); // system has shutdown |
|||
label "danger" = !down & (i=1 | o=1); // transient fault has occured |
|||
label "up" = !down & !danger; |
@ -0,0 +1,126 @@ |
|||
// flexible manufacturing system [CT93] |
|||
// gxn/dxp 11/06/01 |
|||
|
|||
ctmc // model is a ctmc |
|||
|
|||
const int n = 2; // number of tokens |
|||
|
|||
// rates from Pi equal #(Pi) * min(1, np/r) |
|||
// where np = (3n)/2 and r = P1+P2+P3+P12 |
|||
const int np=floor((3*n)/2); |
|||
formula r = P1+P2+P3+P12; |
|||
|
|||
module machine1 |
|||
|
|||
P1 : [0..n] init n; |
|||
P1wM1 : [0..n]; |
|||
P1M1 : [0..3]; |
|||
P1d : [0..n]; |
|||
P1s : [0..n]; |
|||
P1wP2 : [0..n]; |
|||
M1 : [0..3] init 3; |
|||
|
|||
[t1] (P1>0) & (M1>0) & (P1M1<3) -> P1*min(1,np/r) : (P1'=P1-1) & (P1M1'=P1M1+1) & (M1'=M1-1); |
|||
[t1] (P1>0) & (M1=0) & (P1wM1<n) -> P1*min(1,np/r) : (P1'=P1-1) & (P1wM1'=P1wM1+1); |
|||
|
|||
[] (P1M1>0) & (P1wM1=0) & (M1<3) & (P1s<n) -> 0.2*P1M1 : (P1M1'=P1M1-1) & (M1'=M1+1) & (P1s'=P1s+1); |
|||
[] (P1M1>0) & (P1wM1>0) & (P1s<n) -> 0.2*P1M1 : (P1wM1'=P1wM1-1) & (P1s'=P1s+1); |
|||
|
|||
[] (P1M1>0) & (P2wP1=0) & (P1wM1=0) & (M1<3) & (P1wP2<n) -> 0.05*P1M1 : (P1M1'=P1M1-1) & (M1'=M1+1) & (P1wP2'=P1wP2+1); |
|||
[] (P1M1>0) & (P2wP1=0) & (P1wM1>0) & (P1wP2<n) -> 0.05*P1M1 : (P1wM1'=P1wM1-1) & (P1wP2'=P1wP2+1); |
|||
|
|||
[p1p2] (P1M1>0) & (P2wP1>0) & (P1wM1=0) & (M1<3) -> 0.05*P1M1 : (P1M1'=P1M1-1) & (M1'=M1+1); |
|||
[p1p2] (P1M1>0) & (P2wP1>0) & (P1wM1>0) -> 0.05*P1M1 : (P1wM1'=P1wM1-1); |
|||
|
|||
[p1p2] (P1wP2>0) -> 1: (P1wP2'=P1wP2-1); |
|||
[] (P1s>0) & (P1+P1s<=n) -> 1/60 : (P1s'=0) & (P1'=P1+P1s); |
|||
[fp12] (P1+P12s<=n) -> 1: (P1'=P1+P12s); |
|||
|
|||
endmodule |
|||
|
|||
module machine2 |
|||
|
|||
P2 : [0..n] init n; |
|||
P2wM2 : [0..n]; |
|||
P2M2 : [0..1]; |
|||
P2s : [0..n]; |
|||
P2wP1 : [0..n]; |
|||
M2 : [0..1] init 1; |
|||
|
|||
[t2] (P2>0) & (M2>0) & (P2M2<1) -> P2*min(1,np/r) : (P2'=P2-1) & (P2M2'=P2M2+1) & (M2'=M2-1); |
|||
[t2] (P2>0) & (M2=0) & (P2wM2<n) -> P2*min(1,np/r) : (P2'=P2-1) & (P2wM2'=P2wM2+1); |
|||
|
|||
[] (P2M2>0) & (P2wM2=0) & (M2<1) & (P2s<n) -> 0.1 : (P2M2'=P2M2-1) & (M2'=M2+1) & (P2s'=P2s+1); |
|||
[] (P2M2>0) & (P2wM2>0) & (P2s<n) -> 0.1 : (P2wM2'=P2wM2-1) & (P2s'=P2s+1); |
|||
|
|||
[] (P2M2>0) & (P1wP2=0) & (P2wM2=0) & (M2<1) & (P2wP1<n) -> 1/15: (P2M2'=P2M2-1) & (M2'=M2+1) & (P2wP1'=P2wP1+1); |
|||
[] (P2M2>0) & (P1wP2=0) & (P2wM2>0) & (P2wP1<n) -> 1/15: (P2wM2'=P2wM2-1) & (P2wP1'=P2wP1+1); |
|||
|
|||
[p1p2] (P2M2>0) & (P1wP2>0) & (P2wM2=0) & (M2<1) -> 1/15: (P2M2'=P2M2-1) & (M2'=M2+1); |
|||
[p1p2] (P2M2>0) & (P1wP2>0) & (P2wM2>0) -> 1/15: (P2wM2'=P2wM2-1); |
|||
|
|||
[p1p2] (P2wP1>0) -> 1 : (P2wP1'=P2wP1-1); |
|||
[] (P2s>0) & (P2+P2s<=n) -> 1/60 : (P2s'=0) & (P2'=P2+P2s); |
|||
[fp12] (P2+P12s<=n) -> 1 : (P2'=P2+P12s); |
|||
[p2p3] (M2>0) -> 1 : (M2'=M2); |
|||
|
|||
endmodule |
|||
|
|||
module machine3 |
|||
|
|||
P3 : [0..n] init n; |
|||
P3M2 : [0..n]; |
|||
P3s : [0..n]; |
|||
|
|||
[t3] (P3>0) & (P3M2<n) -> P3*min(1,np/r) : (P3'=P3-1) & (P3M2'=P3M2+1); |
|||
|
|||
[p2p3] (P3M2>0) & (P3s<n) -> 1/2 : (P3M2'=P3M2-1) & (P3s'=P3s+1); |
|||
[] (P3s>0) & (P3+P3s<=n) -> 1/60 : (P3s'=0) & (P3'=P3+P3s); |
|||
|
|||
endmodule |
|||
|
|||
module machine12 |
|||
|
|||
P12 : [0..n]; |
|||
P12wM3 : [0..n]; |
|||
P12M3 : [0..2]; |
|||
P12s : [0..n]; |
|||
M3 : [0..2] init 2; |
|||
|
|||
[p1p2] (P12<n) -> 1: (P12'=P12+1); |
|||
|
|||
[t12] (P12>0) & (M3>0) & (P12M3<2) -> P12*min(1,np/r) : (P12'=P12-1) & (P12M3'=P12M3+1) & (M3'=M3-1); |
|||
[t12] (P12>0) & (M3=0) & (P12wM3<n) -> P12*min(1,np/r) : (P12'=P12-1) & (P12wM3'=P12wM3+1); |
|||
|
|||
[] (P12M3>0) & (P12wM3=0) & (P12s<n) & (M3<2) -> P12M3 : (P12M3'=P12M3-1) & (P12s'=P12s+1) & (M3'=M3+1); |
|||
[] (P12M3>0) & (P12wM3>0) & (P12s<n) -> P12M3 : (P12wM3'=P12wM3-1) & (P12s'=P12s+1); |
|||
|
|||
[fp12] (P12s>0) -> 1/60 : (P12s'=0); |
|||
|
|||
endmodule |
|||
|
|||
// reward structures |
|||
|
|||
// throughput of machine1 |
|||
rewards "throughput_m1" |
|||
[t1] true : 1; |
|||
endrewards |
|||
// throughput of machine2 |
|||
rewards "throughput_m2" |
|||
[t2] true : 1; |
|||
endrewards |
|||
// throughput of machine3 |
|||
rewards "throughput_m3" |
|||
[t3] true : 1; |
|||
endrewards |
|||
// throughput of machine12 |
|||
rewards "throughput_m12" |
|||
[t12] true : 1; |
|||
endrewards |
|||
// productivity of the system |
|||
rewards "productivity" |
|||
[t1] true : 400; |
|||
[t2] true : 600; |
|||
[t3] true : 100; |
|||
[t12] true : 1100; |
|||
endrewards |
@ -0,0 +1,53 @@ |
|||
// polling example [IT90] |
|||
// gxn/dxp 26/01/00 |
|||
|
|||
ctmc |
|||
|
|||
const int N = 2; |
|||
|
|||
const double mu = 1; |
|||
const double gamma = 200; |
|||
const double lambda = mu/N; |
|||
|
|||
module server |
|||
|
|||
s : [1..2]; // station |
|||
a : [0..1]; // action: 0=polling, 1=serving |
|||
|
|||
[loop1a] (s=1)&(a=0) -> gamma : (s'=s+1); |
|||
[loop1b] (s=1)&(a=0) -> gamma : (a'=1); |
|||
[serve1] (s=1)&(a=1) -> mu : (s'=s+1)&(a'=0); |
|||
|
|||
[loop2a] (s=2)&(a=0) -> gamma : (s'=1); |
|||
[loop2b] (s=2)&(a=0) -> gamma : (a'=1); |
|||
[serve2] (s=2)&(a=1) -> mu : (s'=1)&(a'=0); |
|||
|
|||
endmodule |
|||
|
|||
module station1 |
|||
|
|||
s1 : [0..1]; // state of station: 0=empty, 1=full |
|||
|
|||
[loop1a] (s1=0) -> 1 : (s1'=0); |
|||
[] (s1=0) -> lambda : (s1'=1); |
|||
[loop1b] (s1=1) -> 1 : (s1'=1); |
|||
[serve1] (s1=1) -> 1 : (s1'=0); |
|||
|
|||
endmodule |
|||
|
|||
// construct further stations through renaming |
|||
|
|||
module station2 = station1 [ s1=s2, loop1a=loop2a, loop1b=loop2b, serve1=serve2 ] endmodule |
|||
// (cumulative) rewards |
|||
|
|||
// expected time station 1 is waiting to be served |
|||
rewards "waiting" |
|||
s1=1 & !(s=1 & a=1) : 1; |
|||
endrewards |
|||
|
|||
// expected number of times station 1 is served |
|||
rewards "served" |
|||
[serve1] true : 1; |
|||
endrewards |
|||
|
|||
label "target" = s=1&a=0; |
@ -0,0 +1,42 @@ |
|||
// tandem queueing network [HKMKS99] |
|||
// gxn/dxp 25/01/00 |
|||
|
|||
ctmc |
|||
|
|||
const int c = 5; // queue capacity |
|||
|
|||
const double lambda = 4*c; |
|||
const double mu1a = 0.1*2; |
|||
const double mu1b = 0.9*2; |
|||
const double mu2 = 2; |
|||
const double kappa = 4; |
|||
|
|||
module serverC |
|||
|
|||
sc : [0..c]; |
|||
ph : [1..2]; |
|||
|
|||
[] (sc<c) -> lambda: (sc'=sc+1); |
|||
[route] (sc>0) & (ph=1) -> mu1b: (sc'=sc-1); |
|||
[] (sc>0) & (ph=1) -> mu1a: (ph'=2); |
|||
[route] (sc>0) & (ph=2) -> mu2: (ph'=1) & (sc'=sc-1); |
|||
|
|||
endmodule |
|||
|
|||
module serverM |
|||
|
|||
sm : [0..c]; |
|||
|
|||
[route] (sm<c) -> 1: (sm'=sm+1); |
|||
[] (sm>0) -> kappa: (sm'=sm-1); |
|||
|
|||
endmodule |
|||
|
|||
// reward - number of customers in network |
|||
rewards "customers" |
|||
true : sc + sm; |
|||
endrewards |
|||
|
|||
label "network_full" = sc=c&sm=c&ph=2; |
|||
label "first_queue_full" = sc=c; |
|||
label "second_queue_full" = sm=c; |
@ -0,0 +1,169 @@ |
|||
#include "gtest/gtest.h"
|
|||
#include "storm-config.h"
|
|||
|
|||
#include "src/parser/PrismParser.h"
|
|||
#include "src/parser/FormulaParser.h"
|
|||
#include "src/logic/Formulas.h"
|
|||
#include "src/builder/ExplicitPrismModelBuilder.h"
|
|||
|
|||
#include "src/solver/NativeLinearEquationSolver.h"
|
|||
#include "src/modelchecker/csl/SparseCtmcCslModelChecker.h"
|
|||
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
|
|||
|
|||
#include "src/settings/SettingsManager.h"
|
|||
|
|||
TEST(SparseCtmcCslModelCheckerTest, Cluster) { |
|||
// Parse the model description.
|
|||
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/cluster2.sm"); |
|||
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); |
|||
std::shared_ptr<storm::logic::Formula> formula(nullptr); |
|||
|
|||
// Build the model.
|
|||
std::shared_ptr<storm::models::sparse::Model<double>> model = storm::builder::ExplicitPrismModelBuilder<double>::translateProgram(program); |
|||
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); |
|||
std::shared_ptr<storm::models::sparse::Ctmc<double>> ctmc = model->as<storm::models::sparse::Ctmc<double>>(); |
|||
uint_fast64_t initialState = *ctmc->getInitialStates().begin(); |
|||
|
|||
// Create model checker.
|
|||
storm::modelchecker::SparseCtmcCslModelChecker<double> modelchecker(*ctmc); |
|||
|
|||
// Start checking properties.
|
|||
formula = formulaParser.parseFromString("P=? [ F<=100 !\"minimum\"]"); |
|||
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult1 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(5.5461254704419085E-5, quantitativeCheckResult1[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ F[100,100] !\"minimum\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult2 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(2.3397873548343415E-6, quantitativeCheckResult2[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ \"minimum\" U<=10 \"premium\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult3 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(1, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ !\"minimum\" U[1,inf] \"minimum\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult4 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(0, quantitativeCheckResult4[initialState], storm::settings::generalSettings().getPrecision()); |
|||
} |
|||
|
|||
TEST(SparseCtmcCslModelCheckerTest, Embedded) { |
|||
// Parse the model description.
|
|||
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/embedded2.sm"); |
|||
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); |
|||
std::shared_ptr<storm::logic::Formula> formula(nullptr); |
|||
|
|||
// Build the model.
|
|||
std::shared_ptr<storm::models::sparse::Model<double>> model = storm::builder::ExplicitPrismModelBuilder<double>::translateProgram(program); |
|||
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); |
|||
std::shared_ptr<storm::models::sparse::Ctmc<double>> ctmc = model->as<storm::models::sparse::Ctmc<double>>(); |
|||
uint_fast64_t initialState = *ctmc->getInitialStates().begin(); |
|||
|
|||
// Create model checker.
|
|||
storm::modelchecker::SparseCtmcCslModelChecker<double> modelchecker(*ctmc); |
|||
|
|||
// Start checking properties.
|
|||
formula = formulaParser.parseFromString("P=? [ F<=10000 \"down\"]"); |
|||
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult1 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(0.0019216435246119591, quantitativeCheckResult1[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_actuators\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult2 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(3.7079151806696567E-6, quantitativeCheckResult2[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_io\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult3 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(0.001556839327673734, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ !\"down\" U<=10000 \"fail_sensors\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult4 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(4.429620626755424E-5, quantitativeCheckResult4[initialState], storm::settings::generalSettings().getPrecision()); |
|||
} |
|||
|
|||
TEST(SparseCtmcCslModelCheckerTest, Polling) { |
|||
// Parse the model description.
|
|||
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/polling2.sm"); |
|||
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); |
|||
std::shared_ptr<storm::logic::Formula> formula(nullptr); |
|||
|
|||
// Build the model.
|
|||
std::shared_ptr<storm::models::sparse::Model<double>> model = storm::builder::ExplicitPrismModelBuilder<double>::translateProgram(program); |
|||
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); |
|||
std::shared_ptr<storm::models::sparse::Ctmc<double>> ctmc = model->as<storm::models::sparse::Ctmc<double>>(); |
|||
uint_fast64_t initialState = *ctmc->getInitialStates().begin(); |
|||
|
|||
// Create model checker.
|
|||
storm::modelchecker::SparseCtmcCslModelChecker<double> modelchecker(*ctmc); |
|||
|
|||
// Start checking properties.
|
|||
formula = formulaParser.parseFromString("P=?[ F<=10 \"target\"]"); |
|||
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult1 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(1, quantitativeCheckResult1[initialState], storm::settings::generalSettings().getPrecision()); |
|||
} |
|||
|
|||
TEST(SparseCtmcCslModelCheckerTest, Fms) { |
|||
// No properties to check at this point.
|
|||
} |
|||
|
|||
TEST(SparseCtmcCslModelCheckerTest, Tandem) { |
|||
// Parse the model description.
|
|||
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/tandem5.sm"); |
|||
storm::parser::FormulaParser formulaParser(program.getManager().getSharedPointer()); |
|||
std::shared_ptr<storm::logic::Formula> formula(nullptr); |
|||
|
|||
// Build the model.
|
|||
std::shared_ptr<storm::models::sparse::Model<double>> model = storm::builder::ExplicitPrismModelBuilder<double>::translateProgram(program); |
|||
ASSERT_EQ(storm::models::ModelType::Ctmc, model->getType()); |
|||
std::shared_ptr<storm::models::sparse::Ctmc<double>> ctmc = model->as<storm::models::sparse::Ctmc<double>>(); |
|||
uint_fast64_t initialState = *ctmc->getInitialStates().begin(); |
|||
|
|||
// Create model checker.
|
|||
storm::modelchecker::SparseCtmcCslModelChecker<double> modelchecker(*ctmc); |
|||
|
|||
// Start checking properties.
|
|||
formula = formulaParser.parseFromString("P=? [ F<=10 \"network_full\" ]"); |
|||
std::unique_ptr<storm::modelchecker::CheckResult> checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult1 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(0.015446370562428037, quantitativeCheckResult1[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [ F<=10 \"first_queue_full\" ]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult2 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(0.999999837225515, quantitativeCheckResult2[initialState], storm::settings::generalSettings().getPrecision()); |
|||
|
|||
formula = formulaParser.parseFromString("P=? [\"second_queue_full\" U<=1 !\"second_queue_full\"]"); |
|||
checkResult = modelchecker.check(*formula); |
|||
|
|||
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult()); |
|||
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult3 = checkResult->asExplicitQuantitativeCheckResult<double>(); |
|||
EXPECT_NEAR(1, quantitativeCheckResult3[initialState], storm::settings::generalSettings().getPrecision()); |
|||
} |
Write
Preview
Loading…
Cancel
Save
Reference in new issue